GENERAL 9

5383 HOLLISTER AVE. « P.O, BOX 6770
SANTA BARBARA, CALIFORNIA 93111
TELEPHONE (805) 964-7724 » TWX 910-334-1193

RESEARCH &4 corroration

SANTA BARBARA DIVISION

\‘ th« Y:QDiwkvv\
31 March 1981 - ' /

.’m
"f@(ﬂvﬁ- (‘Gvrhﬁaie \fL/
Robert L. Ashenhurt :
Editor~in-Chief
University of Chicago
1101 E., 58th Street
Chicago, IL 60637

F .
orums ::‘:q«wzﬂf—v{f‘“:‘" et

‘In C A R. Hoare's Turing Lecture £ e are several insinuations regarding
ékﬂﬁ“%*Aﬂaﬂisweempared tgwxnem;;kqseii Algol 68 and PL/I. Furthermor
programmers of the future are warned against using Ada in life critical
systems. The comparisons are unfair and the warning, if heede&xis
dangerous, 77

Both Algol 68 and PL/I took years to implement and are recognized as
difficult languages to describe, to learn, and to use.

Ada 1is unique in that there were several public reviews of the requirements
for a language to replace the veritable Tower of Babel in DoD embedded soft-
ware which unfortunately are today coded primarily in assembly language.
Yes, Virginia, assembly languages! A great deal of effort by DoD, industry,
and even a few academics went into refining the requirement documents which
were named’ strawman, woodenman, tinman, {ronman, and 'stoneman “as they
became progressively firmer. Neither Algol 68 nor PL/I nor even Pascal
can point to a document which could be called a requirements document.
Furthermore, none of these languages satisfies the requirements of ‘steelman.
As a result of a public competition which any of the present day detractors
could have responded with proposals, four contractors \ere, selected to
develop language designs. These were delivered g {ahe n&”were again
subjected to public review. Two contractor f seIected to revise and to
complete their designs. They did this éiﬁev“These were also subjected
to public review and the choice was known as‘green and later as Ada. No
other language has been subjected to public input or competition among
language designs.

el .
As soon as Ada was chosen, implementations were begun and exist today?t’
I have a listing for one of them. It is only 3/4 inch thick, beautifully
commented, and is not a subset.

'WT{)*/

This éggfﬂﬁ as scheduled, the DoD competition on designs for a programming
environment for Ada which include the compiler, editor, loader, kernal
operating system, and data base system will result in three competitive
designs being scruténized by yet another public review.

An Equal Opportunity Employer

¥

Robert L. Ashenhurt 30 March 1981

To compare the development of Ada to small languages such as Pascal which

is good for teaching, but cannot handle interrupts, low level I/0, or

systems programming and which has evolved to so many dialects that portability
of programs appears impossible between computersgnd to a large language

such as Algol 68 which suffers from overcomplexi{y that cannot be compared to

Ada's elegance is far from fair. Yes, felk Ada is elegant. You may use .
a subset in the privacy of your own programming shop, but the compiler will
provide for all the features so a program written in San Diego will run in

New York.

Adf/and in Pascal, While the Pascal version cannot be changed to sdxt
arvays\of-different-types or lengths,-it is possible to do so with the Ada_
version.

To demonstrateﬁ{;itilegance I clase with a version of quicksort written in

Where the DoD and much of industry uses assembly language or at best FORTRAN
to program life critical systems, we can hope they will use Ada in the
future. Ada has many more mechanisms for catching errors than any of the
languages currently used in life critical systems. Implementation was rapid
and progress 1s on schedule.

A consultant to an emperor or to the DoD would be best advised to make a
better pair of clothes than advising to discard what is there and to adopt
nothing in its place.

Sincerely,

/Sabina H. Saib, PhD
Director, Software Quality Dept.

mmowm

wmm -

oo
o
—

, Arthur Evans, Jr. ‘ Pa

‘Following is a contribution to-ACM Forum. Author:

‘\ //

. \ .
N Z g\ / J » 1 y {20 /A
Antmur Evans, Jr. //// _

Bolt Beranek and Newman Inc. H e) (ﬂ??
10 Méné;Gn Stireet Hoc f((-

éambrl ge MA 02238
617-497-3487

o e —— —— —— —— - —— -~ - — - - - —— —— — - ——

c.A.R, 960
~Professor. Hoare's Turing Award Lecturse, kast—Bebkober, which
4 4

was-reprinted in the February 1981 issue of_Communica;ions,

provided once again a fascinating glimpse into the early days of
our discipline. It is good that we have the of chance to share
the experiences of one who was writing useful programs over
twenty years ago, and I am pleased to have this opportunity to
express my gratitude to both the Turing Award Committee and to

Professor Hoare,

After discussing some of what he has learned through his
long experience, Hoare chose to attack the design of thé language
Ada., While I do not c¢laim that Ada is without flaws, or even
fthat his conclusion (that Ada is too bif) is necessarily
inaccuréte, I do feel that the thrust of Hoare's attack seriously

misses the point and is not a construective tontribution.

Hoare made clear in his presentation that his professional
experience has been restricted to projects of moderate size,
projécts which are sufficiently small that one person <an

reasonably'comprehend most of the details. While such projects

" are 'surely gratifying to work on, it 1is unfortunate that problems
exist which are bigger than these Dby several orders of magnitude,
problems in which hundreds of programmers labor over a period of
years to produce thousands of modules, all of which must work
properly together. It was the realization that the tobls which
can deal more or less successfully with smaller problems are
inadequate to deal with larger ones that lead to the design of
Ada. Although it will be several years till we can evaluate
Ada's success, it is the opinion of many (myself included) that

it will meet the needs for which it was designed.

A responsible scientist who chooses to attack the work of
others has an obligation to take cognizance of the announcéd
goals of that work and to couch the attack in terms of its
failure to meet those goals., Just as it is inapéropriate to
attack L%é? for its weaknesses in solving differential equations
(which are not used in Al researchj, or Pascal for its lack of.
separate compilation features (which are not needed for classroom
exercises), so also an attack on Ada for being too big is
inappropriate unless the attack addresses why its size is
excessive even for the very large problems for which it is
intended. Hoare merely says that Ada is too big and states

Wil ot
dogmatically that it wewr™t work, but he does not say which
features he thinks could be removed without compromising its
ability to meets its goals. The only language feature explicitly
mentioned, exceptioné, is too small to contribute appreciably to
Ada's size., Further, at least in my opinion, it is a feature

which is now well enough understood that it is not "dangerouqu

~ Arthur Evang, Jr. Page 3

It is surely appropriate for Rrofessor Hoare or any other
computer scientist to find fault with Ada, or with any other
contribution to our field. Indeed, i; is the professional
responsibility of every'one of us to point out flaws in the
language and to make constructive suggestions, since it will be
around for a long time and will have a profound influenij/ (%he
nature of the sponsor makes this so, regardless of Ada's merits
or lack thereof.) However, an attack of the form, "Ada is too
biqu or "Ada 1is unsaféf?)or whatever, is not ponstructive, does
not help computer scilence, and does not reflect favorably on the

attacker, even one with as illustrious a reputation as Prefesson

qgv ,
Hoarets. j’t&/\ Toring Lechrrers.

. Tl
Daniel R Hicks J b /

513 Fourth Ave NE Box 815 - @
Byron, MN 55920 H oo {1 ¢vx7=¢ £

.,
J=onA pa

April 13, 1981

Robert L Ashenhurst
Editor in Chief
Communications of the ACM
University of Chicago
1101 E 58th St

Chicago, IL 60637

Subject: ACM Forum

s
T / .
Déﬁ: Mr/AngQ?urs
_/// -

Increasingly over the past several years, articles and
letters have been appearing in the professional journals and

j.rs
trade press attempting to explain and solve the "Software
e

V.t
- Productivity Crisis." The Gemmunications of-the-ACM-—has-

seemed to have _its quota.of . such-articles,—and the February

"~ tl
issue Hrmrﬁwqﬁkmvaﬁ (6WWWMMﬂhﬁ%}WJ s ~evere]
N —

LaawT e T I e vend /z(wuuh; ﬂ(@@&(,
N #leter .

In his “President's Letter, /pennlng argues that conventionally

educated programmers are not taught techniques for code

saving, sharing, and revising, and, in fact, he makes a

convincing argument that the typical college environment

actually discourages learning such techniques.

klpléspl

R L Ashenhurs£
April 29, 1981
Page 2

Hrﬁ(
In the A€M Forum, Clarke proposes that the fault lies not

with the programmers but with the programs. It is his

opinion that a lack of standardization, especially in languages
and operating systems, is the cause of poor programmer
productivity. He again suggests that we should design one

good language to cover all needs. The problem, of course,

is to define "one good" language. APL, which he describes

as "a very bad lanquaée," is actually one of the most standard-
ized and consistent lan@uaqes in existence., On the other

hand, PL/I, the most notable attempt to date to be all

things to all people, is frequently decried as obscure and

inconsistent.

Over the past few years; I haﬁe seen articles which insisted
that new languages are needed, articles which insisted that
there are already_too many languages, and articles (thankfully
not recently) which insisted that all programming should be

a S e blevr
done in ASSEMBLER language.

I have seen articles touting detailed specifications, code
reviews, formal testing cycles, programmer's "workbenches,"
and proofs of correctness--all in an effort to reduée the
cost and improve the reliability of programs. Various
authors have argued that colleges should teach more specifics,

more general concepts, and an armload of specific curricula.

klpldsp2

R L Ashenhurst

April 29, 1981

Page 3

My own personal experience in college has been reenforced by
my contacts with more recent graduates--most colleges (and
industry education programs) do a fair-to-good job of teaching
programming. Few manage to educate programmers.

| 960 ' B alis i~ he FELWW7

Where then lies the problem? In his ACM Turing Award lecture, .

c 4 ’4 N \/~ij()
Brofessor Hoare stat%éﬂ "There are two ways of constructing
a software design: One way is to make it so simple that
there are obviously no deficiencies, and the other way is to

make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.™

I can put this in perspective by describing, briefly, my own
"education" as an Electrical Engineer. The entire emphasis
was on\gna;_siiép That is, given a basic circuit design,
analyze the appropriate equationé and determine the required
values for the various resistors, capacitors, and voltages.
Little, if any, emphasis was placed on techniques for the

- synthesis of a basic circuit design, and never was it pointed
out that the basic design could greatly affect both circuit

stability and the number of variables which would need to be

analyzed.

klpldsp3

R L Ashenhurst
April 29, 1981
Page 4

Likewise, most programming curricula emphasize analysis:
Given an algorithm, code an implementation. Given a statement,
describe what it does. Code the same function in three

different languages.

Even structured programming principles are frequently applied
solely as an aid to analysis: If one imposes structure on
%Q’

a program, it will be easier to analyze.

The problem is that a computer program can be a thousand
times more complex than an electrical circuit, and the first
"basic circuit design" one pulls out of the air is rarely
even close to a good choice. But the analysis-trained
programmer proceeds to do the only thing he has been taught:
analyze the design and, as bugs are found, change a‘resistor
here and add an IEAstatement there until all the obvious
bugs have been eliminated or obscured. This results in what
I have called the "First Feasible Sclution Syndrome." Any

design is good so long as it cannot be proved to be bad.

The ultimate scluticon, as I see it, is a basic change to the
way programming (and other engineering disciplines) are
taught. There is little need to dwell on different languages
and algorithms. A good programmer can teach himself a new
language in a few weeks 1f he needs to know it, and algorithms

will be forgotten next semester anyway. What needs to be

klplésp4d

R L Ashenhurst
April 29, 1981
Page 5

£

5
-

done is .to educate (from the Latin ”educere“--to draw out)
programmers in the management of complexity. Novice program-
mers especially need to fail--to le;rn that an ll-line

—p .
program is not simply one line longer than a l0-line program.
They should.have the opportunity to construct complex systems
so they can learn something about their own limitations.
Like Professor Hoare's postmortem of the Mark II project,
students should be encouraged to admit Qhere they went
wrong. Only this process (abetted by willing students) can
produce good designers of softwafe rather than simply program-
mers. And good software designers can generate reliable

code productively with any reasonable language, operating

system, debug aids, or building blocks.

DAL

D R Hicks

kipldspS

Lol

s OXFORD UNIVERSITY COMPUTING LABORATORY
| PROGBAM&HNGRESEARCHGROUP

\ Professar of Camputation: C. A. R. Hoare !" 00—1/&- [‘C-{ {\3\,_7 & (—'Q e Tel, Oxford 58086

Ha DAINDUNR T AWAY

U\,(7 \,-\mew\ OXFORD OX2 6PE

(}?\\f_—

c.c., The Editor
"Communications of the ACM

6th May, 1981

Dr. A. EVahs Jr.,

Bolt Be ének and Newmah ;;ZB\ '
50 ﬁj}f&on St eezgg/// \

Cambrdidge \
Massachusetts 0213
U.S.A. '

s BA .f}k;g +ex?+

Dear Dr, Evans, . -

~\ 4 , —
\ - . i T
/\\ft{ﬁi;nk\you fp?ggz:éigg me.-a cop;\;¥\yourcontributiqn to the
ACM™~<4ru

m. I\thigk perhaps some of your temarks are based or lack
of acquaintancé with the relevant facts.

W reqerd ,L? Fiv frr foem Evanc T heme Phe o lloviy (rmecndrs

ublicivy expressed my full agreement with them. My only complain
Y Y

. De—yq; have any evidence that bigger projects require
bigger langﬁﬁﬁes An analogy with any other engineering tool (e.g.

pocket calculator) suggests that beyond a certain size, the addition of
further complexity is counterproductive, in that it beggars the
comprehension of its user. What Is needed is to restore simplicity

at some higher level of abstraction (e.g. a programmabie computer) .

(£
2. | am familiar with the goals of the-ﬁ%ﬁxﬁroject, and | have
ime hae
been that these goals have been severely compromised by inclusion of
too many complex features in the language.

3. The danger of exceptlon handling is that an Yexception'' is
too often a symptom of some entirely unrelated problem. For example,
a floating point overflow may be the result of an incorrect pointer use
some forty three seconds before; and that was due perhaps to programmer

oversight, transient hardware fault, or even a subtle compiler bug. |If
the programmer uses the first detected symptom {e.g. floating point Iy
overflow) as the trigger to fire the rockets, | hope they Legphit MCEE:XE£;>

anybody important. The right solution is to treat -1] exceptions in e

the same way as symptoms of disaster; and switch dﬁ:—4==L¢éf6§éFéETh§"(Ekiiizféjy

regime to one designed to survive arbitrary ﬁs—+&9@—eun%ﬂe£3§§|re)

computer running the program whicR generated he_—-—3ptiod, ";:T;T}fé£L;:T;?;;;

e entepfian T

4, A more subtle danger is that the programmer is encouraged to

postpone these vitally important considerations of safety, In the hope

that he will be able to patch up the problem by exception handlers

written afterwards. Experience with PL/1 and MESA sHe2Zthat this hape

is too often disappointed; and many users of these langaages have

abandoned the use of exceptions.

5. Exceptions may seem to be a small feature, sut their interaction
with the other features of the language {particularly tasks) are exceptionally
severe. So this feature has a multiplicative rather than additive effect
on the complexity of the whole language.

Dr. Evans 2.

. 6. | have given my best endeavours over a period of seven years
to discharge my scientific responsibilities to the #BATproject. ! have

made numerous constructive suggestions to managers of the project,

the authors of the strawman to steelman series, and the designers of two

of the draft languages; and much of my advice has been taken. All my

advice has been placed in the public domain, along with the other

project documents, and may be freely consulted.

7. | have given constant encouragement and advice to many
competent language designers who are currently engaged- in cleaning up -
and implementing the?agﬁ language. ‘+-would-be-gtad-to—help-you--do-se--too;
| £ you-ask me, o~

8. 1t is the fate of a consultant to have his sound technical
advice ignored for political, commercial, or historical reasons. Very
often this does not matter. But when the consultant believes that it
matters seriously, and that it is exposing the public to unnecessary
risks and delay, then he has a moral duty to give that public a
warning, not in a spirit of recrimination, but with the objective of
creating a political environment in which vital technical considerations
can no longer be ignored.

' 9. The decision to use the best available pubiic forum for this
purpose was not taken lightly, because | knew that in spite of my light
hearted tone | shouid offend many of my colleagues whom | respect for
their greater competence and experience in the design and implementation
of large scale computer programs. | am sorry that yeuw—are (@iong their
number, buEIthanaxﬂauofor giving me this chance c&Lﬁu%%+ﬁéﬁj;;—:ecord
straight, ' ot]

: . o

~
-

N

Youfs sincerely, C::}i;n“;A{ méz;:;;\ﬁj\\
' }
| | N

AN
o / y
” C.AR. N :
. Professor of Computation
- Oxfibrd University

‘; - .

OXFORD UNIVERSITY COMPUTING LABORATORY 1 ~ 45 BANBURY ROAD
PROGRAMMING RESEARCH GROUP D\J» , \/4]““Q A WA OXFORD OX2 6PE

Professor of Computation: C. A, R. Hoare Tal. Oxford 58088

Hoore pocloge @
27¢h April, 1981

Mr. R.L. Ashenhurst,
Editor in Chief _
University of Chicago
1101 E. 538th Street,

CHICAGO
1. 60637
U.S.A.

Dear Mr. Ashenhurst,

}}’jﬁl Jaih
Ade tra-me—br—Satbls—letter. | am glad me finds
ADA simpler than 68 and PL/|, but 1 fear there is little to support
this view. | cannot accept that the extraordinary series of techinically

unsound documents entitled "'strawfman, woodenman, tinman, i ronman'', and

the technically inadequate management and review processes, apd- grounds for

confidence in the quality of the resulting design. e

The news of the existence of a full implementation of éggs’

leaves me with mixed feelings. How can that be possible, when the full

language has not yet been fully defined? How could the implementors have

failed to notice this? And - the most important question - how much is
Loy Br—Satd prepared to stake on the correctness cf his compiler? The future

of mankind? T~ RSAY

|'m afraid that B Sal# is a bit confused. It was the wily
weavers of another story who tricked the Emperor into going forth naked
into the world. The wise tailor of my story merely suggested removal of
some of the stifling layers of outer embroidery which had been overlaid
on top of a basically adequate suit of clothes. And that is what |
specifically recommend for Aﬁﬁu/q Gt

Corhave o dours” ﬂ@
K““F+Vf Qyinkftf]

C.A.R. HOARE

e

ProfeSsec\g£TComputation
Oxford University

l J N 179 nA v
 OXFORD UNIVERSITY COMPUTING LABORATORY 45 BANBURY ROAD

PROGRAMMING RESEARCH GROUP 1 ~) i OXFORD OX26PE
}"OO»;& /l(‘-c‘/\h.)a_ ;]0

Tel. Oxford 58086
AN

1S e, 198
7

Prafessor of Computation: C. A. R, Hoare

5 \“Sf-w\‘:-’\ A T 2 e =
o2 A A G A o' ,w‘f:{'m m:s'(\/ fe -f{f\rcm/

Pl st

