Cormmunicating Sequential Processes.

C.A.R. Hoare,

Department of Computer Science,
The Queen's University, Belfast.

DRAFT : August 1976, (Replaces:

An investigation into the structure of computations,
April 1976)

This paper suggests that input and output are basic primitives of programming;
and that parallel composition of communicating seguential processes is a fundamental
program structuring method. Wwhen combined with a developmeht of Dijkstra's guarded
command, these concepts are surprisingly versatile. Their use is illustrated by

sample solutions of a variety of familiar programming exercises,

¥ey words and phrases: programming, programming languages, programming

primitives, program structures, parallel programming, concurrency, input, output,

guarded commands, nondeterminacy, coroutines, procedures, classes, data representations,

recursion, conditional critical regions, monitors,

l. Introduction.

Among-the primitive concepts of computer programming, and of the

Programns

high level languages in whic are expressed, the action of assignment is

A
familiar and well understood. In fact, any change of the internal state of a machine
executing a program can be modelled as an assignment of a new value to some variable
part of that machine. Howaver, the operations of input and output, which affect
the external environment of a machine, are not nearly so well understood; and

often they are added to a programming language = only as an afterthought,

designed without due regard to efficiency, security, or simplicity.

Anong the structuring methods for computer programs, there are three basic
constructs which have received widespread recognition and use; . namely, a
repetitive construct {(e.g., the while loop), an alternative construct (e.g., the

conditional” if .. then .. else), and normal sequential program composition

(usually dencted by semicolon). However, less agreement has been reached about the

design of other important program structures, and many suggestions have been made:
subroutines (FORTRAN), procedures (ALGOL 60), entries (PL/I), coroutines (UNIX),
classes (SIMULA 67), processes and monitors (Concurrent PASCAL), clusters (CLU),
modules (ALPHARD) . None of these are wholly satlsfactory in themselves; and vet

~ their combination would be even more problematic.

The traditional stored program digital coﬁputer has been designed primazily
for deterministic execution of a single sequential program. ﬁhere the desire for -
greater speed has led to introduction of parallelism, every attempt hag been made to
disguise this fact from the programmer, either by hardware itself ({as in the
multiple function units of the CDC 6600) or by the software of a multiprogramming
- operating systen. Bowever, developments of processor technoleogy suggest that a
multiprocessor machine, constructed from a number of similar selfcontained processors,
may become appreciably more powerful, capacious, réliable, and economical than a

machine which is disguised as a monoprocessor.

In order teo use such a machine effectively on a single task, it is necessary
that the component processors should be able to communicate and to synchronise with
each other; and many methods of aqhieﬁing this have been proposed. A widely
adopted method of communication is by inspection and updating of a common storxe (as
in ALGOL 68, FL/I, and many machine codes); however, this can create severe

problems in the construction of correct programs; and it may lead to expense and

unreliability {e.g., glitches) in a hardware implementation. A greatex variety

of methods has been proposed for synchronisation: semaphores (Dijkstra), events
(PL/1), conditional critical regions (Hoare), monitors and queues (concurrent
PASCAL), condition variables (Hoare), and path expressions (Haberman) . Most of
these are demonstrably adequate for their purpose, but there is no widely recognlsed

criterion for choosing between them.

This paper mekes an ambitious attempt to tackle these problems, and to find a
single simple solution to them all. Input and output are regarded as programming

primitives like assignment; indeed output may be likened to a half-assignment

{without a left hand side), and input to the othexr haigj Under appropriate
conditions, an input from one procéss is synchronised with an output from another;
and their combined effect is the same as the corresponding whole assignment.

Input and output provide the sole method of communication between processes running
in parallel; they are also the main method of synchronisation. 2dditional

synchronisation is achieved by the use of guards in a guarded command (Dijkstya).

The concept of a communicating sequential process appears to provide a
neat method of expressing the solutions to many simple programming exercises, which
have been used before to illustrate the use of various other proposed programming
language features. This suggests that communicating sequential processes may

constitute a simple synthesis of a number of familiar and new programming ideas.

However, this paper also ignores many serious problems. 'The most serious is
that it fails to suggest any proof method to assist in the developmént and
wverification of correct programs, Secondly, it pays no attention to the serious
problems of efficient implementation, particulaily on a traditional sequential
computer. It is probable that a solution to these problems will reguire the
(1) imposition of severe restrictions in the use of the propdsed features,

{(2) reintroduction of distinctive notations for‘common and useful special cases,

and even (3) the design of more appropriate hardware. Thus the concepts and
notations intrdduced in this paper (élthough described in the next section in

the form of a programming language fragment), should not ke regarded as sultable

for use as a programming language; either for abstract or for concrete programming.

They are at best only a partial solution of the problems tackled.

2. Concepts and notations.

This section introduces the concepts of the paper, and suggests a notation
for expressing them. The style of description is borrowed from(ALGOL 60), but it is
quite incomplete. In particular, no proper treatment is given of expressions, types,
oxr declarations. In the example prcoblems, arnotation similar to that of PASCAL (Wirth)

has been adopted.

<commangd>» ::= <simple command> | <structured command>

<simple command> ::= <skip command> |
<assignment. command> |- — <input command> | <output command>
<structured command> ::= <alternative command> | <repetitive command>i<parallel command>

<recursive command> |<recursive call>

<gkip command> ::= sgkip

2 command is a specification of a computer process, to be executea by a
machine. Execution of a structured command involves execution of some or all of its
constituent simple commands. Execution of a command may fail; or it may have an
effect on the internal state of the machine (e.g., assignment), or on its '

environment (e.g., output), or on both {e.g., input).

A skip command has no effect and never fails,

2,1. Assignment commands.

Syntax.
<assignment command> ::= <target variable> :=<expression>
<expression>::= <simple expression> | <structured expression>
<structured expression>::= <constructor> (< expression list>)
<expression list>::= <empty> | <expression>, <expression list>
<gonstructor> ::= <identifier> | <empty>
<target variable>::= <simple variable> | <structured variable>
<structured variable> ::= <constructor> (<target variable list>)
<target variable list> ;:= <empty> | ‘<target variable>,
<target variable list>
Examples
X r=x+1 : insert (n) :=insert (2%x+1)
(x,¥) :=(¥,x%) - P):=c

left:=cons (left,right) c:=p()

cons {left,right) :=list 1

cons (x,cons {y,z)) :=list 2

An assignment command specifies evaluation of its expression, and
assignment to the target variable of the value it denotes. The command fails if
the expression fails to denote a value, or if the stxucture of the value does not

match the structure of the target variable.

A simple expression denotes a value, which may be simple or structured.
A structured expression denotes a structured value with the specified constructor and

with a list of component values denoted by the expressions of the expression list.

A simple tarxget variable matches any value of the same type. A structured
target variable matches a structured value provided that {1) they have the same
constructorsy {(2) the target variable list has the same length as the list of
components of the value; and (3) each target variable of the list matches the corres-
ponding component of the value list, Given this match, the effect of the assignment

is to assign to each target variable the corresponding component value. in case of

mismatch, the assignment fails.

2,2. Input and output commands.
Syntax.

<input command> ::= <source> ? <target variable>

_ <output command>::= <destination> | <expression>
R »
<gsourcer:: - <process name>

<destination>::= <process name>

<process name>::= <process identifier> |
<process array identifier> <gubscript>
<subscript>:;:= (<integer expression>)
‘Examples: cardreader? cardimage lineprinter!lineimage
west?c ' . Xm ¥ n '
X? {x,v) X! {rem,quot)
X? insert(n) slinsert (2Xx+l)
producer (i) ?x consuney. {j) !buffer (out)

X(iy?v{) : semiP{.)

An input command is delayed if necessary until the named source is ready to
tranémit a value; 1if the value matches the target variable, it is accepted and
assigned to that variable. An input command fails in the case of mismatch, or if the
named source is terminated.

An output command is delayed if necesgsary until the named destination is ready
to accept a value. The expression is then evaluated, and its value is transmitted,
An output command fails if the value does not match the target variable of the input,
or if the expression falls in evaluation.

A process name elther names a device external to the machine executing
the command (e.g., cardreader, lineprinter), or it names a process to which that
name is prefixed., The subscript following a process array identifier selects-a
particular element of that process array. Its value must be less than the number of

processes in the array.

\

2.3. Parallel Commands,

<process > 1= <zingle process> | <array of processes>

<single process ;= <process identifier>: <command >

<array of processes> ::= <process array identifiey >; <process array >
<limit>

<process array >:i= l i <copmand >

<bound variable>

<limit> ::= <integer constant> | < bound wvariable> .]

<integer constant expression>

<bound variable: »:;=<identifier >

<process set> ::= <process> || <process > | <process set> || <process>

<parallel command> ::= [<process set>]

Examples [fac:F I x: [fac! n-l; m:integer; fac?m; X!m x nll

I 4
Lroom:RooM || fork: [FORK|{phil: T[T pHIL]
L '

-

A parallel cormmand specifies parallel (concurrent) execution of its constituent
processes. It is defined only if these processes are disjoint, in the sense that
none of them contains as a target variable any'variable mentioned in any other process
of the command, The constituent command of a process array may contain as target
variable only variables declared within that &ommand. Consequently, each element

of the array is disjoint from every other element.

A process array takes the form:

X:f[TF c

(

It denotes an array of n processes; one for each value of i between O and n-1.

It may be regarded as equivalent to the parallel set

P
[x(u-1): ¢,

> v oa

i _ i
x(o):co 1] x(1y: c1 }

i :
where Cj is the result of replacing in C every occurrence of the bound variable
i by the numeral j. The bound variable i is local to C, and it must not appear as a

target variagble.

Each process of a parallel command is prefixed by its name. The scope of
‘this name is confined to the othex processes of the parallel command. Conseguently,
(1) Mo process can communicate with itself

(2} BAny occurrence of a process name within the process it names is either
local to the named process, or global to the entire parallel command.

t

Commuinication between procesées of a parallel command occurs whenevexr one
Process names another process as'the scurce for an'input“command, and that other
process names the first as the destination of an output command. On each such
occaslon, the two commands are executed simultanecusly, and their combined effect is
that of an assignment of the expression specified in the output command to the target

variable specified in the input cormand.

2.4, Guarded commands.

Syntax.
<guarded command>::= <guard > - <command list>
<guard>::= <guard element> | <guard element>; <guard list> |<declaration>; <guard list.
<command list >::= <command> |<command>; <command list>l<declaration>; <command list>
[
<guard element>::= < boolean expression®> | <assignment command> | :
< input command >
Examples. xXzy = m:=x
X >y =+ {x,¥):= (y,%)

¢: character ; west?c =+ n:= n+l; east ! ¢

i.2 size; size < N = content (gize) :=n; size:=size + 1
out < m; consumer?mora() = consumer tbuffer (out) ; out:=out+1

x:integer; client(i)?x; valt+x = O val:=val + x

10

A guarded command specifies sequential execution of the guard elements of
its guard, followed by sequentiai<execution of the commands of the command list,

A boolean expression-in.a guard is evaluated; if the result is true, it has no
effect, and otherwise it Ffails,

A declaration introduces a variable to be used subsequently in the same guarded
command. Its scope extends from its place of occurrence to the end of the guarded
command in which it occurs. Every variable which appears as a target wariable in a
guard must have been declared previously in the same guard. - Consequently, no guard
-can change any non-local variable. Furthermore, no guard may contain more than one
input from the same source,

A guard is said to be ready if its execution would not be delayed. A guard is
sald to be feasible if it is ready and its execution would not fail. A guarded
command is executed only if its guard is feasible, and only when it is ready.
Consequently, a guard is nevexr partly executed; it is either executed as = whole,
or not at all. . ' _

Declarations followed immediately by input to the declared variéble may be

abbreviated as follows:

west?c:character for c¢:character; west?c
X? (x,v:integer) for X,v:integer; X7 (x,y)

¥?has (n:basetype) _ for n:basetype;X?has (n)

2.5, Alternative and repetitive commands.

Byntax.
<gnarded command set> ;:= <guarded element> |
<guarded command set> ﬂ <guarded element >
<guarded element> ::= <gnarded command > [] <guarded array>
<limit > _
<guarded array > ::= [] <guarded command >
<bound variable> =
<alternative command?> ::= [<guarded command set >]
<repetitive command> ::= _ L <alternative command >
Examples. (x 2y > m=x U ¥ 2 x> m=y]

L [c:character; west?c -+ eastlc]

I [i < size; content(i) # n + f:= i+1]

n

in = content + skip

content + left! insert(n)

4

n

n > content + right! insert{(n)

1.C
xl D X(1)?V() + vali=val+l

L4
U [ﬁlvalf>‘0; X{iy?P() > val:=val-l
1 ¢ '

11

An alternative command spécifies executlon of exactly one element of its
guarded command set. If several of its guards are feaéible,the choice between them
is arbitrary. If none of the ready guards is feasible, the command is delayed
until the Ffirst guard becomas ready and feasible; and the corresponding §uarded
command is selected. If all the guards are ready, but none of them are feasible,

the alternative command fails.

A repetitive command specifies repeated execution of its alternative
command. If all its guards are ready but none of them is feasible, the repetitive
command is successfully completed, and no further repetition occurs; otherwise
the alternative command is-executed once, followed by repetition of the whole
repetitive command.
A guarded array'takes the form
n

wJ G+ 5

i .
It denotes a set of n quarded commands, one for each valus of i between O and

n-1. It is equivalent to

G- -+ g H Gt - s"ﬂ...ﬂ - s*
o o -4 1 n—-1 n-1

where G% 4‘5% is the result of replacing all occurrences of the bound
3 ;

varigble 1 in G + § by the numeral j.

2.6, Recursion.

<recursive commands ::=//ﬂ<identifier>: <command >

<recursive call> ::= <ldentifier>

A recursive command Iintroduces an identifer as a name for the whole command.
The scope of the identifier is confined to this command. Each occurrence of this
identifier as a recursive call within the command is eguivalent to a fresh copy

of the whole cdmmand.

i3

3. Coroutines.

This section contains simple exaﬁples of coroutines expressed as
communicating sequential processes., The section heading giveé the name of the
Fragment of program that it contains; and these names may ke used in subsequent
sections. |

3.1, copy

Problem: Copy character ocutput by a process named west to a process

named east.

Solution: [west?c:character - east!lecl

Notes: When the west process terminates, the input west?c will fail, causing
termination of the repetitive coimand, and thus the COPY process also terminates.

Any subsequent input command from east will therefore £all.

The COPY process acts as a single buffer, in that it pérmits west to work :
on production of its next character before east has accepted the previously produced

one.

3.2. SQUASH |
Problem: Adapt the program COPY to replace every pair of
consecutive‘asterisks '#%7 by an upward arrow 't'. You may
assume that west does not terminate with an asterisk.
Solution: Ihwest?c:character -
[? # asterisk = eastlc

Uc:= asterisk -+ west?c;

[¢ # asterisk + eastlasterisk;east!lc

l ¢ = asterisk - eastlupward arrow

3

!
J

Tl

Note: Since west does not endwith asterisk, the second input west?c will not fail.

14

3.3. DISASSEMBLE,
Problem: to read cards from a cardreader and output to process X the

stream of characters they contain. An extra space should be inserted at the end of

each card.

" Solution:
s _
“lcardreader ? cardimage : I character -
i:integer; i:=0;
L[4i<go-~>x! cardimage (1) ; i:=i+l 1; X!space
J
£ o .
Note: L character denotes an array of 80 characters with subscript

bounds From 0 to 79.

3.4. ASSEMBLE

Problem: to read a strear of characters from a process X and
to print them in lines of 125 characters on a lipeprinter.

The last line should be completed with spaces if necessary.

15

125
lineimage : I character;

i:integer; 1:=0;
I[X?c:character -
lineimage (1) :=c;
(1 <124 » i:=i+1

Di = 124 - lineprinter!lireimage; i:=0
]

1 ;
[i =0 = skip

ui >0 L[i< 125 » lineimage(i):=space; i:=i+l] ;

¥

lineprinter!lineimage

3.5. REFCRMAT

Problem: - read a sequence of cards (80 characters each }, and print their
contents on a lineprinter (125 characters pexr line). Every card should be followed
by an extra space, and the last line should be completed with spaces if nedcessary.

Solution:

[west: DISASSEMBLE [l X:COPY || east: ASSEMELE]

3.6. Conways example. []

Problem: Adapt the program of 3.5. to replace every pair of

consecutive asterisks by an upward arrow.

Solution:

Lwest: DISAassEMBLE 1 X:50UASH |} cast: ASSEMBLE]

3.7. BUFFER

Problem: Adapt the program of 3.3 go that it will broceed in
parallel w;th cperation of the phy51cal card reader.
Solution: [cardreader: carpcopy Il x: prsassswmim 1

where CARDCOPY =
80

[cardreadex?cardimage: % character * X! cardimage]

Neote: Input by CARDCOPY from the cardreader will come from the global

{physical) card reader; thlS is the effect of scope rule for process names.

Eowever, input by DISASSEMBLE from the cardreader will come from CARDCOPY, which

is a more local process with the same name; this is a consequence of normal

scope rules, as in ALGOL 60. Similarly, output from CARDCOPY to X will be directed

to DISASSEMBLE, whereas output from DISASSEMBLE to X will go to a more glokal X,

16

17

3.8. DOUBLE BUFFER
Problen. Adapt the program of 3.7 to interpose an additional buffer to
smooth temporary mismatch in speed between the physical card reader and the rest

of the program.

Solution:

{ cardreader: CARDCOPY || X: BUFFER]

Note: A good trick can be played twlce. But the necessary depth of the nesting
begins to look unattractive. Perhaps a more specialised notation should be introduced

for such chains of communicating processes.,

4. Procedures, functions and classes.

This section illustrates the use of communicating sequential proceéses in
place of procedures and functions- it also illustrates their role as representations
of abstract data structures (Hoare), like the classes of SIMULA 67. Value and result
parareters are passed by input and output; however, name parameters cannot be

expressed at all.

Problem. To reﬁresent a procedure which inputs from its calling process X
two integer parameters x and y, which then outputs to X two
integer results, equal to x div y and x mod y. The function
should be represented by a process, which can be used as many
times as required, and which can compute in parallel with the,
calling process. The following solution is not intended to be

efficient:

13

Solution: X [X?(x,y:integer); y >0 =

quot,rem:integer; quot:=0Q; rem:=x;

Tlremzy < rem:=rem-y; quot:=quot+l J;

Xl (quot,rem)
1

Note: the guard Y > O checks the validity of the parameter transmitted by X.
The whole program will fail immediately if this guard is violated.

4.2. FACTORIAL.

Problem: to represent a procedure which inputs from its user X a non-
negative integer n, and responds by outputting back to the user the value n! The

algorithm used should be recursive rather than efficient.

' [X?n:integer -~

[n =0 X1

En >0 = [fac:F

“ X : [fac! n-1; fac?m:integer; X! m x nl

]
3
-
Note: when n % 0, another instance-of the process F is created, with name fac.
This process will input n-1 and output its factorial to m. Note also that the

output X! m x n, occurring inside a process named X, goes to the same global

process which supplied the initial input X?n.

19

4.3. SMALLSET [15]

Problem: to represeht a set of values of type basetype, - where the size of the
set never exceeds N. The set should be represented aé a process which inputs
instructions. from its user process X, and outputs the result of its operations
when required: its operations.should proceed in parallel with its user wherever

possible, There are two types of instruction From ¥, using constructors “insert"

and "has" to distinguish'them:

(1) slinsert(n) requests insertion of the value n in the set s

{2) sl'has{n);s?h enquires whether n is a member of the set s.

The result is assigned to the boolean variable b,

The initial value of the set should be empty.

20

Solution:
N
content: I basetype ; size:integer; size:=0;

I [%x?has{n:basetype)
SEARCH; X! (i 2 size)

UX?insert(n:basetype) >

SEARCH;

[1 < size + gkip

[li = silze; size < N >

- content (aize) :=n; size:=gize+l

1

where SEARCH =df

lainteger; 1:=0;

Ifi < size; content(i) # n =+ i:=i+l J

Note: the guard size < N will cause the alternative command (and hence the whole

process) to fail if too many members are inserted.

.4'4' TREESET.

Problem: to represent a set values of type basetype as a binary search
tree. The external behaviour of the representation should be the same as for problem

4.3, but faster. Do not attempt to balance the tree,

Soluticn: We write a process to represent each node of the tree. Each node

goes through one, two, oxr three of the following phases:

(1)

{2)

(3)

(1}
{2)

(3}

to begin with, it represents the empty set, answering false to any
menmbership enguiry.

after the first insert, (if any), it represents a unit set, and answvers
membership enguiries by testing equality with its unique content

after the next insert (1f any), it grows two branches, left and right,
to which it passes on any lnStTucthnS which it cannot execute
directly. These branches are also nodes, with the same behaviour as
that described above. Consequertly, recursion is the appropriate
Program structure.
AANQDE :

[Z[X?has(n:basetype) + X!false J;

X?insert (cantent:basetype)};
Xl x?has (n:basetype) *+ X! (n=content)] ;
[left:MODE || right:NODE

”X: Z [X7insert (n:basetype)~

[n = content + skip
D:1 < content - leftlinsert(n)

DI} > content + rightlinsert (n)

u X?has {n:basetype)
[n=content + X!true
Hn < content -+ leftlhas{(n)
left?b:boclean ; X! b

ﬁn > content * right! has(n)

right?b:boolean ; X'b

21

22
4.5, SEQUENCE;

Problem: to represent a sequence of integers as an array, assuming that the
maximum length of the sequence never exceeds N, The seguence starts empty, and

responds to instructions of the form:

seq.append(x) : adds x to the end of the queue

sagimore();L seq?remove(x) + ...

ﬂ seg?empty() -+ ...

1

which either removes the first member of the sequence and assigns its value to x,

or gives the answer "empty()", The solution should use a cyclic buffer.

N
Solution: content: I integer;

Zlin,out:integer; in:=0; out:=0;

comnent out.<£in < out+tl;
% L in < out+N; X?append(x:integer) -
content (in mod N) :=%; in:=in+l

[] X?morel) » jout < in =+ X! remove (buffer {out)); out:=out+l

D out=in + Xlempty()

.

]

Note: the guard in < out+d protects the sequence against overfilling.

If it fails, the whole program fails.

5. Monitors and Conditicnal Critical Regilons,
This section illustrates the solution of some Problems in scheduling and
synchronisation. The role of a monitor is taken by a sequential process, communi~

cating with an array of client processes. Guards are used like conditions of a

conditional critical region to postpone acceptance of undesirable inputs.

23

5.1. BOUNDED BUFFER.

Problem:; to smooth a temporary mismatch of the speed at which a producer outputs
portions and the speed of input by a consumer. This is achieved by use of a buffer

containing at most N portions. The producer contains commands of the form:
Xlappend ()

wvhich appends the value of x to the end of the buffer, and the consumer contains

pairs of commands:

Ximore () X?remove (prportion)

which waits until the buffer is norerpty, and then removes the first element,
assigning its value to p.

N
Solution: buffer: ¥ portion;

in,out:integer; in:=0; out:=0;

comment - out =in Fout+H}
RS < out+N; prod?eppend(x:portion) ™ buffer (in mod N):=x; in:=in+l

[}out< in,cons? more {) > cons! remove {buffer(out mod N});out:=out+l

Note: when out=in, the second guarded command will not be selected, even
when the consumer asks for more. But when the producer outputs a portion; the first

guarded command will be executed; ané on the next repetition of the repetitive

command the condition out < in will ke true, and the delayed command from the consumer

can be accepted.

24

5.2 Semaphore (Dijkstra)

[

Problem: to implement an integer semaphore, shared among an array X:1T- alient.
3 _

Bach client increments the semaphore by an output command sem!V(} and decrements it

by sem!P(}.

Solution:

sem: L val:integer; wval:=0; comment val Z O;

v L [’j X(L)?v() > val:val+l

i C- ‘
D [:] val * O; X(ywp () * val:=val-1
i

]

Note: the guarded array provides an appropriate method for communicating'with
an arbitrary member of an array of processes, The wvalue of the bound variable 1
- indicates the identity of the process invoking the P or V operation. In the

problem given above, no use is made of this information.

5.3. Multiple decrement

Problem: adapt the semaphore described above to input a parameter, indicating
the number of units by which the value i1s to be changed. Subtraction must be

delayed if it would make the value negative.

Solution: val:integer; val:=0 —*
Z [‘ X{i)?V(n:integer) 7 wval:=val+n
i

ﬂ [f]x(i)?P(n:integer); val-n 2 0 ¥ val:=val-n
i

]

Note: the condition val-n 2 0 ensures that val will not go negative. TE ¥(i)
attempts to output P(n), with an n that violates this condition, the guard will be
infeasible, and the second guarded cormand will not be selected on the current
iteration of the repetitive comand. The delay in rejecticn of the input until after
inspection of the input value n 1s a startling but useful conseguence of the

definition of a guard; but it creates problems for implementation.

25

5.4 Explicit scheduling
Problem: A set of R resources numbered O to R-1 is to be shared among an array

C
'E“*““ . : ,
X: =\ user. Each user acqguires at most one resource at a time. 24 resource is

k3
acquired by two commands:

allocatorirequest (}; allocator?whichone {(x)

of which the second assigns to r the number of the acquired resource.

The rescurce r is released bLy:
allocator!release (r)

Resources are to be allocated on the basis of "first come, first served". The solution
may use the SEQUENCE process defined in 4.5 to represent both the set of free resources ‘

and the gqueue of walting processes.

solution [free : SEQUENCE [queue:SEQUENCE

IIX; [r:integer; r:=0; Tl <r > freelappend (r) ;r:r+1];

C
L[X{i)?reguest{) - cueue!append(i); freelmora();

= 7
[free?empty() - skip
H free?remove (r:integer) - queuelmore!)

guevelremove (f:integer) ; X(f) !whichone{r)

]

C

0 [::" X({l)?release (r:integer) -+ free!lappend (r) ;queue!fpore(} ;
1 Lqueue?empty () + skip
[]<zueue?remove(f:integer) + freelmoref{)
free?remove(r) ; X(£)!whichone (x)

1]

Mote: if a seguence is known to be nponempty, there is no need to test for this : !

case.

-

5.6. Dining philosophers (problem and solution due to E.W. Dijkstra).

Problem: Pive philosophers spend their liwves thinking and eating. The
philosophers share a common dining room where there is a circular table surrounded by
five chairs, each belonging to one philosopher. 1In the centre of the table there is a

large bowl of spaghetti, and the table is laid with five forks:

A

C 'i%‘..-ﬁé vj)
+ O
(. <

On feeling hungry, a philosopher enters the dining room, sits in his own chair, and
picks up the fork on the left of his place. Unfortunately, the spaghetti " is so
tangled that he needs to pick up and use the fork on his right as well. When he has
finished, he puts down both forks, and leaves the room. You may assume that there is

‘only space for four philosophers in the dining room.
Soluticn: The behaviour of the ith philosopher may be described as follows:

PHIL =
L [THINK;

room!enter{ };

fork (i} !pickup(); fork({i+l) mod bB)lpickup{);
EAT;

fork (i) lputdown{ }; fork ((i+l) mod 5)!putdown();
roomlexit({)

]

The fate of the ith fork is to be alternately;ﬁcked up and put down by a
philosopher sitting on either side of it
FORK =
Llphil (i) ?pickup{) - phil(i)?putdown()

ﬂ_phil((i—l)mod 5)? pickup -~ phil ((i-1) mod 5)}? putdown ()
1

The story of the room may be sivply told:

RCOM = occupancy:integer; ocoupancy:=0;
=
L ! Joccupancy < 4; phil{i)?enter()
i

“+ occupancy :=cccupancy+l

Allthese compenents operate in rarallel:

4
[room:rooM | fork: || FORX {| phil: |i PHIL]

i i

Conclusion.

The examples of the previous secticns have shown a wide range of
application of a simple form of input, cutput, and parallelism. Theirxr combination

with an extended form of bijkstra's guard gives some surprising results.

It is therefore tempting to ewxplers wet further extensicns to the concept
of a guard. For example, if an ouitput ccomend were permitted as a guard element,

*heie would be no need for the extra cor=ands "X!more({ }" in the problems 4.5,

tn

this neatness would extend to more rezlistic examples; and the additional problems

Q

7 efficient implementation would prcbably be severe,

An even more surprising extension would be to permit any command whatsoever
Lo appear as a guard element. This would vermit the definition of Randell's

recovéry block, eg.

lmain block; acceptancs test - gkip

- [lalternate; acceptance test +skip

1

27

.1, and 5.4; and their solutions would be somewhat neater. But it is doubtful whether

However, even with specially designed hardware, the problems of implementation
in the presence of input and output and nontermination are ssvere; and could
lead to an uncontrolled loss of efficiency.

The language proposal described in this paper is highly speculative, and

needs much further investigation before it can be recommended for implementation

or widespread use. Such investigation is more likely to reveal a need to

restrict the generality of the proposal rather than to extend it.

Acknowledgements.

This paper owes its inspiration to E.W. Dijkstra (1975}, and

has benefitted by helpful suggestions by D, Gries,

D.Q.M., Fay,

and M.

fixth.

29

s

o2}

3

w o ow

=
'....l

13.

Jt
C oA

[
n

Naur, Peter (ed.), Report on the Zlgorithmie Language ALGOL 60,
Comm. ACM 3, {May 1960), 299 - 314.

IS0 standard input/ouitput.

FORTRAN

PL/T

UNIX

STMULA 67

Brinch Hansen, P. Concurrent PASCATL.
Liskov, B.H. CLU..

Woolf, W.

v. Wijngaarden, A.
Dijkstra, E.W. Co-operating Sequential Processes.

Hoare, C.A.R. Towards a Theory of Parallel Programming, in Operating
Systems Techniques. Academic Press, pp.

Dijkstra, E.W. CGuarded Commands, Nondeterminacy, and formal derivation of

programs. Comm. ACM, 18, 8 (Aug.1975), pp. 453 - 457.
Conway, M.E. Design of a Separable Transition-Diagram Compiler.
Comm. ACM 6, 7 {) pp. 396 - 408,
Hoare, C.A.R. Proof of correctness of Data Representations. Acta Informatica.

Dijkstra, E.W. Operating Systems Techniques, 1ln »Acadenic Press.

Dijkstra, E.W. Private communication.

