Discrete Event Simulation Based on
Communicating Sequential Processes

W. H., Kaubisch and C. A. R. Hoare

Department of Computer Science®
The Queen's University, Belfast, N, Ireland,

This paper suggests a minimal set of primitive concepts
required in the construction of algorithms for discrete event
simulation. The basic concept is the communicating sequential
process ECSP]; however, this is reinterpreted as a
quasiparallel process, operating in simulated time. The most
important features of simulation are shown to be implementable
as communicating processes, and a nontrivial example of a

simulation algorithm is given,

Key words and phrases: Programming Languages, Primitive Concepts,
Discrete Event Simulation, Quasiparallel Processing, Communicating

Sequential Processes,

CR Categories: 4,22, 3,65

*This,research was supported by a grant and a senior fellowship from
the Science Research Council of Great Britain.




1. INTRODUCTION.

Research into programming languages has produced a wide variety of
proposed designs. Each design attempts to improve upon its rivals, often by
introducing additional "powerful" features, perhaps oriented towards a
particular application area. As a result, some.of the languages have been
quite complicated to implement and even to understand; but many programmers
have taken this-as-a cﬁallenge to tﬁeir skili and ingenuity.

This paper takes exactly the opposite approach; it attempts to remove as
many features as possible from previously proposed languages, and replace them
by the barest minimum set of primitive structures, which are adequate'for the
intended purposes, It suggests tﬁat, even in a specialised application area
such as discrete event simulation, most requirements can be met by a few

.general-purpose features,

Tﬁe paper startSuwitﬁ a brief survey of tﬁe‘main requirements of a
programming language designed for discrete event simulation, namely, resources,
processes; éimulated time, queues, statistics, and random numbers. These are
illustrated by features and examples of the use of existing simulation
languages, GPSS (5], STMULA 67 [2], and SIMONE [4].

followung :

The nexthsection introduces the concept of a communicating sequential
process [1], whicﬁ is interpreted as operating in simulated time instead of
real time. The proposed notation is described by means of annotated examples,
since a fuller and more formal descfiption is aiready available [1]; however,

os om wcperument,
A this earlier language has been extended by permitting output commands to '
appear in guards.

In section 4, a series of examples illustrate how this language can be
used to implement all the basic requirements of simulation, as surveyed in

section 2, Tt culminates in a simple but complete simulation algorithm,

the machine sﬁop £37.




2. THE REQUIREMENTS OF DISCRETE EVENT SIMULATION.

This section surveys the requirements of discrete event simulation, and
the features which have been added to programming languages to adapt them for

this purpose.

2,1 RESOURCES,
| Eng ik
Among its definitions for "resource", the Oxfordhpictionary gives:

1. A means of supplying some want or deficlency; a stock

or reserve one may draw upon when necessary.
2, An action or procedure to which one may have recourse.
3. The capability of adapting means to ends ...

The first definition refers to stocks and reserves, which we may interpret as
being supplies of inanimate objects or materials, for example, the components
or metal used in a mackine sﬁop. The second definition refers to actions and
procedures executed by agents, wﬁicﬁ are of interest not because of their
physical substance but because they accomplish some desired result; the
machines and macﬁine operators in the machine shop are examples of this type
of agent. According to the third definition, we may say that the machine shop
itself is a resoﬁrce, because of its ability to adapt the means at its
disposal (i,e. the metal, the machines and the operators) to meet a given set
of orders. |

Simulation models and languages must be capable of fepresenting such
widely varying types of resource. In tﬁe simplest cases, resources may be
represented.by simple variableées; but more generally tﬁeir representation
will require the use of structures, e.g., the PASCAL [2] RECORD structure,
.or even structures witﬁ associated rules of access, such as the

SIMULA 67 CLASS [31,or module of MODULA [61, or by tﬁe MONITOR of SIMONE [41.




As an example, in the case of the machine shop, the stock of metal may
be represented as an integer giving the amount of stock on hand e.g.
METALONHAND : INTEGER;
The simplest representation of a (single resource) machine is as a boolean
variable, indicating whetﬁer that machine is in use:
MAéHINEINUSE ¢t BOOLEAN;
MACHINEINUSE := TALSE;
Going on to a more elaborate example, consider a group of machines, each of
wﬁich is capable of doing tﬁe same job, but each of which has a different
running cost. Each machine could now be represented as a RECORD:
MACHINE = RECORD
RUNNING COST : INTEGER;
INUSE ; BOOLEAN
END;
and a group of ten of these machines can be represented as an array:
MACHINEGROUP ; ARRAY [1,.10] or MACHINE;
Finally, assume tﬁat the macﬁine group has a foreman whose job it is to decide
about tﬁe usage of his-macﬁines. When a customer wishes to use a machine he
must first ask the foreman for permission, and when he has finished, he must
inform tﬁe foreman of this fact. In the language GPSS, a resource like the
foreman would be represented by the built-in STORAGE feature. In other
languages, it must be programmed explicitly - for example, as a monitor in
SIMONE:
MONITOR FOREMAN;
«»» declaration of local variables ...}
PROCEDURE REQUEST;
+++ body of request ...;
PROCEDURE RELEASE;
++. body of release ...;

initialisation of local variables ...
END




Here, the procedures REQUEST and RELEASE may be called from outside the monitor

by qualified calls:

(1) FOREMAN.REQUEST;

which acquires a machine from the foreman, possibly after some delay.

and (2) FOREMAN.RELEASE:
which returns a machine to the foreman for reallocation.

There is a qualitative difference in complexity between the foreman and
the previous examples. One could write ever more complex records to represent
ever more complex inanimate resourcesj but they remain inanimate)and the manner
and sequeﬁce of access to them is determined solely or mainly by the accessing
program, However, a monitor or a class has the capability of apparently
autonomous behaviour. The foremén, in ﬁis efforts to grant a request, may
himself initiate requests for other resources; for example, he may make
choices about maintenance scﬁedules, may call for a mechanic, etc. Hence, one
request may set off a chain of other events, and the interaction between the
resources may become quite complex. We shall see later that the representation
of such a complex resource can take advantage of the full generality of a

communicating sequential process.

2.2 PROCESSES.

A process is an independent action or series of actions leading to the

realisation of some result., Processes can interact with each other when they

compete for resources or communicate,sith-ene—anether- Apart from these

interactions, processes are independent of each other; and in particular they
i that .

make independent progress in time}aa&ﬁ\a number of processes will be executed

concurrently (in parallel). In a simulation, this concurrency is usually
implemented by interleaving actions from all the active processes (#isy in

quasiparallel},




In a machine shop simulation, an example of a process would be an order
which flows through <the shop. Each order specifies the series of steps
required to produce the desired product; each order is independent of other
orders except insofar as it uses a common set of resocurces (machines). In

SIMONE [5] an order may be represented as a process:

PROCESS ORDER;
BEGIN .., declaration and initialisation of local variables ...:
FOR I := 1 'FO NUMBEROFSTEPS DO
BEGIN request,use and release the machine required
for this step ...
END
END;

The process-like quality of the ORDER is obvious, because it is not
"used" by any other process. We have already seen that type 2 and 3 resources
also exhibit process-like characteristics relative to the resources they
manipulate, e.g., from the point of view of ORDER, the FOREMAN is a resource, {
yet the FOREMAN itself behaves as a process relative to the machines,
materials and mechanics which it schedules. Thus it appears that the
processes and resocurces of a simulation algorithm display a multilevel tree
organisation. At the bottom level are the type 1 inanimate resources, at the
top level are the pure processes; and in between are the type 2 and 3
resources. Looking from the top down, every structure looks like a resource;
looking from the bottom upward, they look like processes. The process and
resource concepts are relative rather than absolute., Even the processes
(orders) at the top level would appeér to be resources if we were to add
another level to the tree, for example, customers who originate and cancel
orders. It is this-insight which will enable us to represent both processes
and resources of types 2 and 3 5y a single primitive program structure, the

communicating sequential process.




2.3 TIME.

A simulation algorithm describes not only the static elements and
relations of the system being modelled, but also the dynamic behaviour and
interactions of the processes and resources as they evolve in time. But the
passage of time must itself be simulated as the algorithm is executed; and
each process which engages in an activity which is intended to take an
appreciable amount of time must specify its duration explicitly.

In STMULA 67 and SIMONE, the current value of simulated time may be
discovered by a call on the parameterless function TIME, for example

IF¥ TIME < FIVEOCLOCK THEN .,.
When a process is to engage in an independent activity which will last D units
of time, this is Indicated in the program by a call on the standard procedure
HOLD(D). If the value of TIME before this call is T, then the value of TIME
after the call will be T+D. Thus the effect of HOLD is simply to suspend the
calling process until the elapse of the specified duration of simulated time,

For example, the loop of the ORDER process (of the previous section) may be

~given in greater detail:

FOR I -:= 1 TO NUMBEROFSTEPS DO
BEGIN FOREMAN,REQUEST;
HOLD (USAGETIME) ;
FOREMAN .RELEASE;
END.
Here, we are not interested in the details of what the order does with the
machine; we are interested only in the fact that its usage of the machine
continues during the specified interval in model time, during which the
process engages in no other interaction or change of state.
Simulated time must not be confused with the real time taken by a
computer in execution of the commands of a simulation program. If a program

does not contain any HOLD operation, the entire program would be executed at

the same instant of simulated time, though it would certainly take some real

_execution time on a computer. Conversely, when every process of a program is

engage{ in a HOLD, they are using no computer time; but on each such




occasion, the implementation of the simulation language steps on the value of
simulated time to the earliest value which would permit a process to resume
execution after its HOLD. Thus it may be said that movement in simulated time

takes no execution time, and vice versa.

2.4 QUEUES.

A’ process which requires to use a resource will usually have to wait if
that resource is busy. If several processes have to wait for the same resource,
they will have to form some kind of queue. When the resource becomes free, a
choice must be made between the waiting processes, on the basis of some
specified scheduling discipline. A simulation is often concerned with the
relation between scheduling disecipline and the acceptability of response times.

In GPSS, queues are not represented explicitly, but there is an implieit
queue associated with each FACILITY or STORAGE. In SIMULA 67, a queue is
represented by the built-in SIMSET class. In SIMONE, where a resource is
represented as a monitor, a queue of processes waiting for the resource can
be represented as a condition variable local to the monitor. For example,
local to the FOREMAN monitor of section 2.1, there might be declared

FREE : INTEGER;
which contains the number of free machines, or (if none) the negative of the
number of walting orders, and
Q : CONDITION;
representing tﬁe queue on which the orders wait. Now the procedures of the
foreman could be written:
PROCEDURE REQUEST;
BEGIN FREE := FREE-1;
IF FREE<O THEN Q.WAIT
END

PROCEDURE RELEASE;:

BEGIN]FREE ;= FREE+1;
IF FREE<C THEN Q.SIGNAL
END




The command Q.WAIT suspends the process which called REdUEST; the command
Q.SIGNAL causes resumption of the process (if any) which earliest executed
Q.WAIT. Thus a condition variable Q implements a policy of "first in first out"
(fifo) scheduling. Other scheduling disciplines can be specified by a

"scheduled condition".

2,5 BSTATISTICS,

A simulation program is often in principle non-terminating, in the sense
that there is no well-defined final state in which it can be said to have
arrived at 'the answer'". Instead, one generally allows a simulation to cycle
through a given number of operations; or, alternatively, to execute for a
given duration of simulated time. Hence, its state when it terminates is
unpredictable} and even if it were, it would be of no real interest. Instead,
one is interested in the history of the states through which the simulation
has passed. Two runs of the same model ending in the same state but having
different histories are not considered as equivalent.

The history of the execution of a simulation is simply the set of
"values" of all tﬁe components of the simulation at each moment of simulated
time. In general, however, the entire set is not.of interest and some subset
must be selected and summarised to produce the required set of statistics.

One method of doing this is tc accumulate a histogram of~re1evant
observations. Some special purpose languages would contain such a facility
built-in; but in SIMULA 67 it must be programmed in the language itself,
using the general-purpose structure provided by the class. For example,

2. .
suppos} that a histogram requires three parameters.

(1) N, the number of intervals.

(2) LOW, the lower bound of the lowest interval; it should be

non-negative.

(3) HIGH, the upper bound of the hiphest interval; it should

be greater than LOW.




The class provides two procedures:

(4) RECORD(X), which records the observation X in the histogram;

X &% should be between LOW and HIGH. ( Low £ X < HiGH)

(5) PRINT, which prints the histogram in some suitable graphic

representation {which we will not specify here).
The entire class can be constructed:

CLASS HISTOGRAM (N,LOW,HIGH);
INTEGER N, LOW,HIGH;

BEGIN INTEGER COUNT;
INTEGER ARRAY HISTO [0O:N~11;

PROCEDURE RECORD(X); INTEGER X;
BEGIN INTEGER I;

N# /\ I :=[(X-LOW)2(HIGH-LOW);

HISTOLTI] := HISTOLIJ]+1;
COUNT := COUNT+1
END;

PROCEDURE PRINT
«+. body of print ..,.;

FOR COUNT := © STEP 1 UNTIL N~-1 DO
HISTOLCOUNT] := 03
COUNT := 0
END;
However, extensive statistics gathering written by the programmer tends
to clutter the program and obscure the model. Hence, there is a case to be
made for certain semi-automatic facilitles (as in GPSS), though this option

carries with it the problem that the volume of (perhaps unwanted) statistics

can become quite large.

2.6 RANDOM NUMBERS.

In a simulation program, the parameters of a process (e.g. its start time,
service times) may be specified in the normal way by the program itself or by

its input data; ~but it is often more convenient to select them at random in

accordance with some known or conjectured distribution (e.g. a uniform



distribution between given limits, or a negative exponential with a given mean).
A language like GPSS provides a range of random number drawing facilities to
assist in the construction of probabilistic models; but in a general purpose
language these facilities need not be built-in, since they can be programmed

by a pseudorandom multiplicative technique, using some suifable MULTIPLIER and
LTMIT. For example, a generator of a random number between zero and one can

be implemented as a SIMULA 67 class, and used by repeated calls on the SAMPLE

procedure:

CLASS RANDOM (SEED); INTEGER SEED;

BEGIN REAL PROCEDURE SAMPLE;
BEGIN SAMPLE ;= SEED/LIMIT;
SEED := SEEDxMULTIPLIER;
SEED := SEED-(SEED4LIMIT)XLIMIT;
END '
END

-T]RQS s&ﬁﬁp!hr .

fr Bk

2.7 SUMMARY.

“t’w oloocdhm  vs ' chosom W‘O’NJLI
- 5

Table 1 shows how the six essential features of discrete event simulation
are represented in three languages designed for the purpose. The fourth column
provides a comparison with the language described later in this paper. It can
be seen that GPSS provides the widest range of built-in special-purpose
features, and CSP leaves the most to be programmed in the language itself,

possibly with some loss of convenience and efficiency.

10




This could in fact be done, on condition that:
(1) the TIMER maintains a count of all quasiparallel processes in the

system; i.e., all those which make calls of HOLD.

(2) No quasiparallel process communicates with any other process

the TIMER.

These restrictions are required to ensure that the TIMER can detect when the
number of processes which have executed a HOLD is equal to the total number

of quasiparallel processes, so that it can advance simulated time and resume

the process which is due to be resumed the earliest. However, the restrictions

are unacceptably severe; and unless some general-purpose method can be found
of triggering the TIMER process when there is nothing else left to do, it
would seem necessary to include an automatic timer as a built-in feature of a
special-purpose 1anguage/ intended for discrete event simulation.

Cne minor extension has been made to the language described previocusly,
in that output commands are permitted to appear as guards in alternative and

repetitive commands. This gives a useful increase in the convenience of use
of the language, aftkaﬁjkA b nmm1 Pend. o erbwh&&tdﬁ%
PmL&MAs o rwuikﬂui FW@U&SJVS hidi\ Aﬁtjam&t 5£w%6.

3.1 ASSIGNMENT COMMANDS.
(1) IN := IN+1 adds one to IN

(2) (N,LOW,HIGH) := (10,0,100) a multiple assignment, assigning to each
target variable on the left; the value of

the corresponding element on the right

(3). REQUEST(n) := REQUEST(3) the tags "REQUEST" on the left and right
are matching, so the effect is the same as

n =z 3

st

12
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GPSS SIMULA 67 SIMONE CspP
Resources FACILITY, ALGOL data PASCAL data PASCAL data
STORAGE structures, structures, structures,
CLASS MONITOR PROCESS
Processes TRANSACTION PROCESS CLASS PROCESS PROCESS
[
Time ADVANCE Built-in Bulf1t-in Built-in
HOLD HOLD HOLD
Queuves implicit SET CONDITION Programmer
variable responsibility
Statistiecs | Built-in Programmer Programmer Programmey
feature responsibility vresponsibility responsibility
Random Built~in Built-in Built-in Programmer
Numbers generators generators generators responsibility
Table 1,

3. COMMUNICATING SEQUENTIAL PROCESSES.

A complete description of communicating sequential processes has been given

in a previous paper [1]. This section contains a series of annotated examples,

selected from the area of discrete event simulation. They may serve as revision

for a reader who is already familiar with the previous paper; otherwise, the

reader is recommended to study the previous paper, supplementing or replacing

its examples by those of this sectiom.

The main difference between the general-purpose language described

previously, and the special-purpose language described here is that here the

processes are interpreted as being executed in simulated time (in quasiparallel)
instead of in real time (genuine concurrency). The mechanism of simulated time
was described in 2.3, The question arises whether simulated time could have

been implemented as a TIMER process, using only the general-purpose features of

the language.



(4) GRANTED( ) :

GRANTED( ) the assipnment of matching signals

has no effect

{5) ACQUIRE( ) := RELFASE( ) fails, owing to mismatch of tags

3.2 PARALLEL COMMANDS,

(1) [Q:: queuel||U:: user]

Here, "queue" and "user" stand for command lists which are to be executed
concurrently, and Q and U are identifiers which name these processes. The
processes start simultaneously, and the parallel command ends successfully only

if and when both of them have successfully terminated.

(2) [FOREMAN (J:1..10):: foreman]

Here "foreman" stands for a.command list, possibly containing the bound
variable J. This example specifies ten processes, with names
FOREMAN (1), FOREMAN (2), .,., FOREMAN (10). The actions of each are specified
by the identical text "foreman", except that the valué of J in each process

gives the index of its name.

3.3 INPUT AND OUTPUT COMMANDS,

(1) READER?STARTTIME -«  fprom the READER input an integer value,

and assign it to STARTTIME.

(2) PUNCHI"#" -  to the punch, output the chavacter "#"
a qrowp
-(3). U?(N,LOW,HIGH) -  from process named U, inpuiﬂthree values,

and assign them to variables N, LOW, and HIGH.

13
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(4) HISTOGRAM!(10,0,100) -~  to process HISTOGRAM, output the

three values 10,0,100

Note: if a process named HISTOGRAM issues command (3), and a process named U
issues command (4), these are executed simultaneously, and have the same effect
as the structured assignment:

(N,LOW,HIGH) := (10,0,100),

i.e. N := 10; LOW := O3 HIGH := 100
(5) ALLOC!ACQUIRE( ) - to process ALLOC send a signal ACQUIRE( )
(6) UZACQUIRE( ) - from process named U, accept a signal
ACQUIRE( ) |

3

(7) ORDER(I)?REQUEST( ) from the ith element of an array of ORDER

processes accept a signal REQUEST( )

3.4 ALTERNATIVE AND REPETITIVE COMMANDS,

(1) [FREE<O » Q!I
OFREE20 -+ ORDER(I)!GRANTED( )
]
If FREE is negative, I is output to Q; otherwise a GRANTED( ) signal is

sent to ORDER(I),
(2) 1 :=1;
:ﬁISNOFSTEPS + aeey I 2= I41)

The body ... is repeated NOFSTEPS times, once for each value of I

between 1 and NOFSTEPS inclusive.




(3) *[U!(SEED/LIMIT) -

SEED := (SEEDXMULTIPLIER) MOD LIMIT;

Repeatedly outputs a number to U, and then computes a new value of SEED.

Terminates when U terminates.

(4) *[U?RELEASE( ) + FREE := FREE+l
OFREE>0; U?ACQUIRE( ) + FREE := FREE-1

]

Each repetition either accepts a RELEASE{ ) signal from U and then adds
one to FREE, or it accepts an ACQUIRE( ) signal from U and then subtracts one
from FREE;- but this second alternative can occur only if FREE is originally

greater than zero. Thus FREF can never go negative.

(5) *[(I:1..100)ORDER(I)?ACQUIRE( )

-+ ORDER(I)?RELEASE{ )

Repeatedly accepts ACQUIRE( ) signals from any one of 100 ORDER processes.
The bound variable I gives the index of the acquiring ORDER on each occasion.
The body of the loop accepts a RELEASE( ) signal from the same ™ orpER.
The repetitive command terminates when all hundred ORDER processes have:

terminated.

(6} *[IN<OUT+100; UPBUFFER(IN MOD 100) =+
IN := IN+1
0OUT<IN; U!BUFFER(OUT MOD 100) -

OUT := QUT+1

Repeatedly, on request from U,
either (1) (Provided that IN<OUT+100) inputs a value from U, and stores it in
the appropriate element of an array BUFFER
or (2} (Provided that OUT<IN) outputs the value of the appropriate element

of BUFFER to U,
The repetitive command terminates when U does.

15




4. EXAMPLES,

In this section, we present a series of examples to show how communicating
sequential processes can be used to implement the basic requirements of discrete

event simulation, as described in section Q;Hk-fk@ tbp@os oe t*uJZAf WA

tha opposdl. ovdan
4,1 RANDOM NUMBERS,

Problem:- Write a process RANDOM to vepresent a stream of random numbers,
as described in section 2.6. The name of the using process is U.
The process first inputs from U the value of its seed, and then
it outputs a series of random numbers starting with one derived

directly from the seed.

Solution: RANDOM::
[SEED: INTEGER; U?SEED; SEED := SEED MOD LlMl‘T’;
*[U!(SEED/LIMIT) -

SEED := (SEEDXMULTIPLIER) MOD LIMIT

16
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k,2 STATISTICS: HISTOGRAM.

Problem:

Solution:

.h{x:(

Write a process to represent a histogram, as described in
section 2.5. The name of the using process is U. The histogram
first inputs its parameters N, LOW, and HIGH; it then inputs and
records a series of integers from U. When U terminates, the

histogram is automatically printed in some suitable graphic

notation. jF" aMti WPWb WJML 3 énm@uj) aﬁﬂ- P\mﬁﬁ& &bd’l{b.

HISTOGRAM: :
[N,LOW,HIGH, COUNT: INTEGER;
U?(N,LOW,HIGH); COUNT := O; [N>O 80 =Low Low <HiGH n}SKilﬂ}
HISTO: ARRAY(O..N-1) OF INTEGER;
FOR I = 0..N-1 DO HISTO(I) := 0; X:INTEGER;
*[INTEQERS U?X + I:INTEGER; [Low.s;- x&- X< BiGH aSKiP];)
T :=[(X-LOW)+(HIGH-LOW); "
HISTO(I) := HISTO(I)+1;
COUNT := COUNT+1
13 ... print the value of HISTO ...

]




4.3 QUEUES:

Problem:

Solution:

4.4 SINGLE

Problem:

Solution:

18

A FIFC DISCIPLINE.

Write a process Q to iﬁplement a fifo queue of integers for a

user U. The user appends an integer I to the queue by an output
command Q!I. It removes the first member of the queue by the
input command Q?F which assigns to F the value removed; this will

be
$#ad#d if the queue is empty, The maximum length of the queue is 100,

Q:: IN,OUT: INTEGER; IN := O3 OUT := 0
BUFFER: ARRAY (0..99) OF INTEGER;
*[ IN<OUT+100; U?BUFFER(IN MOD 100) -
IN := IN+1
JIN>OUT; U!BUFFER(OUT MOD 100) -

QUT := OUT+1

RESOURCE ALLOCATOR,

A single input device is to be shared among an array of processes
ORDER(I: 1,.100):: ... |

Each order acquires the device by a command
ALLOC!ACQUIRE( );

it then uses the device, and finally releases it by:
ALLOC!RELEASE( );

Write the process ALLOC, which ensures that at most one ORDER

at a time can use the device.

ALLOC::
*#[(I:1..100) ORDER(I)?ACQUIRE( ) -

ORDER(I)?RELEASE( )



4.5 MULTIPLE RESOURCE ALLOCATOR.

Problem:

Solution:

Write a process FOREMAN to allocate 10 machines among an array
of 100 processes:
ORDER(I: 1,.100):: ...
An order acquires a machine by a pair of commands:
FOREMAN!REQUEST( ); FOREMAN?GRANTED( )};
and it releases a machine by
FOREMAN !RELEASE( )
When there are no free machines, the foreman uses a fifo queue
to store the identity of tﬁe orders whose requests cénnot yet be

granted.

FOREMAN::
[Q:: see example (4.3) ...
|{o:: FREE: INTEGER; FREE := 10;
*[(I: 1..100) ORDER(I)?REQUEST{( ) -
FREE := FREE-1;
[ FREE<O + QI
0FREE20 -+ ORDER(I)!GRANTED( )
]
0(I: 1..100) ORDER(I)?RELEASE( ) -
FREE := FREE+f;
[FREE>0 + SKIP
IFREE<O -+ F:INTEGER;

Q?F; ORDER(F)!GRANTED( )

19
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4.6 MACHINE SHoP. {3].

A machine shop contains ten groups of ten machines each. Fach group of
machines is scheduled by a foreman using a fifo discipline. The machine shop
must process a hundred orders. Fach order has the following parameters:

1. STARTTIME - the simulated time at which the order enters

the shop for processing.

2, NOFSTEPS - the number of steps required for processing

the order.

3. TFor each step, numbered between 1 and NOFSTEPS, there are two

parameters:

(3.1) MACHGROUP - the number of the machine group
requiredrto carry out this step

(3.2) SERVICETIME - +the amount of time required to

process this step.
These paramefers for each order may be read from the input device
READER. Each order must acquire exclusive access to the reader

before deing—se. reuddfj s Pawamn&u;ﬂ-‘

Solution: The overall structure of the solution is: i

[ALLOC:: ... see example(y.u),..

| fuss [«ET_ITjIBF\ngfgﬁgk: ... SEE example(}.s)...
| 1{Cx: 1..100)\ORDER}: ... see below ...

]




The order process array is:

ORDER(K: 1..100)::
comment read the parameters for this order;

ALLOC!ACQUIRE( ); STARTTIME,NOFSTEPS: INTEGER;

READER?STARTTIME; READER?NOFSTEPS;

MACHGROUP ,SERVICETIME: ARRAY(1..NOFSTEPS) OF INTEGER;

I: INTEGER; I := 1;

*[I<NOFSTEPS - READER?MACHGROUP(I);
READER?SERVICETIME(I);

I := I4l
1; ALLOC!RELEASE( );
comment start the simulation proper;

HOLD(STARTTIME); I := 1;

*[ I<NOFSTEPS + J: INTEGER; J := MACHGROUP(I);
FOREMAN(J) !REQUEST( );
FOREMAN(J)?GRANTED( )3
HOLD(SERVICETIME(I));
FOREMAN(J) 'RELEASE( );

1. T:=T+1

21
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5, CONCLUSION,

This paper has shown by example that the general purpose concept of a
communicating sequential process is adequate for many of the requirements of a
special purpose discrete event simulation language, provided that the concept
of simulated (quasiparallel) time is alse built into the language. Whether
this too can be implemented by some reasonable general-purpose feature is an
open question.

The notations deserihed and used in this paper are not recommended for
general use as a programming language, since they still suffer from many of
the defects summarised in [1], namely,

(1) The static upper bound on the size of an array, including

an array of processes. This defect has been masked in the
example problems by artificial simplification.

(2) The absence of aids to the construction and use of

libraries of standard processes.

(3} The non-existence of an efficient implementation.

Suggestions for the solution of these problems have not been given in this

paper.




