Structure of an Operating System,

C.A.R. Hoare®, R,M. McKeagt*

Draft. May 1977,

Second braft. October 1977.

Summary s This paper suggests that the structure of an operating system
can Be clearly expressed as a hierarchy of communicating sequential
processes. The suggestion is illustrated by the development of an absurdly
simp;e multiérogrammed batch processing system. It is hoped that the

structuring methods and notations may be more widely useful,

Key words and phrases: programming languages, operating systems,

. program structure, communicating sequential processes,

C.R. Categories. 4,22, 4,32, 4.35,

*Programming Research Group, University Computing Laboratory, Oxford OX2 6PE, England

**Department of Computer Science, The Queen's University, Belfast BT7 1NN, N. Ireland.

1. Introduction.

Some of the reasons for planning and maintaining a clear structure of a
large computer program are
(1) To enable the design to proceed in an orderly and intellectually
manageable fashionh,
(2) To enable different parts of the design to be implemented
reliably by different programmers at different times.
(3) " To enable the program to be tested systematically in a way
~ that contributes to confidence in its overall corpectness.
(4) _To enable the program to be.readily modified in its general
configuration or in the detail ;f its parts, without risk
of unexpected interactioﬁs.
(5) To énable the programming conventions which guaraﬂtee
soundness of the whole structure to be enforced as far
aé_possibie.by "eompile time" checks. |
Edsgér H. Dijkstra £2] haé suggested that an operating system should be
structured as a series of levels, each of which uses the lower levels to
.'.1mplement a more de31rable virtual machlne for the beneflt of the higher levels.
“The lowest 1evel is the bare hardware, and the hlghest level con81sts of the
Vv1rtua1 machines in which the user programs run. This paper suggests that the
concept of the commuhicéting sequential process is a suitable one for expres$ing
such a structure, and illustrates the suggestion by the stepwise &éveIOpment |
~of an ahsufdly simple batech processing System.
0f course, when an.operating3sysfem is expressed in a higher levél
_ llanguage, the lowest level‘implemented by software (or_microcode, or even
hardware) will be the necessary "ruthime supﬁort" for that language, and
_cannot reasonahly be 1mplemented as part of a program expressed in that language.
In the case of a language incorporating communicating sequential processes, the
run-time support must include the allocation of local storage and processor(s)

to the processes, and administration of the communication between them, as well

as any simulation required to make peripheral devices with interrupts loock like
’ communicating sequential processes. This will usually require several hundred
machine code or microcode instructions, depending on the vagaries of hardware
interface designs.

The language of communicating sequential procasses has been described in
a previous paper [4]. However, for the elucidation of the structure of an
operating system, several extensions are desirable. Section 2 describes a
method for dynamic establishment and disestablishment of communication channels
betweén processes. Section 3 describes a scope rule which assists in the
multilevel structuring of programs, Section 4 introduces the parallel
repetitiva command in which the number of activations of a process is not
boundéd a priori, but is determined by the needs of the rest of ‘the progriam.
Finaliy, for convenience and symmetry, we have used output commaﬁds as guards,
in the same way as input commands.

These extensions are not so well suited to impiementation on arrvays of
processors with disjoint main storage; and even when implemented on a single
processor (or multiprocessor with shared main store), considerable optimisation
of processor allocation, storage allocation, and message passing ﬁay be
required to achieve reasonable efficiency. It is left as an open question how
far such optimisations can be accomplished automatically by a translator, and
how far the programmer can guide the optimisafion. |

The general structuring methods described in this paper reprodﬁce some

of the facility of the class and imner concepts of SIMULA 67; indeed, an

operating system siructure based on these SIHULA conceﬁts was presented in-fsl.

The major advance of the present paper is the introduction of forﬁs of : ;P
parallelism, input, and output which seem to bring a great conceptual
simplificatiqn and unification, though possibly &t the expense of postponing
problems of efficient implemenmtation. If these problems can be solved, it is

hoped that the usefulness of these concepts will extend more widely than

operating systems.

2, Declarations of comminication channels.

We allow a process name to feature in place of a type in the declaration

of a variable, e.g.
2p:lineprinter - ®: X

. If the declaration of "ip" (on the left) occurs in a process named "X", and the
declaration of "x" (on the right) occurs in a process named "lineprinter", then
these two declarations are eéxecuted simultaneously, and their éffect is to set
up a new communication channel between "lineprinter" and "¥". The channel is
broken ddwn again as soon as elther process exits from thé scope of the
declarafion. | |

Within the scepe of "ip", there may éccur output (or input) instructions,
.1e.g' : . :
o - fplheading; 4p!concatenate ("COST IS", decimal (cost));
- ‘which cqmmunicate through the dynamically established channél to a corresponding
'?nput (or'autﬁut) command within the scope of "x", e.g} |

filiney =x?4;

- An}aitempf'to communicate using a channel which has been broken down (by exit
from sééﬁg)_will fail, in the same way as communicatién'with a términated
”: pﬁocés$;'laﬁd.this failure can causé,termination of a repetitive command in
.thch.thé-input command'appears as a guard.

The pufpose of this extension is to permit processes internal to oﬂe
- ﬁrocess to set up communication channels with another process.or even the

Jlatter's internal subprocesses. Since names of internal subprocesses are local,

it is not possible for another process to use these names directly. ‘That is

- why it is necessary for each subprocess to declare a new local name .

(e.g. "2p","x") by which it refers to its communicant. The declaration of a
communication channel can appear as a guard, and will fail if the named

process has terminated.

Example 1. Allocation of a single resource.

Problem: A single lineprinter is to be shared among the processes local to
‘a process "X", The 1ine§rinter is to be acquired by declaration (as described
above); and the user process may then repeatedly output to it values of type
"line". On exit from the scope of the declaration, the lineprinter is released,
and is able to rvespond to fﬁrther declarations from the same or another process
in "X". But only one process at a time should use the lineprinter.

.Use English instead of machine code for instructions to the hardware of

the linéprinter.

Solution:

lineprinter:: x[x: X » #[2: line; %72 + ... print £ ...1]

Notes:;_~

(1) Tﬁe:“lineprinten" process consists of a repetitive command, which
teﬁminafes if and wﬁen.the process "X" is terminated; this can
-happen only when all internal procesées of "X" have terminated.

(2) Bach repetition first "acquires" a client process from "X", and
givés_it a.local name "'x", |

'(3) it'then embarks on an inner repetitive command, each fepetition
of:which prints one line sent by "x". |

(4) Eédh output line is single-buffered in "&", so that "x" can
proceed while "lineprinter" is waiting for the hardware to
accéﬁt the line.

(5) ~ The inner repetitive command terminates when the client process
"x" leaves the block in which the given activation of a - .w
"lineprinter" was declared.

~(8) The buter repetition is then ready again to respond to another

ﬁutput declaration of a "lineprinter" from within "X", either_

from the same or from a different process.

(7Y If "X" contains a nested declafation of a "lineprinter", the
"lineprinter" process can never respond to it, and the two
processes will be deadlocked.,

(8) However, normal scope rules provide a compile-time check against
a process in "X" using the actual lineprinter before "acquiring"
it, or after "releasing" it; and it is impossible to "forget"
to release_it {(provided, of course, that "X" contains no machiﬁe

code),

Often there will be not just one resource of a particular type but
several resources; and it does not matter which of them is used on a
particular occasion. This case is readily treated by a parallel command,
with one process per resource; e.g.:

[vesource 1 || resource 2 || resource 3l

If the code for the three resources is quite similar, it is more
_convenient to use the notation of the parallel array, e.g.
| [y(i: 1 .. 3) :: resourcel.
 Here "resource" stands for the code which represents the resource. It may
contain {but not assign to) the bound variable wi%, The pérallel arrvay is
equivalgnt to writing out the code for the resource three fimés, each time

with a different value for "i", ranging between one and three:

[Y(1) & resource, Il ¥(2) :: resource, Fl Y(3) :: resqurceaj
Bxample 2,
Problems Same as example 1, but with two lineprinters instead of one.
Solution: lineprinter :: [Y(is 1 .. 2) :: one lineprinter]

where "“one lineprinter" stands for

*x: X+ x[2: liney x?4 - ees print £ on printer'iu,;,]3

ar

Notes:

(1)

(2)

(3)

)

The "lineprinter" process now contains an array of two internal
subprocesses, each of which deals with one lineprinter, in the same way
as in the solution to the previous problem.

From within "X", or from within a subprocess of "X", a liﬁeprinter may
be acquiréd and used in exactly the same way as before: "fp: lineprinter'.
One of the two processes of the "lineprinter" array will respond to

this declaration when it is ready to execute its input declaration.
There is no way in which "x" may find out which lineprinter it is using.
If "Xﬂ contains doubly nested 1iheprinter declarations,_deadlock will
result; or if each of two concurrent processes contaiﬁs a singly nested
declaréfion, there is a risk of deadly embrace [31. |

Thg-namé "Y' of the local array is never used, since the lineprinters

do'not_need to communicate with each other.

Example 3, A simple multiprogramming system,

A simple multiprogramming system consists of a fixed number of processes

(say three), each of which executes a batch of jobs sﬁbmifted on one of (say
: :c.a'rdrea:l.é‘rf,‘ and fﬂ'—nt.r their cubpat on one of 6533) Ewa - :

two flineprinters. Each user program is executed in one of three virtual

machines. Thus the overall structure of the system is:

which

(X :: [Y(i: 1 .. 3) :: batch.pfocessor]
| lineprinter :: ... see example 2 ...
|1 cardreader :: ... left as an exercise ...
I virtuglmachin@ 1t ... explained belaﬁ suv
]
Each of the three batch précessovs,consists of a repetitive command,
terminates when a switch is off; i.e. "batch processor" stands for:

#[switch? on () + execute one jobl

In order to execute a job, it is necessary to acquire a card reader, a

 lineprinter, and a "virtual machine", which provides the main storage within

which the user's job will be executed. We specify that this store is

initialised to contain a standard user program, say a load-and-go compiler, or

a control language interpreter. This program is triggered and proceeds in
parallel with the batch processor, But since the virtual machine'has no
input or output devices, it must communicate with the operating system to
perform all required reading and printing. It also informs the operating
system on completion of each timeslice of (say) ten thousand imstructions.
This enables the operating system to maintain an account of the cost of each
job, and print it out afterwards,

(In practice, the concept of a virtual machine will be implemented by
setting base and limit registers, and using supervisor entry and exit
insiruetions; the details are not relevant to the conceptual structure of
'the operating system. In fact, the relationship between a virtuai machine and
a batch processor is not necessary for an understanding of the vemainder of
this paper).

The following program assumes that the user's job always terminates
after a reasonable time, and always reads the right number of cards,
"execute one job" stands for:

| cost: integer; cost = 0;

cr: cardreader; £: line;

tp: lineprinter;

job: virtualmachine;

*[job? timeslice () » cost := costrlimecharge
[job%2 -+ Lpli; costri® cost+linecharge
(job? input {) + card: line; cr? card; joblcard;

cost 1% cost+cardcharge

J; comment terminates when job is terminated;

2p! concatenate ("COST IS", decimal (cost))

Notes:

{1) The operating system is not subject to deadly embrace, because the
presouices are always acquired in the same order by each batch processor, and
they are all released before any of them is acquired again,
" (2) Ve have assumed that each job behaves correctly, in that it reads exactly
the right cards from the batch, and terminates after a reasonable time.
The operating system described above is very simple, but that is its only
merit -~ it would be dreadful to use! Among other defects:
(a) It contains no provision for breakdown of hardware components.
(b) The assumption of note (2) is wholly unrealistic.
(c). In practice, shortage of peripheral equipment liﬁits the
actual degree of multiprogramming to two, because one of
' the.batch processors will always be waiting for peripherals.

- Defects_(b) and (c) will be mitigated in the development of later examples.

3, Hole in scope,

In ALGOL 60, when the name of a procedure occurs inside the body of that
same prﬁcedﬁre, it refers to a recursive activation of that procedure. This is
obviously a useful feature of the language, but it creates a slight difficulty
in the multilevel structuring of a program. Suppose, for example, that a high
level program uses the function "cos', without caring how it is implemented;'
At a lower leﬁel, it is decided that the standard function "cos" is not
suitable, and it should be replaced by a programmed procedure. The scope
.rules of ALGOL 60 provide dn excellent method of doing this, without nhanging
the text qf the high level progfam; simply replace‘the "highllevel program'
by |

begin real procedure cos(x); ... new cos procedure body ...}

bigh level program

© end

All occurrences of the identifier "cos" in the high level program are
"captured” by the local procedure declaration, and do not reéch the more
global standard function, But the'difficuity occurs when the new cos
procedure body needs to call the standard function "cos™; since in ALGOL 60
" a use of this identifier would make a recursive call on the new "cos", which
is certainl& nét wanted!

For tﬁis reason we adopt a different scépe rule.for names Qf
~communicating sequential processes. We permit the body of a‘process to
mention its owﬁ name (or that of a textually enclosing procesé}‘in an-input or
output command, but specify that this denotes a EEE enclosing prodess with
that same name. Thus the scope of a process name extends over all other
processes in the same parallel command', but it does not .include. the body of
the named proéess.* In all other respects, the normal ALGOL sébpéhrﬁles still
apply - a name denotés the process to which that name is prefixed in. the
smallest éncloging paréllel command, (In fact this is the only reasonable
iﬁterpretation:of a procéss which mentions its own name;' since an attempt
.tQ'cdmmunicateLWith itself (or an enclosing process) would be alwéys
upsubceséful and an attémpt at recursive communication would seem meaningless.
Bﬁf furtﬁev discussion of recursion }s beyond the sqqpe.of'this‘péper).

Less formaliy, if we regard a process as the "ancestor“ df all its
internal Suﬁprqcesses, then a process ﬁame occurring in an input or output
c_:onunand always refers to its brother, or its uncle, or its great uncle, or
its great great uncle, etc; and it always refers to the ¢losest possiblg

member of this series., It never refers to a direct ancestor,

* This rule conflicts with the use of process array names in [4].

Lh

"

Example U4,

Problem: The multiprogramming system of example 3 assumes that each job will
read all the cards relevant to that job, and.no more, This is an unrealistic
assumption. We shall therefore stipulate that the cards of eéch job are
followed by a special separator card, and we need to rewrite the system to
ensure that if any job attempts to read beyond the separator its input requests
will be met by the simple trick of replicating the separator card; and if the
job terminates before the separator card is read, the remaining cards of the
job {(including the separator) are read and ignored, so that the next job will
start properly at the beginning of its card deck.

An additional advantage of the separator card is that the qardreader can
be deallocated as soon'as.the separator is read. Thus, if the jobs tend to
finish their input early, it will often be possible for more than two jobs to

run concurrently.

Solution: replace "execute one job" in example 3 by

[X :: execute one job || cardreader :: separate input]
where "separate input" is

®31Xg

[er: cardreader;

c:line; cr?c; comment read one card ahead;
*[c#separator; xlc » cr?el;
- conment either c = separator or x has terminated;
*[c#separator -+ cﬁ?c]; comment skip unread cards (if any);
1; comment the real cardreader is released here;

- #[x!separator + skip]

Notes:

(1) The declaration "x:X" responds to the declaration "cr: cardreader”

in Mexecute one job", which is now the closest process with name "X",

10

e

11

(2) The declaration "er: cardreader” acquires a real cardreader from the
more global process with the name_"cardreader“, even though it occurs
within a process which itself is named "cardreader".

(3) The last repetitive command sends separator cards to satisfy any

additional input commands from "x",

~ Example 5,

Problem: - The butput.prpduced by a batch also requires.separator lines, so
that material output by each job can be conveniently detached and returned to

its owner, Adapt the system of example 4 to ensure that output from each job

:is'folloﬁéd by a separaﬁor; and that any attempt to outpuf further lines after
.é separator is ignored, - .

It is #dvantageous also to delay acquisition of the "real" lineprinter
until the first line has to be output. Thus if the jobs tend to engage in
significant cemputation before their first output, it will often be possible

for more than two jobs to run concurrently.

L

Solution: réplacé "execute one job! by
. [X ;; execute one job || lineprinter :: separate output]
where "separate output" is
xiX; once; Boolean; once := true; L:linej
- :ﬁonce; x?% + &p: lineprinter; 2pif&;
E *[1 # separator; x?£j+l£p!2]§ | _
L2 =.separator -+ skip {] & = separator +_£p! separatorl;
once := false | |
‘13 comment real lineprinter released here;

dandubnay *[x?4 + skipl; comment ignore lines after separator;

12

Notes;

(1) The first loop is iterated at most once (and not at all, if a job has
no output).

(2) In practice it would be a good idea to ensure that all separator lines
are printed on double-page boundaries, to facilifate bursting by an
operétor. |

(3) ..Reﬁpving the unnecessary nesting, the overall structure of tlie operating
sjstem is now: |

tX s [Y(d: 1., 3) s: *[switch?on () +
(X :: execute one job
11 cérdreader :: separate inmput
] lineprinter :: separate oﬁtput

_]

] 1

|| cardreader: ... left as an exercise ...

|| lineprinter: ... see example 2 ...

|| virtualmachine: ... explained above ...

]

‘4, The parallel repetitive command.

A parallel repetitive command is like the normal sequential repetitive
command, in that it involves a dynamically determined number of activations of
its body; it differs only in that each activation proceeds in parallel with
all those that started earlier, The notation for a parallel repetitive command
will be the.same'as that of the sequential repetition, except that a double e
star ** will bé'ﬁéed'in place éf the single star *,

To ensure diajointness, we must stipulate that the body of a parallel
rgpétitive command must not update any global variables at all. Consequently,
the normal method of termination of repetitive commands (when their Boolean

guards become false) is not applicable; so the guards'on a parallel repetitive

command must be input or output guards or declarations, which cause termination

when all their sources and destinations have terminated.

Example 6.

Problem: The efficiency of a multlprogrammlng System caﬁ be greatly increased
Zby the technique of spooled (pseudooffllned) output._ The lines, when output by
a 3ob, are not transmitted to a real llneprlnter° 1nstead, they are copied to
a f11e on backlng store, and actual prlntlng is started only when the JOb is
”..complete.: Adapt the system of example 5 by 1nc1ud1ng spooled output, assume
5an implementatlon of the concept of a flle, to which llnes may be output, and

whlch must be rewound before they can be input agaln._

“l‘SeluiiQﬂ;¥' The only change required is to replace the code of example 2 by
. o llneprinter i: X o output spooling N P example 2 ...]
fwhere "output spoollng“ stands for
L "**[x'x+ffile, {: bines
'-;_*[#&nﬁﬁnu; x?4 + f'ﬁ], comment % has termlnated; :
'f'rew1nd S} ' ' '
Lp: lineprinter;‘comhent eﬂly.now, acdﬁive a real iineprinter;
: . :f‘3I*n=§ﬁ§n;_f?z.f.mplllg_GOmment the file has'feeminated;
"Netes=-
” (1).:'fhere ia?he a priori iimit to tﬁe'humﬁer of'aetivations of this
| :parallel repetltive command that may be in concurrent execution.
(2) Each activation is initiated by 3 declaration “zp: 1ineprinter"
| from_within the more global "X", i.e., the batch processors.
(3) When:HXN terminates; no furtﬁer'activatibns.ofethe parallel
feﬁefitive command are initiated. The command then terminates

after all outstanding activations have terminated,

13

i

{4) Of course, since thefe are ohly two real lineprinters, only two
activations of the command can be executing their second loop
simultaneously; and since there are only three jobs in concurrent
execution, at most three of them can be executing their first loop.
All the rest of them will be rewinding their files or waiting for

a lineprinter or a file,

Example 7.

Problem: Efficiency of operation may also be increased by spooling of input.

_'Soiution: ‘replace the original "cardreader" process of example 3 (exercise)
by cardreadgr.:: [X t: input spooling.ll cardreader :: ...]
where "input spooling" stands for
: :sz;x + f1: filey c¢: line;
| [er: cardreader; comment real card feader;
cric;
*[eczseparator + flc; cr?c]; comment ¢ = separator;
1; comment real cardreader released here;
fiseparator; flrewind ();
coﬁment now the user x can begin input; _ -
:ﬁf?é + xicl;
comment we have élready ensured that the job willlread

all cards up to the separator, and no more; .

1

The maximum numﬁer of concurrént instances 6f the input spooling process
is equal to the number of concurrent batch processors; it would therefdre be
a&vantageous to increase the number of batch processors to (say) ten. Of
course; it is likely that most of them will spend most of their time waiting
for a virtual machine in which to run a 5ob; but this is good, because it
ensures that there ﬁill uéually be a load of work waiting for the central

processor(s),

18

5. Sﬁmmagx. '
After all the developments of the prev1ous sections, it is helpful to
dlsplay the overall structure of the complete spooled multlprogrammed system

(see flgure_l).

.'fX.:: CY(is l «s 10} 33 *[switch?on ()}
| x HH execﬁte one job
II cardreader 2 separate input -
{1} llneprlnter H separate output
':lllcardréader'és [X':;-inéﬁt spooling I cardréader_:: .;. exercise ...]
'r,j}_iihepriﬁtétﬁzs [X s output spooling 11 llneprlnter 3 .,; example ﬁ eve 1
__f]l?iﬁtual méchiné :' cos explalned above ... e |

;jf e

Figure 1.

The persistent (even perverse) reuse of the same ldentifiers at every
- branch and every level of the structure is the result of the way we have chosen
%o prasent its development by stepwlse enrlchment. Tbe_strpcture can also be. .
'dlsplayed p;ctorlally without redundant names. P1gurel2 omits the’vittual
machines'and'the filing system; it indicates physical containment of processes
and subprooesses by solid lines, and communication channels by dotted lines,
A proceSS-wlth more than one instance is ;ndmcated by a double box.
For practical use;'this multiprogramming syétem still sufferé from many
defects, including | | . _”' _ ;
(1) There should be a cost limit imposed on each job.
(2) 'cérds unread by a job should be.printed out,:to assist in
§ diagnpsis.‘ |
(Sl. Better methods are‘required.fdr jbb‘idéntifiéation and.

 accounting,

16

(4) No provision is made for rerunning jobs which have already
been input when the hardware breaks down,

(5). It is not possible to ensure that more urgent jobs overtake_

less urgent ones.

(6) There is no way of avoiding the spooling of ekceptionally
long files,

(7) No job can use more than one input and one output file.

(8) Nc job can use files as temporary working storage, ...

- {9) «.. or for long term storage of information to be processed

by succeeding jobs..

A remedy of these defects requires introduction of a "job descrlptlon
card"” and a major revision of "execute one job"; and the overall system would
be much more complicated than that descrlbed in th1° paper. It is to be hoped
that the same structuring methods may be helpful in controlling the additional
complexity by assisting in the achievement of some of the objectives of

program structure listed at the beginning of this paper.

ne

17

‘saejuyad -
suTT

-

Buttoods
“and3no

_

Toa3uco jndino

_

PR

3ndino.
ajeaedas

.... .mN.wn5wHH”

$

Anm;wno.

¢----1 a3noexe [F----

b

- andug -
ageaedas

o=

Suptoods |

zossedoad yozeq . |

-y

w. ‘

|} . sxepesa
b -

paeo

]

Toazuoo. 3ndut

| weasks SuruweaSoxdritom petoods |

rh».

18

Ackndwledgements

The work of the first author was supported by a Senior Fellowship of
the Science Research Council of Great Britain, |

The ideas reported arose from a research project intor"a Model Operating
System", also supported by the SRC; and have benefitted from an implementation
of alsimilar approach by D.W. Bustard and S.A.J. Clarke.

They have also been improved by the useful advice of M.V. Wilkes,

E.W. Dijkstra, C, Hewitt, M.K. Harper and D.W. Bustard.

' Refepences
1. pirtwhistle, G.M. Simula Begin. Auerbach, London, 1973,

2. Dijkstra, E.W, The structure of the T.H.E. multiprogramming system,

C.A.C.M., 11, 5 (May 1968), 341-346.

3. Dijkstra, E.,W. Co-operating sequential processes. In Programming
Languages (F. Genuys, ed.), 43-112, Academic Press, London, 1968,

- . Hoare; C.A.R, Communicating sequential processes. Accepted fOﬁ .
:publication in Commun, A.C.M,

5. Hoare, C.A.R. The Structure of an Operating System, Draft May 1975

in “Lahguage Hierarchies and Interfaces" Lecture Notes in

- Computer Science No.46 Springer 1976.

