Busy Time and Idle Time
C.A.R. Hoare

December 8, 1992

Summary: The introduction of timing considerations into pro-
gramming theory is a potent source of complexity. This may be
partially controlled by first treating time separately from all other
features of a program. Two incommensurate notions of time, idle
time and busy time, are first introduced separately and then com-
bined. The mathematics is utterly trivial and not very useful; but
the principles of separation and combination may be helpful in con-
trolling the complexity of more realistic models. '

Introduction

There are t}vd reasons f01__' _i;it_rbduci.ng the concept of time into a
programming language '

1. To specify the cdnsuxhption by a program of machine cycles or
other unit of resource. This will be called busy time.

2. To specify an interval of real or simulated time which must
"elapse before the next command of the program is executed.
This is called idle time, because it can be implemented without
significant consumption of machine resources. .

In a simulation program, the passage of real time is simulated
by idle time, implemented efliciently by an event queue; and busy
time is as irrelevant to the logic of the program as in conventional
programming. In real time programming, idle time specifies a real
time delay, which is needed to prevent the computer from interacting
faster than its environment can tolerate -— increasingly important as
processing speeds increase. This kind of idle time can be efficiently
. implemented by a watchdog timer and an interrupt.

In real time programming there may be unfortunate interactions
between busy time and idle time. These are controllable only if there

1

is sufficient computing power. The mathematical theory introduced
in this paper provides crude assistance in meeting this constraint.

1 DBusy time

We represent the consumption of ¢ machine cycles (or other unit of
resource) by an explicit command in a, programming notation:

busy (¢).

This command may be inserted (by the programiner or by the com-
piler) just in front of any sequence of basic commands; it indicates
that ¢ is a safe upper bound (either desired or actual) on the real
time consumed in executing the sequence. - SRR
Busy time costs; so any program which uses less of it is better
than one which uses more; S -

busy (¢) C busy (u), ifugt

where C is the merit ordering of programs. This has the valuable
consequence that any program can be executed faster or more eco-
nomically than specified, without invalidating its correctness. The
worst program in this ordering is one that takes forever. We there-
fore define : : o

L= busy (o0)
and state the law |

ex, T

When two or more sections of a program have to be executed
to completion, the resources consumed are the sum of the resources
consumed by the individual sections. For example, sequential com-
position can be defined: o '

busy (¢); busy (u) = busy (¢ + u).

The unit of adciition Is zero, so we deﬁne
SKIP = busy(0)
and state the general law
" SKIP; X = SKIP = X;SKIP.

Similarly, associativity of sequential composition follows from the
same property of addition. :

Some combinators of a programming language (e.g. a conditional)
require execution of a choice of only one of their operands, Let
M stand for a combinator (non-determinism) indicating that the
programmer does not know or care which choice is made. The best
that is known is that the resource requirement does not exceed that
of the greater of the two alternatives. We therefore define

busy (t) n busy (u) = busy {max (¢,u)).

This opera.tor inherits all the algebralc propertles of max: it isidem- .
potent, commutative and associative; it has SKIP as 1ts unit and L
as its zero. '

If there is a risk that one section of program may use too much
resource, this can be limited by a timeout operator [>,, where v is a

strictly positive limit on the resources allocated to the left operand.
It is defined '

busy (£) by busy (u) = busy (t) ift<w
= busy (v +u) ift > v,

(X b, Y) can be executed by first running X. If this terminates
before consuming v units of resource, the whole construction termi-
nates. Otherwise an interrupt occurs, and Y is executed to comple-
tion. This operator has SKIP as left unit, and obeys an associative
law:

X, (Y buZ)=(X oY) boguw Z

In a multiprocessor system, some components of a program may
be executed on machines of differing power, with the effect that they

apparently use only some (strictly positive) factor « of the resources
consumed by other components. To model this, we define

a X busy (t) = busy (a x ¢), for a > 0.

Multiplication by a positive scalar is linear and monotonic, so it
distributes through sequential and non-deterministic composition;
furthermore

ax (X l>,,Y)= (e x X) Baxy (X Y)
ax SKIP = SKIP S
"ax_!__ = 4,

Multiplication may be used to model execution of parallel pro-
cesses on separate PfOFess'ors; for example we could define

(0 o) by (142

Of course, if the two components are timeshared on a single proces-
sor, the resources consumed are still the sum of those consumed by
the components; as far as busy time is concerned, there is no differ-
ence between timeshared parallelism and sequential composition.
This concludes the range of combinators which can be reason-
ably defined in such a simple algebra of busy time. In principle,
any rmonotonic operator on nonnegative numbers could be defined
for- busy- time, but most of them are either useless (for example,
exponential) or impossible to implement (for example, square root).

2 - Idle time
We specify the passage of p units of elapsed time by the command

idle ().

The only effect of this command is to separate its start and its
termination by exactly p units of idle time. The properties of idle
time are expressed at a sufficient level of abstraction that it can be
implemented in radically different ways, for example in a simulation

language by an event queue or in a real time language by a watchdog
timer.

Following standard algebraic practice, we redefine for idle time
exactly the same operator symbols as we have for busy time. In the
case of sequential composition, the right hand side of the definition
is also the same, and for the same reason: :

“idle (p); idle (g) = idle (p+q)
SKIP = idle (0).

But parallel composition is quite different. We'.r_equire it to _t_érmi-
nate exactly when the second of its two operands has terminated:

idle {p) idie (q) = idle (max(p, q))-

|| is also associative and has unit SKIP.

Change in speed of processing should not have any effect on idle
time. In fact, this is exactly the reason why idle time has to be
so clearly distinguished from busy time. So scalar multiplication is
defined as the identity function: - :

a x idle (p) = idle (p).

The identity function commutes with and distributes through every
operator; and has everything as fixed point. j

An interrupt operator > for idle time is taken from Sifakis’ ATP;
the first operand is selected for execution only if this involves no
delay: - '

idle (p) > idle (¢) = idle (D) ifp=0
= idle(q) . ifp>0.

This operator is clearly associative, and

SKIP b ¥ = SKIP.

3 Combination

The previous sections have defined separate algebras for busy time
and idle time, in each case using the same collection of notations for

5

the combinators and the constants. It is therefore trivial to combine
the two algebras into a Cartesian product algebra:

1. each element of the carrier set is a pair (s, p) where s is a smgle
number representing an upper bound on busy time, and p is a
single number representing a lower bound on idle time; '

2. each combinator of the algebra is defired by applying the same
combinator pointwise to the two components; and

3. the algebraic laws are just the mtersectlon of the laws valid for
the component algebras ' :

A sumimary of deﬁmtlons is gwen in Table 1 and the Iaws in
Table 2. :

L = (c0,0)

SKIP = (0,0}

(s:0)i(tq) = (s+¢, p+q)

(520(t,a) = (s+t, max(p,q))

(s,P)1(t,9) = (max(s,?), min(p,q))

a X (s,p) = (a x .s,.p) | o | '

(s,9) By (tq) = | (s,p) - if s < v and p=0
= (v+t,q) otherwise.

Table 1. Definitions

; is associative with unit SKIP

i is associative and commutative with unit SKIP

M is associative, commutative, and idempotent with unit SKIP
and zerb L -

ax distributes through ;| M,
and has fixed points SKIP and L

SKIP b, X= SKIP :

X By (Y by Z):(X B, Y) R/

all the operators distribute through 3
| . .Table 2. Laws

4 Application

The motive for the development of a theory of timing for programs
is to provide a means of calculating how much processing power is
needed to meet critical time constraints. Let (s,p) be the timing -
parameters for a typical reasonably-sized section of the program,
Then p is the worst case real time deadline that must be met. So
the necessary ratio of machine cycles to elapsed time is s/p. The
maximum of this value over all sections of the program determines
the speed of the processor that must be purchased to meet the real
time constraint. s e

The calculus can also be used for fine tuning of the implementa-
tion of a parallel command '

(s: D)I(%:),

where (say) ¢ is larger than p. If s +1 is larger than ¢, this com-
mand must be executed on parallel processors, which is represented
in this calculus by muitiplication by fractional a. Otherwise, if s+ ¢
is larger than p, the first process must be executed at higher pri-

ority, to avoid the risk that cycles expended by the other process

may cause the deadline p to expire. Otherwise, if proportionate
scheduling is implemented, the ratios s /p and t/q should be used.
These checks provide only a necessary condition of success. It is
still possible for a parallel program which meets all global constraints
and all sequential local constraints to fail as a result of temporary
resource congestion, for example at the beginning of two parallel
processes: -

((1,1); (0,5) 1| ((1,1);(0,4)) = (1,6) | (1,5) = (2,6).

These risks are intensified if the parallel processes engage in com-

munijcation or mutual synchronisation, and so have to wait for each

other. _
The simplest way of averting the risk is to impose large safety

factors; but in addition it will usually be necessary to conduct more =

sophisticated checks, at least on sections of the program identified
as critical. This will need a much more sophisticated model than
that presented here, for example using sets of sequences of pairs of
times, rather than single pairs. o .
In the development of such a model, the lessons of this paper
may help to avoid some of the complexities that have traditionally
accompanied the introduction of timeinto programming theory. The
following advice may be helpful. : S

1. First investigate each feature of the theory separately, and then
put them together. ' '

2. Do not be afrai_d of more than two concepts of timé, for example . -
~to keep count of machine cycles on separate processors of a ..
multiprocessor system. S

3. Use non-determinism to mo-del'operé.t.'brs that cannot be ex-
actly represented in each separate theory (for example, condi-
tionals in this paper). '

4. Construct a range of simple and more complex models, with
clear embeddings, so that the engineer can choose the simplest
model adequate to its purpose.

5 Ensure that all models enjoy roughly the same set of algebraic
properties.

6. Give maximum assistance both to the engineer and to the the-
orist in the use of algebraic calculation rather than operational
reasoning. :

Appendix: Formal Semantics

The simple definitions given above ascribe a mathema.tlcal meaning
or semantics to the concepts and constructions of a programming
language. The semantics is called specification- oriented, because it
relates each program text to a description or specxﬁcatlon of relevant
aspects of its observable behaviour, for example the machine cycles
consumed in its execution. The algebraic laws derived from the
definitions serve to confirm and enlarge our understandmg of the
concepts; they can also help to transform a program text from the
form in which it is most clearly written to one in which it is most
efficiently executed, Program transformation is so useful, that a
complete list of laws is often taken as a formal deﬁmtlon of the
semantics of the language, independent of the orlglnal definitions
from which they were proved. - .
Another very popular method of deﬁmng a programming lan-
guage is by an 0pera.t1onal semantics. The primitive concept is a
transﬂuon o : -

X3y
where X is a program in its initial state
-8 is an observation of the behaviour of the program sta.rted
: in state X
and Y is a possible final state of the program after observation
of s.

For example, in dealing with busy time, s may be a count of the
number of machine cycles consumed by the execution of the pro-
gram in its passage from X to Y. Note that in a non-deterministic
system, there may be more than Y corresponding to any given X
and s.

An easy way to derive an operational semantics for timing is to
start with an independent mathematical definition to the transition
relation. For example, the transition for busy time is defined

busy (s) = busy (t) = t+v<s.

The inequation represents the fact that a valid implementation of
busy (t) may actually consume less resources than ¢, a benefit that
is expressed in the trivial theorem

busy (s) -2) busy (t), Cift <.

Similarly, for idle time we define an inequation in the opposite di-
rection - o : S '

busy (p)= idle () = p < gt

The annotation below the arrow distinguishes idle time from busy.

A list of valid transitions for busy time is given in Table 3 and
for idle time in Table 4. Their proofs are no more complicated .
than those of the algebraic laws of Tables 1 and 2. The purpose
of these laws is to give guidance on simple and efficient methods of
implementing the corresponding concepts of the language. In partic-
ular, they serve as a check on the feasibility of the implementation.
For example, it is impossible to give a transition rule in the stan-
dard format for the unimplemenatable square root operator on busy
time. The importance of avoiding unimplemenatable theories and
langnages has led many theorists to accept a collection of transitions
as a formal definition of the meaning of the concepts of a program-
ming language, independent of the algebraic laws from which they
can be proved. ' :

10

SKIP; X = X
If X Y then (X;2) 5 (Y; 2)

xXny3x
xny 3y
L5z

X 53Ythenax X X axV

IfX 5 Y then (X Dopw Z2) 2 (Y by Z)
XY then (X b, Z2) 2 Z |

X %Y andY % Zthen X 2V 7

Table 3: Transitions for busy time.

11

SKIP; Z_’Z
If X——)Y then (X; Z)—(Y; Z)

XHY?X
XHY?Y
L?Z

If X—>Y and X'>Y’ then (XI[X’)H(Y][Y’)‘
SKIP |[Y—+Y
X I[SKIP“-’X

If XY then (X b Z) (Y b Z)
If X——-+Y then (X b Z)—’Z
(SKIP > Z)~SKIP

If X=Y and ¥ —Z then Xv:*wZ

" Table 4: Transitions for idle time.

12

