Fbriony 1794~

Preface to Quicksort

I have been very lucky. What a wonderful way to start a career in Com-
puting, by discovering a new sorting algorithm! But it was only a matter of
chance, In 1960 I was studying in Kolmogorov’s department at Moscow State
University, when I received an offer of a post as Senior Scientific Officer from
the UK National Physical Laboratory, to work on a new project for Machine
Translation from Russian to English.

So I was strongly motivated to study the current Russian literature in this
field. The first task of a machine translation algorithm was to look up the
words of each sentence in a dictionary held in alphabetic order on magnetic
tape. To achieve this in a single pass, it was necessary first to sort the words
into dictionary order., My first thought on how to do this was bubblesort
and, by an amazing stroke of luck, my second thought was Quicksort.

Another stroke of luck was the discovery of the exact formula estimating
the average running time for the algorithm. It was this that encouraged me
to write up the method as a longer article and submit it as my first published
article in English (after one in Russian and one in ALGOL).

But the luckiest break of all was that I did not take the job with NPL:
it turned out that my classical education disqualified me from a permanent
post in the Scientific Civil Service; and anyway I had convinced myself that
machine translation of natural languages was impractical with the technology
of that day. Instead, I obtained a job with a small computer manufacturer,
where I engaged in the translation of artificial languages, in particular the
programming {anguage ALGOL 60.




Preface to Proof of Correctness of
Data Representations

After completion of a compiler for ALGOL 60, my next job in Industry was
the design and implementation of an operating system to go with it. The
project was a failure; and when I moved to University I started on a course
of research to try to understand the subject better. At the same time, I
was studying the fundamental class concept of Simula 67, the world’s first
Object-Oriented language. My research method was to try to identify the
relevant concept of correctness, and then formalise the proofs that would be
needed to establish it. As a case study, I chose the design of a simple paging
system (virtual memory).

Quite suddenly, these three themes of my research led to a solution: an
abstraction function which relates the concrete detail of an efficient imple-
mentation (partly on main store and partly on disc) with the simpler abstract
concepts (of a contiguously addressed memory), which more directly corre-
spond to the user’s view of the data. I realised at once that this single idea
was crucial to the verification of computer programs of significant size. The
value of the idea has been subsequently confirmed by its application in the
specification notations Z and VDM, and in programming the notations of
Modula, Ada and other object-oriented languages.

I am now more enthusiastic about the idea than ever. It is the same
idea that appears as a coordinate change in the calculus, or a homomor-
phism in algebra; its fundamental role in Computing Science is quite sim-
ilar. Like all scientists, our main concern is explanation of phenomena at
many different levels of granularity and abstraction. In physics, these range
from quarks and particles through atoms and molecules, to cannonballs and
planetary systems. In computing they range from electronic circuits and as-
semblies through machine architectures and high level languages to windows,
databases and safety-critical real-time control systems. In all cases it is the
abstraction function {generalised sometimes to a relation) that makes explicit
the necessary conceptual link between the conceptual levels, and enables the
professionally motivated engineer to ensure that each level provides a simple
interface and a reliable implementation for the levels above it.



Preface to An Axiomatic Definition of the
Programming Language PASCAL

One of my goals in the study of program proof techniques is to assist in the
design of better programming languages, ones which make it easier to write
correct programs and harder to write incorrect ones. I hoped that this would
provide not only an objective methodology but also a scientific criterion for
future research into programming language design by other workers in the
field. The axiomatic basis, pioneered by Floyd, gave the insight that I fol-
lowed up in a series of research studies, treating various standard features
of high level programming languages. I was quite surprised that already by
1972 1 felt competent to tackle a reasonable subset of an existing program-
ming language, PASCAL, ~ admittedly one which had been extremely well
designed to achieve the same goal of making correct programs easier to design
and write.

It is a matter of continuing regret that so few languages have ever been
designed to meet that goal, or even to make significant concessions towards it.
For example, the programming language C was designed to assist in writing
a small single-user operating system (UNIX) for a real-time minicomputer
(PDP 11}, now thankfully obsolete. For this purpose, its low level of abstrac-
tion and plethora of machine-oriented features are entirely appropriate. For
all other purposes, they are a nuisance. The successful propagation of the
language can be explained by accidental, commercial, historical and political
factors; it is hardly due to any inherent quality as a tool for the reliable
creation of sophisticated programs.

So is there any point in the study of program correctness? I think there
is, for two reasons: scientific curiosity and professional integrity. Science is
driven by human curiosity, the burning desire to know not only what hap-
pens, but how and why. Everyone knows that computer programs work, just
as they know that the light of the sun and moon are sometimes obscured. It
is the scientists’ job to explain why; and to predict when it is going to hap-
pen. The prediction of eclipses requires an understanding of the fundamental
concepts of force and gravity, and of abstruse methods of mathematical cal-
culation. Though highly unpopular at first, these later turn out to be far
more generally applicable, even useful.

Professional integrity is the driving force that leads to reliable practice in




all branches of engineering, and in othér professi¢ns like medicine and law,
Surgeons and lawyers spend years } theoreticaétudy as well as in practical
exercises, to make sure that t e/ { it right first time, every time. No serious
engineer would tolerate the(trail-And-error methods of program debugging
which are so widely taught a racticed today by coders in Industry. It is
my experience that when programmers discover that they have the knowledge
and the skill to write programs that predictably contain no errors, they will
take increased professional pleasure and pride in doing so, with beneficial
effects both on productivity and on quality of the product.

Although correctness is much easier to achieve in the clean controlled
laboratory conditions of PASCAL, with a moderate amount of additional
care, the same methods of assertions and abstraction can be well applied
in the more polluted software environments which are more widely available
today.




Preface to An Axiomatic Basis

In 1960, it was still possible to describe a complete programming language
in thirty pages of mixed formalism and English prose (Naur 1960). I was
then working for a small computer manufacturer, and the description of the
language was clear and complete enough for me to design an implementation
entirely without consultation with the original language designers. And our
customers could write programs in the language, also without consultation
with me or with the language designers. And when the customers’ programs
were submitted to the implementation, it was possible for them to run first
time. A large part of the credit goes to the simple concise notation for formal
specification of the syntax of the language, due to Backus. This inspired the
search for a similar formal notation to express equally simply the semantics
of future languages.

In the early nineteen sixties, the favoured approach was to construct a
detailed mathematical model of how the program should be executed. I was
disappointed at the length and tedium of such definitions, well illustrated
in the case of PL/I by the painstaking but valuable work of IBM Vienna
Development Laboratory. In 1964 I suggested that it would be simpler (and
more useful to programmers) to describe the intended purpose and effect of
each language feature, rather than its method of implementation. But it was
not until I saw the work of Floyd (1967) that I knew how to achieve this
goal.

In 1968 I moved to an academic post and could write this paper as a
Professor in Belfast; I considered this more appropriate than a job in Industry
for research in an area that was unlikely to find much practical application
till after my date of retirement. Meanwhile, I predicted that a more formal
approach to programming (like the traditional Classical education, which I
enjoyed) might serve as a good academic training in rigorous thought, and
not just for computer professionals. Both of these judgments seem still to be
valid.



