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THEORY OF PROGRAMMING . (1)
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BASIC DEFINITIONS | (3)
4 pumber is denoted by g string of digits

g 0 5 05 705
A yarisgble is denoted by a string of letters

e.g. X Y ALPHA QUOT

A machine state is a finite mapping between variables and values.

eg. m={ X Y RN -~ QUOT

37 7 0

m{X) =37, w(y) =7, m( QUOT) =0
m(REM) is undefined. m is also undefined for all

other variables,




A gommand G is a relation between machine states, i,e, the states of  (4)

the machine before and after the command is obeyed,

(we define a relation as a get of ordered pairs (mym') g C).

The gkip command is defined:
skip = ar ji(m,m’) i m = m'%
1.e. the identity relstion.

This command is obeyed by doing nothing!

The abort, command is defined
abort = { }

i.e. the empty relation.

A machine whieh attempts to obey this command wiil simply fail (break) !

An expression is constructed from variables, values, operators, and (5)
brackets,

| e.ge X 17 X + 17 YH(X —3)

Given machine state m and expression e, we define u¥(e) - as the
value taken by e, wheﬁ evaluated in machine state m; i,e. when its

variables are replaced by the values given by m,

c.g. if m(X) =3 +then m#(X +17) = 20
nt(17) = 17
if oY) is not defined, then necr is

n*(THX + 3))




ﬁn assignment command takes the form : (8)
X := e (x becomes y)
where x 1is a variable
and € 1s an expression

€ege Y =17 Y =X —1 X=X +1,

X iTe =, {J (m,m") n'(x) = n (e,

5 g n'(y) = n(y) §

It is obeyed by evaluating e in the initial machine state m, and
then changing m(x) to have this value instesd of its old Ohée if e

is undefined in m, the machine bresks.

The composition of commands el and e2 is: | (7}
cl; o2 =p {_(m’m') [Tn" (m,0" € o1 & (n",n") & ‘caf
It is obeyed by first obeying el and then obeying ¢2. n" is the final
machine stéte of el and the initial machine state of c2,
Theorem, cl3(ec2; o3) = (e1; ¢2); 3
The associativity of ; will justify omission of brackeﬁs.
‘Theorem. gkip; ¢ = ¢; skip = ¢
abort; ¢ = e; abort = abort
Compare: 1%e¢ = o%] = 4

O%¢ = o#0 =0




4 condition b is an expression whieh is either true Ior false F  (8)

€.ge X O X=Y T F
It c'tefineé a Meomand ™
{(m,m') l nf(b) =T &m' =n }
i.e. the identity relation restricted to those maehine states in
which b 1ig true. “
It is obeyed by evaluating b; if this is true, skip ; otherwise abort.

A conditional ecommand is defined

Af b= cl, e £L = b; c1U b; o2
It is obeyed by first evaluating b; if the value is true, el is obeyed

and o2 omitted. if the value is false, e2 is obeyed and ol omitted,

Af b —>skip, abort Fi =t
Theorems if b —#el, c2 fil ; ¢3 =if b -i(ci; e3), {e2: c3) fi
if b ~>»ecl, c2 i zif_g-}cz, el £i
If T =wel, e2 i n_;'._ﬁ}_‘_ -r ¢2, ol £i = el.
The repetitive command is deo%inéd (9)
dob>cgd = () o (aile b do o)

n =0

where ¢y = b
T I cn[“’ b‘\
It is obeyed by first evaluating b, If this is false, the tagk is finished.

If it is true, ¢ is next obeyed, and then the whole eommand ig repeated.

Theorem. do b = ¢ od = if b—s(c; do b ~» ¢ od), skip fi

do F —c od = skip
do I —¥c od = abort
dob—cod= b, bje;b, bjesbiesh, ...
Cn'g: Cntt
¢, = bjes bje ... b;c;g
-

i, et

< n times,




(10)

EXAMPLE
x :=X; yi=1;
doxFy = if X{y~» yiTy—x, x12%x —y
£i
od
=x t=X; y 1= Y;
5Lx=yU(X#$f; Y5 ¥ iy~ x5 x =)
U(x Ay x<y; X 1=x=— y; x = )
Ux £y 2y yi=y—x3 x £y3 i{y; X 1S Xw y; X Ty
} EXECUTION TRACES (11)
; f [ )
j X { Y X vy
initial m/s j 111 259
x = X Elll £59 111
yoi=Y i " f " 259
x £y v |
xqy |
y += y—x ‘s 13
x £y x4y ¥ i J
Voi= yex f ! 1. 37
X E ¥ XLy v
X 1= X -y ( iy
X £y; X<y \/’
X iTX—y | 1 37
S
final n/s. jlll & 259 { 37 37




A. Obey the following commands, giving their execution traces. (12

1. F3=0 x =3, doy+ti{x = y:i=y +1od

2. y::2;x==3;g_gy}0-}x::x+1;yz=y—-19§__
S« ¥y 3F B3 x 3= 3; 5 1= 0y

do y»0 % y s=y—1; s:= g +x od
4o ¥ 3= 3; x 3= 75 q 3= 03

do x>y X 1=xX—y; q 1= g "‘1.9;@.
B, In each example above, replace the repetitive eommand by a pair of
assignments which would have the same effect for any initial assignment
to x, y, q, s.

6.g. the answer to example 4 is q 1% q + X = y; x 1= x modulo ¥y
WEAKEST PRECONDITIONS ' (1)

¢ achieves r is defined:

car = i(m,m) ]Elm' (mm') e e & n'¥(r) = EE
i.,e. the inverse imge of r under o. It is bhe condition satisPied by
exaetly those initial machine states in which a can successfully be
obeyed, a:nd‘ can end in a machine state satisfying T.
Theoren bar =bpr b&r

where b is a condition.

immlﬂm'l (m,m') € b & m'¥(r) ="T'.7S' |
imm\ (m,m) € b & m¥(r) = ig
Emm \ (m,m)e B & (m,m)¢ rg

= bnr

Proof. IHS

H

i

i

We usually identify a condition with the set of machine ghate pairs in

which the condition is true,




PROPERTIEIS OF g
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A commsnd ¢ is deterministic if for each initial state m,
there is at most gne final state m' such that (mym') € e,

commands defined so far are deterministiec,

If e is deterministie.

Multiplicative ¢ a({) rn) = N{ca I’n)
n n

This is pot true if ¢ is nondeberninistic,

8u8s €= X 3

I
o
L.

X =1

L

then cax =0

H
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]
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cal{x=0&x=1) =¢aF=F

411

(12)




Theorem of assignment (15)
X 1= e g b(x) = ble)
where b(e) is the result of replacing all oeccurrences of x in b{x) by e,
e.g. (X :=37aX)12)= 370122 T
(X = Y45 o X>12)=¥*%3 5122 7> 4

(X=X -1aX312)=(X - 1> 12)=(X>13)

Proof. The value of x after the asslgnment is by definition equal to the .

value of e before the assignment, 8o B(x) is true (of x) after the
assignment if any only if b(e) is true (of the value of e) before the

assignment, The values of a1l other variables of b remain vnehanged

by the assignnent,.

Theorem of composition ~ (18)
(el; eQ)ar = o1 a (e2 3 1)

(x :=X; y:= ¥) a (GOD(x,y) = GCD(X,1))

il

(x :=X g GCD{x,y) = GED(X,Y))
GOD(X,Y) = GOB(X, )

i

i

X>0& ¥>0

Proof. el; e2 arrives at a state satisfying r if el arrives at a state
from which ¢2 achieves ry and conversely

e e cl | el
(’61 a (Cz;aif/)/g . \(czﬂr) ) ’@

e et e e P

LHS '-'-Emm{ Hm'(m,m')é (cl; e2) &r#(m') =2§

:Emn{}] Tﬂ'a-mﬂ (m,m") & ‘cl &(m", mg o2 &r*(mg) - I.§
=?Jmm-{3 m(m, M e o1 &[Bm'(mﬂ,m')@ e2 & r*{n') = EE
:imlamﬂ(m,mu)e el & mlle(cz a r)} = RHS




Theoremn (186)
AE be® el, c£_f_i_g_§=j_._f_b-§(clg_r),(c.?gr) fi
= b (el a rIu Bf”i(cz ar)
e.g. (if x{y =2 yi=y - x, x = Xem vEi g GED(x,y) = K) =
if X{y—-&GCD(x,y—- x) =K, G{x -y, y) =K £i
GED(x, y) =K&x#y

Proof, IHS = (b; elt) g; c2) ar

(b; elarL (b; c®) ar

baf(clarubalezar

H

H

b el a r) 1 br(e ar

= HRHS,
Theorem of repetition. (17}
o0
dob~=»codar = ! Pn
n=0

where Po = -}:;r T
Pn+l = bNea Pu {J brr

o0
€8s do yfl{x By :syHloday=x-1= |J py
' n =y

where POEMK‘\ y=TXx-1Zy=x -1
Pizyti<zN(y =y aPo)y y =x - 1
Zysx-2¥ y=x -1
T x -1~z

L

PnZx «n - 1 y{x
. Pn:ian X—n-l..sy'(}c
= ylx

{_Ej €, & * where ¢ =b, ¢ 44 = bsese, Ub

4

=
H
o

s

i

]

U (cn a r) where e, ar zgﬁr, Cpgq & T = (b;c;cng_ D UbNr
n

H

bN{e _@(cn a r))UEﬂr
=U (Pn)
n




1.

e

We

EXFRCISES (18)
Derive and simplify the following preconditions:
(y t=0; do yH x = y 1= g+l od) g (y =x - 1)
xi=Xs; ¥ :=Y;ng>0 S xi=xtl; yimy-~-lodax=X+Y¥+3
yis=1;8:50;doyr0 =yi=y-1;8:=s HKodas=X¥
x:=X; g0, o2y >x =x -y; q:7atl od a X = g¥ydx & x(y

(211 variables are nonnegative integers).

can now solve problems of the forms ' | (19)
given command S and posteondition r,

?=8ar

But programmers must solve a different problem:

given posteondition r and precondition p,
p==>%ar

6.g. using only +1 and< , write a comvend ¢ which doss not change x,

and which satisfies:

O{x ==cay=x -1

This 1s ususlly more difficult! We shall need some more theory.

Iif

TRIVIALITIES - : (#20)

p and b are conditions
pNb =p; b=pab=bap =b;p
c; (elied) = e; ol o o2
(ellle2); ¢ = el; clle2; o
pN{b; car) =pa (b; car) =(pibje) ar

= (pNib; ¢} a v =b( (p1b; (c a 1))
if pb => el ar ‘
and pﬂg = o2 ar

then p == if b —» c¢l, o2 fiar




THECREM OF INVARIANGCE

Let ¢ be do b -» el od (for determinigtic ei)

and let bfip & cla p

(i,e. p is an invarient of o)

then p(1{(cad

< ¢a (bNp)

Proof. define Cq 2-5, €41 = b3 el cn\) b

SOczUcn
n

s = p (U ¢)a 2 =pnallle, a2 D
n n .

=Upnle, aD ‘-’".:U(cn a (bNp))
n 1

= (L) o) a (b0 p) = Rus,
n

- LEMMA

If ¢ is deterministie

and pNb & carp

and ¢, = b and Chy T b;c;cﬁU:r;

then Vn p ﬂ,(cn

al<e a (b p)

.. (1)

distribution

(by 1lemma)

distribution

(1)
(2)
(3)
(4)

Proof case-1n =0: pr(b g D) =pnb = bA(pNDL) =b _a_('l;ﬂp)

PN (e 42 D =pn(biese) a Typn(b a D

fe

bM{e a p) e .@{cn..a_l))u pOD

bNle a (pN(c, a D)Upnd

bA(ea (e a (bnp) ba (5ap)
(bje; e ) a (bNp)wda (b p)

((bse50) UBY a (brp)

41 & (bap)

by(3)

by (2)

by(1)

by(4)

(3)

(22)

(23)




VARIANT EXPRESSIONS (24)
. Let t be an expression, (always defined)
cdget =gp (k :=1; e} 2 (0€t{k)
(where ¥ 1is a fresh variable).
i.e. the weakest precondition under which the command ¢ decresses
value of t.
Theorem 2. 'Let ¢ =do b > el od (deterministic)
PAb & elagp
pPitb & el deec &
then p< ¢ a (bp)
Proof define c, "—"-‘E, Cpgg = b;c;cnu b

by Lemma 2 p(\(t&n) & ¢ a1l

fe o =U(pPt€n) Spdle 2D =pnead

n n
Seca (Eﬁp) by theorem (1)
LEMMA (25)
If pNb & (k := t;¢) a (pNt<k) for fresh k : (1)
and e, = b, cn+1 = b;c;cn\_;-b 7 (2)
thenn pptdn < o, 2l (3)

Proof. pNb % (k 3= t5¢) 2 t<k S 20

CopntK0C b = o .

O
induction step.
POES i =P O6 =ntl vpNtln
SpAbAt = nitub U Cow
SbNt =nfin(k t=tze)a (pnt<ub U~ n
< bMe alpNt< nH) D L patga
Ebﬂcg(cné.-f)ugéi U ene L
"enyaly o al
=eqal | sinece ani-_cn+1




EX/MPLE 1 (28)

Uging only{ , successor as operators, find ¢ s.t.

0{x =Decay=x-1& c changes only y.
Solution: reformulate posteondition as

y F1<x 0 y{x . =bhOp
and find cl, t s.t. |
y+1{x N y{x =>cl dec t

cl a y{x

try el =y 1=y +1

t=x -~y
cheek y + 1€x =D (k s=x - y; y t=y + 1) a (x -~y k(v %)

RAS =% - y - 1<x - y |

.'.‘ by theorem 2,

y{x =D doy+i(x —Dyi=y+loday=x-1
It remains to find e0 as.t. |

0 x éco a y< x.
Using theorem of assignment, e0 is y = 0. |

| EX/MPLE 2 _ (27)

Using only< , surcessor, and prédeces.sor as o_perators.find e s.t.
cgxX = X + Y where ¢ changes only x  and y.

Solution: reformulate postecondition as

.‘Eﬁp =0{yNx+y=X+7Y
check that x :=X; y := Y a p, ves (1)
we need to find el, t s.t. _ .
0yNx +y =X + Y =Dk :=1t; c1) a (t< k\p)
an obvious choice is t = Ve

el =e2; y 12y - 1 ces (2)




where O(y(\p=>c2,g,(y i=y-lax+y=X+7Y

fcee Oy {x+y=X+Y) =Degalx+y-1=X+7)

obviously e2 = x = x + 1 cers (3)

collesting (1), (2}, (%), we gets

3=k yi=Y; o0y —px t=x +1; yt=y -1 od

EXAWPLE 3

Using only\<, +, -, find ¢ s.t.

¥50 =rcaq=X"¥fi r =X modulo Y. ¢ ehanges only q and r

Reformulate posteondition as
KrX=q*Y+r (=bnp)
note that (g :=0; ri=X) a p 0
choose r ag variant function.
b=>ri=r-Ydee r - (2)
we need to find ¢l changing only q, s.t.
bOp =D clg X =g #Y +1r - 1)
this is solved by ¢l =g t= q + 1,
e o0 =qi=0; risX; do Y&r —vq =g+ 1 Ti=r-yod
Exercise: using onlyl , +, - , find e s.t.

cgs =X *®Y, and ¢ changes only s and y.

CARH/pk3:7,1.78

(38)




