A model for progranming language semantics.

C. A. R, Hoave. =

S 'Draf£;"Deeember-l§75._:'f;;"u

'Thls paper presents a model of programmlng language semantlcs,'-_l.j;

e2151mple program structures are modelled by regular sets,; and more ,=~?E'-ku

”*-novel constructs such as recovery blocks, guarded commands,

can Zb&&a*' xﬁh"

: g:;nondetermlnacy, are- e381ly represented

B B _‘“f[r(\"?‘f‘ﬁ)};‘“ﬁ?’%ﬁ!r’”: c .- (,.{,_a,v'f- R .

D ket pesdde

 :0

B

1. Introduction.

Most constructive programming language definitions specify an interpreter
for the language, which takes a program and an initial machine state, and traces
a sequence of machine states which result from execution of the successive
instructions of the program. This method has the advantage that it models the
behaviour of an actual machine obeying actual programs. However, some
complexity can be involved in proving properties of the language-and its
programs; the proofs sometimes depend on global properties of the intgrpreter,
and it is not generally possible to deal with each feature of the language

independently.

In this paper, we borrow from the interpretive method the basic idea of
defining a programming language by associating with each program a trace of its
execution. However, we avoid altogether the introduction of the concept of a

machine state by defining the trace as a sequence of elementary actions and

‘assertions; and we associate with each program command the entire set of

traces which could result from its execution in any initial machine state. In

wichude, wa The. ek o waw.!;»m*-- waPeds bi}eﬂix {7'4'0\02-5)
fact, it is convenient to define-this-set.-as-a-rather-large-supertet-of-all
£feasible traces; this reduces complexity, and makes it easier to check

intuitively that all possible traces have been included.

1.1 Traces,

A trace is a "'program' consisting just of a sequence of normal assignments,
interspersed with assertions, Tﬁe assertions, like those of Floyd, are intended
to express some fact about the program variables when that assertion is reached
in execution of the program. A trace is "executed" by execution of its
assignments and evaluation of its assertions, in the order given. If an
assertion is false, execution of_tﬁat trace fails, If éll assertions evaluate

to true, the frace is said to be'feasihler gbwf' ;“AL, VﬂﬁiAﬂwﬁiﬂ _5{1gkb h

WL\A‘Z&!\ L 5'td!r“![§/tl . ﬂ buece i lf\s*—=-¢£\ *C'fc-««&(:/) «(,EU\’M Radnd L} ‘MV%“"Q

At c,{ixwx,r,./ 5'{:""m?{',ﬁ.¢..a aw tend Lo be Feoa'hles.

We shall use the following syntax

<trace> :i= <empty>|<trace>;<element>

<element> ::= <assignment>]|<assertion>
where assignments have their usual form, and assertions are propositional
formulae of the conventional predicate calculus. We regard ; as a concatenation
operator on traces, and take advantage of its associativity to write

sitiu = s3(ti3u) = (sjt)ju.

Also note that s = sj<empty> = <empty>;s
We shall use the letters and forms:

P,q,? to denote assertions

i,j,k,n to denote logical variables (that cannot appear in programs);

they range over natural numbers 0,1,2,...

s,t,u to denote traces
XyY .2 to denote program variables
Xize to dencte assignments.

5,T,U,V to dencte sets of traces

F,T to denote the universally false and true predicates.

Using faﬁiliar methods, it is possible to define'the weakest precondition
under which execution of a trace s is feasible, and its execution would ensure
that an assertion r would be true afterwards. The weakest precondition of a
trace is itself an assertion about the variables of the program; and corresponds
to Dijkstra's wp(s,r).

This precondition is written:

s ar (s achieves r)
and satisfies the following axioms, (which may be regarded as a recursive
definition of a):

(<empty> a r) = r (al)

The empty trace has no effect: r is true after iff it is true before.

b,
e

(xtze ar)=r (a2)

X

o is r with all free occurrences of x replaced by free occurrences of e).

{where »

An assignment changes the value of X to e. r is true of the value of x after
the assignment iff it is true of the value of e before the assignment.
(par)=par (a3)

An assertion has no effect; except to fail if it is false. To avoid failUre,
p must be true beforehand; and to achieve r, r must also be true beforehand.
If both p & r are true, the assertion of p will succeed, and r will still be
true af’cer_waro‘s.

((sst) ar) =sa(tar) (a4)
To achieve r after a compound statement (s§t), s must achieve a condition

from which t can then achieve r.

The following theorems give the relationship between a and the familiar
operators of propositional and predicate calculus, and show how the phrase
"s a" distributes through a logical formula. They can be verified in the case
where the trace s is empty, a single assignment, or a single assertion; and
their truth for concateﬁation (s;t) follows from the truth for s and t

separately. The conclusions follow by induction on the length of the trace.

safPf=F (a5)
sap=(saT)&(sap) (ab)
sap=sal&sap - | (a7)
s a (ptq) = (sap) & (saq) ' (a8)
s a(pvg) = (s ap)v (saq) (a9)
saVip, =Vi(s ap,) (al0)
s adipy =Ji(s a py) (all)
salpyq) =saTa(sapdsanq (al2)
sa(pzq) =saT& ((sap)lsaq)) (a13)
sa(péq) =(sap)d (saaq) (als)
s a(p#q) = ((sap)? (saqg)) (al5)
Fp2q)>Hs a pas a q)¥ “(als)

% The notation kp stands for the universal closure of the formula p - i.e.,

a formula in which all free variables of p are universally quantified.

We are also interested in the "weakest liberal precondition" under which
a trace s ensures the truth of a condition »; this condition is true if s is
infeasible; but if it is feasible, r must be true afterwards. The weakest
liberal precondition is written: |
s er (s ensures r)

and may be defined

sgr=sg§ (ael)

i.e., s ensures v if it can't achieve not-r.

Similarly, sar=se r (ae2)
ser=(saTlThsar) (ae3)
sar=seF&senr (aett)

The following theorems follow immediately

{<empty> e r} = r (el)
Axize e v) =) (e2)
(per) = (p3r) (e3)
((sst) er) =se (ter) (ett)
seT=T (e5)
sep={(seF)V(sep) (e6)
sep=(seF)V(sep) (e7)
s e (p&q) = (s e p)} & (s e q) (e8)
se (pvq) = (sep) Vv (seq) (e9)
se(Vip)=Vi(sep) (e10)
se ®ip)=3isep) (ell)
se(pPq) = (sepPseq) (el2)
sef(pzq) = (sepz=seq) (el3)
se(piq) = ((seF) visep) s (seaq) (eln)
| se(pfq) = ((seF) visep#seaql) (el5)

Hp>q) =Hs e pPs ¢ q) {(el6)

A command of a programming language will be equated with a finite or
infinite set of traces. Each trace in the set is necessarily a finite sequence,
so the set must be denumerable. " A non-terminating program will correspond to a

set of traces, all of which are infeasible.

It is possible to define for sets of traces an analogue of the e and a
concepts defined for single traces, If S is a set of traces, we define

S§r=dfises(s§_r) (A1)

S achieves r if it is possible for a trace of S to achieve r, Thus S must contain
at least one terminating computation; but in a nondeterministic language there
is nothing to prevent some other terminating computation from achieving r.

serz ¥Yses(ser | L (EL)

S ensures r if every terminating computation of S ensures r. The possibility that
every trace of S is infeasible is not excluded. The familiar notation of
conditional correctness can be defined

p {8} r= F(p (s e r))

daf

The following theorems show the properties of a and e when applied to sets
of traces. The implications are less interesting than the equations; they are

included for completeness.

SafP=F (a5)
Sap=SaTé&Sap (A8)
SaT&Sap»Sap (A7)
S a(p&q) = (S ap) & (S a q) (A8)
s alpvg) = (Sap) Vv (8aaq) T (A9)
s afi p,)» Vi(s a p,) (A10)
s adi p,) =Ji(s a p,) (A11)
SaT& ((sap) $(saaq)>(salpq)) (A12)

~there is.no.§u§t§blegthe6rem,about £

(s ap) & (Saq)>s alpiq) (Alh)

((sap) # (8aq))3 s alpfq) (Al5)

Hp>q) DHS a pt?S aq) | (AlB)
Ser=Sarpv (AE1)
Sar=Ser (AE2)
(Ser)® ((5aT)p(sar)) (AE3)
(FeD 8 (Ser)d(Sar) (AEH)
SeT=T1T (E5)
Sep=(seF)Vv (3ep) (ES)
Sep D(seB) v (Eep (E7)
S e(psqg) = (Sep) & (8Seq) (E8)
(85 ep) Vv (Se q)Ps elpvqg) (E9)
s e(fi py) =Vis ¢ p) (E10)
Ji(s e pi):} S g(ai _pi) (E11l)
S elp2q) 3 ((S e p)=>(S e q)) (E12)
S e(p=q) S ((S e p) = (S e q)) 7 (E18)
Selptq)>SeFVvI(Sep) & (5eq) (E14)

there is no suitable theorem about ¥

kipsa) = ((S e p)p(S e q)) (E16)

It is interesting to define the unconditional correctness of a program

represented by a set of traces S as o (n[hf)
S aj;r- = df Serd& Sar 3 Sﬁ%{‘ g{ ‘3““ I\ (11)

S i r guarantees that S terminates and always ends in a state satisfying ».

The following theorems are immediate
SLF=F (15)

/[$-ilptq) = (s 1p)s(siq O ;;n(Ny (a)} = ﬂ(g. L p(9c18)
(8.4 p)-¥-(S-i-q) -5 i(pvq). | i)

CTopHe9) PHUS Lp) (s 1 a))

These correspond to Dijkstra's first four rules for the healthiness of predicate

transformers. However S i p does not correspond to Dijkstra's "wp(S,p}",

because it does not necessarily satisfy the condition of bounded nondeterminism;

nor does it preclude the possibility that execution of $ as a program will

require backtracking. It is for this reason, for example, that the implication
Si(TimPIs;m) ir

cannot be strengthened to an egquivalence.

2. Regular expressions.

" In this section we confine attention to commands of a programming language
that generate regular sets of traces., We shall use square brackets to bracket

commands.

2.1 Atomic commands.

An atomic command is just. an assertion or an assignment. It generates a
set of traces with only one member, namely the trace consisting of that single
element, i.e,

[pl = af {s|s = <p>}

[x:ze]l = df {s]s = <x:ize>)

The following theorems are immediate:

[x:zel e g = qz (E2) [x:izel a q = q: (A2)
fpl e g 2 (pPq) (E3) [plaq=pé&q (A3)
[Tl eaqasgqg | [T1aaqz=gq
(Eleg=T - [Elaq=FE

The last two theorems suggest a definition of Dijkstra's primitives:

skip = deEJ

abort = . LF]

2.2 Concatenation.

£S;T] = df {s;t|s € S & t € T}
This definition states simply that each trace of a compound command is a trace of
the first command followed by a trace of the second command. Of course many such.

traces will be always infeasible.

Concatenation of commands is obviously associative, and we write

S3T3U = df S3LT;U] = [8;T13U etc.

The following theorems are immediate

{s;5Tl1ep=5Se (Tep) (En) [(s;sTJap=58a (T ap) (A4)

Immediate consequences are:

[S;pl e g = S e (p3q) ([s3p) a q) = § alpéq)
[p;S]l e q = p3H(S e q) ([p;sl a q) = p &(S a q)
F(p>S e q) & F(gDT e v) & Hp=21S;TI e r)

HpDS aq) & H(qHT a r)P Flp=>LS;T) a r)

2,3 Union.

(sDTl=s8vurT

Each trace of SU T is either a trace of S or a trace of T. The following
theorems are immediate

[s0Tlep=zSep&Tep fsiTlap=(sap)v(Tap)
Since [is associative, we write:

sg 10 v = af sOlTO Ul = 8O 71O U, ete.
Furthermore, composition distributes through union.

Ls;ullT;vl

i

£s0 710
is;Tlls;ul

S0 ul
This motivates a further omission of brackets, under the convention that ; binds
tighter than {J, i.e.,

Ls;Td uv] = LUS3TIOMU3VID ete.

We can define a conventional conditional command:
if p then S else T = [p3s0 3T
from which it follows that
[if pthen Selse TJ e q = (p(S e q)) & (PAUT e q))

(p&Saq)v(P&Taaq)=L[if pthen 5 else T] aq

Dijkstra's guarded command can be similarly defined:
ifp+8laq= T fi = df (p;S0 q;T)
with proof rules
[if p+rsliq~->T file (p (s

pé¢ (Sar)vgsd (Tar

s
1
1o

r)) & (@>(T g r))

fif p>8lq~>Tfilar

Randell's "recovery block!" can be defined:

s Tl:p

Lachieve p by S or T]

with proof rules

Se(ppr) ¢ Te (p>r)

Lachieve p by Sor Tl e r
by

{achieve p SorTlar=5a(ptr)VvTa (p& r)

2.4 Repetition.

Define S° = {<empty>}

(i.e. the set consisting only of the empty trace)

sPL - [g.s™

n=0
Each trace of S consists of a concatenation of n traces (usually different),
each taken from S. Each trace of S* consists of a trace of S" for some n. It
can be proved that
s* = [<empty> [S;S*]
(s*]1 e pz¥n (s® e p) [s*] ap=dn (s"ap)
Fp9s ep)> F(pPs™ e p)

!—-(pml:,‘?]?o VSa pn) = I-'(pn#(s* a po))

The conventional while can be defined
while p do s =, ([p3s1”"s B
and its weakest preconditiocns are.given by
(while p do 51 ¢ q =Y¥n(lp;s1" & (p v q))
(while p do 8] a q =3 n(lp;s1” a { p&q))
from which can be derived
F(qtp®S e q) S F(qlwhile p do s1 e (q & p))
and if P, © 5
Fp PV Sap)P Hp »luhile p do S a p)
Dijkstra's repetitive construct can also be defined’ 3.3.

dop+slq~>Tod= . [pssDasTl™; psg

Conclusion,

The trace technique introduced in this paper gives a purely sxntactic model
of programs, traces and assertions; however, the semantics of assertiens/can be
explained by the standard interpretation as sets of mappings between free
variables and values; and the assignments and assertions can be explained as
relations between such mappings; and then all the theorems of this paper can be

interpreted as theorems of set and relation theory.

The trace technique is essentially first-order, and does not permit a command
to be assigned as a value to a variable; it is essentially less powerful than
Al higher-order techniques, but it has the advantage of dealing happily with
noaodiow .
dversal] and existential quantifiers. In describing a language intended for

specifying hardware algorithms as well as software, the restriction to the first

order may be realistic.

The trace technique is in no way intended to supplant axiomatic methods of

programming language definition, which should be taken as primary. Indeed, the

ALE

Appendix

(1) Proofs of theorems stated in this paper, concerning single traces and

a (achieves).

We are given the following axioms:-

<empty> a r = r (al) <XiZe> a r = r: (a2)
<p> ar=pé&r (ad) (sjt) ar=sa (tar) (al)

First, we prove the following
F(p2q) HH(sapysaq) (al6)

Consider the following cases:-

i) s = <empty> then obviously(gie) is true, from (al)
ii) s = <x::e> u L 13 1t Tt , from (a2)
©iii) s = <r> " " oo from (a3)

1t

iv) (s3t) ap=sa (t ap)
(a4)

1

& (s;t) aq=sa(tadq)
but F(pdq) = F(t apPt a q) by induction hypothesis (i.h.)
and Mt apdtaq) SHsa(tapldsaltag) "

Hence (al6) is true for all traces s as outlined by the induction proof above,

We derive the following corollary of (alé)
Hp=q) SHsapzsaq)
q) £ ({p>q) & (aDp))

tl

this follows immediately since (p

Thus, we are permitted to perform substitution of equivalent predicates

on the predicate operand of achieves (a).

SE.E:E - {a5)

i) s = <empty> then (a5) is trivially true, by (al)
ii) s = <x:ize> 1 " H] " by (a2)
iii) s = <p> 1L i H L] (1]) by (aa)

iv) (s3t) aF =s “by (ad)

[
P
ot

1o

[+
-

but taF=F (i.h.)

. s aft E.E)

n

s a I Dby corollary to (alb)

o)

The use of the corollary to (al6) will not be made explicit in further

proofs as it is felt that this will hardly place a burden on the reader.

We find it convenient to break the order of the theorems by giving the

procf for
sa(p&a)=saplsagq ' (a8)
i) s = <empty> then trivially true by (al)
ii) s = <xize> thens a (p &q) = (p & q)z
X X
= Py & 4

=sapé&sag

iii) s = <r> then s a (p 8 q) =r & (p & q)
=(r &p)&(rs&q)
=sapésagqg
iv) (sst) a(p & q) =sa (talpsq) (au)
butta(p&q)=tapsitag (i.h.)

V.osa(ta(psq)=saltapétadg

1
n
+!]
~~
et

Jo
<
o

sa(taq) (i.h.)

1]

(s3t) ap & (s;t) agq (a4)

Hence (a8) is proved.

sap=saTé&sap (ab)

trivially P

131

o
-

-3

Hence sap=sa(p&8T)=sapé&sal by (a8)

Tw

sap=saTé&sap (a7)

i) .s=.<empty>thens'§_5=i5=1&f)=sg_'_l‘_&s_gp

ii) s=<x:=e>thens_a_f)=(f)):'=1_3:&("_1‘_):=s_§_T_&s_a_p

iii) 8 = <p> thensg_;g:r&f):r&m:siz&sgp

iv) (s;t)ap=sa(tap) (ak)
=sa(taTst&tap) ¢i.h.)
=sa(taT)&saltap) (a8)
=sa(taT)&(saT&sa(tap) (i.h.)
=saf(tafT)&saltap) (ab)
= (s3t) aT & (s3t) ap (at)
sal(pvqg)=sapVvVsagq (a9)

i) s = <empty> then (a9) is trivially true by (al)

11) 8 = <xX:ze> thensg(pvq)=(qu)Z=p§Vq2=S§_stgq

iii) s = <p> thensa(pvg=ré&(pva)=(r&pl)vird&ag=sapvsagq

iv) (sst)a(pvag =sa(talpVvaq) (a4)

=saf(tapvtagq) (i.h.)

sa(tap)vsal(taq) (i.h.)

(s;t) apVv (sjt) agq (ak)

s a (vi pi) = Vi (s a pi) (210)

i) s = <empty> then (al0) is trivially true
ii) s = <x:=e> then, provided no bound variables occur in e,(which can be
easily arranged by suitable substitution for bound variables)
iii) g = <r> then s a (Vi Pi) =pr & (Vi pi)
= Vi(r & pi) - provided r does not contain bound
variables
=Vi(s a py)

iv) (s5t) a (Vi p;) =saflta (Vi p;) (at)

sa(, tap) (1)

Vi (sa(tap;)) (i.h)

1

= Vi ((s3t) a Pi) (a4)

s a (31 Pi) =3i (s a p,) (all)

-?i p; and applying (a7), (al0), (a7) ’

L
(=5
L=
e
In

salpPg)=saTs&(sapisaq) (al2)
Use (p>q)=(p V)
and apply (a9) (a7) & (a6)

[§1]
w0
j+1]

fal
L
~

Qs
=
w
~

salpzq)=sale(sap
Use (p =9 = (p3q) & (gPp)

and apply (a8) (al2)

sa(p&P =(sapstsaaq)

apply (a8), {é?) & (ab)

{(aly)

sa(pfq)=(sap?saaq)
p7q) =(p2q Vv (q8sp)

apply (a9) and (alh)

{(als)

(2) The following are the proofs of the theorems concerning single traces

and e (ensures).

We are given the following definition s e r = ¢ 5 & r (ael)
sar=ser (ae2)
sers .sar
N 5 e v = s ar

ser=z(saldsar) (ae3)

ser=sar (ael)
=saTé&sar (a7)
=salzpsar

sar=sefF&ser (ael)

sar=saTl&sar (a7)
=seF&ser (ae?) & (ael)

First we prove the following,
+(p>q) D F(sepds e q) (el6)

(pq) ¥ (a2p) (s aqgPsap) by (alk)

?(sgﬁ?sgé)ﬁ(sgp?sgq)by (ael)

The corecllary
Fp=q HHsep=seaq)
follows immediately and so again the substitution of equivalent predicates

is valid.

The proofs of theorems (el) - (el5) follow directly from

and appropriate use of theorems for a.

We give an outline of each proof.

(el)
(e2)
(e3)
(elt)
(eb)
(e6)
(e7)
(e8)
(e9)
(el0)
(ell)
(el2)
(el3d)
(els)

(el5)

<empty> e r = r
%X

<Xife> e r = p
- e

r

<p>3r:(p$)

apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply

apply

se(pvg =sepVseq
se(,p) =Y, (sepp

s e (al pi) =al(s e p.)
se(pPq) = (s epPpseq)

s e (p s é) =(sep=8 g_qj
sg@&E)zsggv@gp&s
se(p?#q)=seFVvi(sep?s

1o

q) apply

q) apply

(ael)

(ael)

(ael)

(ael)
(ae15
(ael)
(ael)
(ael)
(ael)
(ael)
(ael)

(eg)’

the definition of e

&

)

&

(51)

(a2)

(a3)

(at) & (ae2) twice,
(a5)

(a8)

(a?7)—~—w—"

(ag9)

(a8)

(all)

(alo)

(e7) & (eei

(e8) & (el2)

{e8), (e7) & (e8)

(e7) & (el3)

(3) Proofs of theorems concerning sets of traces and a (achieves).

We are given the definition of

Sip:ﬁasé

g (sap (A1)

(Al16)
(a5)

(AB)

(A7)
(A8)

(A9)

(A10)

(ALl)

(A12)

(AlY4)

F(pPa) P s

S

S

s

8

(A15) (s

a

[

o

a

a

2

a

[

P >Saq)

F =

|+

A
Yo
fra-d
W
S
¥
»
W
)
o
w
[
a

W pp) oV s app
dyep =3 (s2p
T:(sappSaddP(sSa
p2Saq>Salpiq

p¥8_§q):>83(p¥q)

prove using (Al) & (al)
prove using (AI) & (as5).
prove usinﬁ»(Al) & (ab) for forward
and reverse implication.
prove using (Al) & (a7)
prove using (Al) & (a8)
prove using (Al) & (a9) for forWard
and reverse implication,

prove using (Al) & (al0)
prove using (Al) & (all)

(p»q)) prove using (A7), (A6) & (A9)
prove usiﬁg‘(Al) & (alw)

prove using (Al4) & (A9)

(4) Proofs of theorems concerning sets of traces and e (ensures),

Given the definition S e r = df VS € S (ser) (El)

(AE1) Ser=S§Sar

Vs €8 (s a r) (ael)

proof S er = VSES(SEI‘)

= 35 €eS(sa r)

= Sar (A1)
(AE2) Sar=Ser apply (AEl1)
(AE3) Ser>(sal®sar) apply (E1) & (ae3)
(AE4) SeF&Ser»Sar apply (AE2) g (AE3)

(E16) +(p>q) DF(SepHS e q) apply (el6) & (EL}

(E5) S8eT=T apply (E1) & (e5)
(E6) Sep=SeFvsSep apply (AEl) & (AS6)
(E7) Sep¥SefVvSep
Sep=Sap (AE2)
= sal&Sap (D
=SeFVvsSep . (AEL)

(E8) s e (p & Q) =Sep&Seq apply (E1) & (e8)
(EQ) SEPVS3q§SE(qu) apply (E1) & (e9)
(£10) se (f, b =V, (5 & ;) apply (E1) & (e10)
1) A, ep)>sed,; py apply (E1) & (ell)
(E12) S e (pPa) (S ep>»S e q)
Se(pPq) = (Se (pVa)

= Sa(ptq) (AEL)

Z Sapé&Saq (AlN)

= Sa p?S aq
(E13) Se(p=q)P(Sep=Seq apply (E8) & (E12)
(El4) S e (p & a) »>SeFVv(Seps&Seq) apply (E8) (E6) & (ET)

(5) Proof of theorems concerning sets of traces and :-l. .

Given the definition Sip=Sep&Sap (I1)
then
(1) sir=r
SiF=5eFé&sal (11)
=SeF&F (A5)
S
(18) Si(p&q)=8Sipa&sSigq

forward implication by (I1) & (A8) & (E8)

reverse implication

Sip&Siqz=Sep&SeqtSapisSag (11)

=Se(p&qd8Saps&Sagq (E8)
but Sep&SaqdSalptaq by (AE1) & (AlW)
. Sg(p&q)&-s_g_p?s_q_.(p&q)

Hence Sipé&sSiq3sSe(p&q)dsalpsdg)

si(ps&aq)

(19)

apply (I1) & (E9) & (A9)

[
al

Si(pvae>Sipvsi

(116} F(p2q) » K ipHsiaq apply (Al16) & (E16)

{6) Atomic Commands

The theorems concerning the atomic commands shown are all proved by
a direct application of the axioms and theorems concerning the

corresponding single trace element.

(7) CONCATENATION

We must first state the following lemmas:-

If r contains no free variable assigned in s or S then

r>(s e p)= s e (rop) (el7)

r>(s ep=5e (rp) (E17)

ré(sap=sarép) (al?) *

r-&(Sgp)=Sg(r&p) (A17)

Then proof of [S;T] e p £ S e (T e p) (E4) follows,
[s;T1 e p = Vu € [5;T] (u e p) (E1)

Vs, (s « s@(t €T $(s3t) e p)y definition [8;T]
z\is;§ s e SP(t e TDs e (t ep)) (elt)
sx{s,"é(?f_s eSpse(teTptenp) (e17)*

Wses(se(VteT (tep)) (eld)

z S e (T ep)

Foétnote *In the proposition t ¢ [T], where T is a description of a set of traces,
the variable names occurring in T are not considered to be free and are
therefore not subject to substitution by assignment i.e.
{t e sz =teT
(this represents the fact that an assignment cannot modify a piece of

program).

{s;TJap=65a(Tap) (A4)

proof is similar to the above proof (EW).

si(rip)ls;Tlip (14)

%3]
=
~
o]
=
o
—r
it
92
@
~
3

n
w

e
Ean)
3

= [8;7]

ip)&asalrip
ep&Tap)é&sSalTepaTap)
ep) &S alT ap)

ep &[5;Tlap

(11)
(11)

(E8) & (48)

[s;pl e g = S e (ppq) (E4) & (E3)

(p:®l e q s(p(se q)) (E4) & (E3)
{ssplaq=8a(pa&q) (A%) & (A8)
[p;sl aq=p & (8 aq) (Au) & (A3)
F(p2S e q) & F@dT e r) D HpDIS;T] e 1) (E16) & (Eu)
F(p»Saq) a Hg®T ar)y +(pDIs;T] a r) (AL6) :& (Al)

(8) Union

v:-c e(S i T)(x e p) (EL)

LsOTl e p =
. EVSGS(sgp)&VteT(t_qp)
E Sep&Tep (E1)
LSDTJngZ?xe(SUT)(xép) (A1)

Egses(sgp)'vgte'?(tgp)

= SapvVvrT _a_ P (AL)
(9) Repetition
ts™i ep ,3an (" e p) _ include 1lst section overleéf
[s*1 ap =Bn s" ap) _ include 2nd section overleaf

F(pS e p) >k (pPS* e p)
from the antecedent
F(s e ps’ep) " (E16)
e h(p -.?82 e p) also (p :>{<empty>} e p)
and by induction r(p.-.>s" e p)

hence F(p;b‘n (s" e p)), since n does not occur in p

Vss ¢ s*(s e p)

o
Lol
[}]

¥s(An(s € SM))os e p)
Vs¥n(s € "3 s e p)
VnWWs e s"(s e p)

=Vans" e p)

o
o
i

V(s ¢)

o =dns"ap

%

\“_ (p_n-l-l@PO vsa pn} @Hpn$8 E pO)
from antecedent | (pl%bpo vSa Po)

hence +(S a p,%8 aﬁ v 52 ap)

=T1e =70 =0
and b (p, 2P, Vv S a P,)

. hencer(p 2 (py V'8 ap, VS8 apy)
. . and by induction t= (pn@po vVSa Py vs§a Py Voseasa S a po)

Wr (pnéﬁ n(s" a 39

