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The close association between music and mathematics can be dated back at least to
the time of the ancient Greek philosopher Pythagoras. He or his followers noticed
that when the string of a musical instrument is stopped at exactly half its length, the
resulting note sounds sweet (consonant) when played at the same time as the original.
Similarly when it is stopped at two thirds or three quarters of its length, and at other
simple fractions, the resulting harmonies are pleasing. In this way, it is possible to
generate all the notes of a major scale, and eventually the sharps and flats as well.
This mathematical theory due to Pythagoras gives a method for tuning a musical
instrument with a keyboard like a piano, or with fixed frets like a guitar,

But it is not the only way to determine the pitch of the notes, and it suffers from a

grave defect: it only permits the instrument to be played in the single key that it was

tuned for. In particular, the sharp of a note was very slightly different from the flat of . =
the note above it. Many subsequent mathematicians have made investigated the =~ -
phenomena, including Plato, Euclid, Kepler, Mersenne, Galileo’s father Vincenso,

and Newton. The solution eventually adopted is called equal temperament; it has a

fixed ratio between the successive semitones of the twelve-semitone chromatic scale.

In order to preserve the exactitude of an octave interval, the ratio has to be the twelfth

root of two, an irrational number that would have been difficult to accept for
Pythagoreans. It so happens that this gives very good approximations to the original
Pythagorean harmonies, and the human ear adjusts well to the slight inaccuracies.

Fifty three notes in the octave would be even more accurate; such an mstrument was

built in 1876 by Bosanquet, but the idea never caught on.

This is a summary of the story well told by Neil Bibby in first section of this book.

The story is taken further in a fascinating contribution by lan Stewart, describing a

geometrical construction for placing the frets of a guitar that was invented in 1743 by .
a Swedish craftsman, Daniel Straehle. He was not a mathematician, and when his ,
calculations were checked by Jacob Faggot, one of the founding members of the ;
Swedish Academy, they were found to be in error. But not so: the mistake was
actually in the checking by the mathematician., Stewart’s account also gives a clear

exposition of the underlying geometry, including the method of neusis which was

excluded from the classical geometry of constrjctions by ruler and compass.

The mathematical cosmology of Kepler presents musical harmony as a factor in
explaining the structure of the Universe, an idea that persists in the imaginative poetic




fallacy of the music of the spheres. Kepler’s views and their development by his
successors is the subject of a densely written survey by J.V. Field.

Musical sounds and their appreciation by the human ear are a fruitful field for
experimental research. The obvious modern approach is to look directly at the
musical wave-form as recorded by an oscilloscope; however, this is not readily
distinguishable from arbitrary noise, and conveys no insight into the meaning and
interpretation of the sound. The essay by Charles Taylor on the science of musical
sound concentrates on the ways in which different instruments create notes of
different timbre by means of different overtones, and on the ways in which the ear
perceives the effects of a chord. This latter topic is further developed in the essay by
David Taylor on Helmhotz’s experiments with combinational tones and consonances.
For example, why is the ear willing to tolerate the inaccuracies of the well-tempered
scale, while being very sensitive to the exact octave? And why do many people hear
additional combinational tones when two sirens are played at different pitches?

The most direct application of mathematics to music is in the analysis of musical
compositions, and occasionally also in their construction. A good example is that of
bell-ringing, which was prevalent in England in the seventeenth century. The rules are
simple: in each round, all the bells must be rung in some order, and between rounds
only two bells may change places (ringing the changes). The objective is to devise
ways of ringing all possible rounds exactly once without repetition. For seven bells
there are 5040 different orders, a full peal which takes three hours. English bell-
ringers solved the problem of playing all the variations two hundred years ago, but it
was not until a hundred years ago that the problem was analysed in full generality,
using the mathematical techniques of Group Theory. A good introduction (but
without too much Group Theory) is given by Dermot Roaf and Arthur White.

Wilfred Hodges contributes an interesting analytic essay entitled “The Geometry of
Music” on the musical use of metaphor, inversions, transpositions, dilations,
reflections, rotations, and mirror images. It illustrated by short musical scores from
composers as varied as Mozart, Elgar, Bartok, Hindemith, and Rimsky-Korsakov.

Modern composers have made explicit use of mathematical constructions to
determine structure of their compositions, and sometimes even to generate note
sequences. Jonathan Cross in his Chapter on “Composing with Numbers” gives
examples from Schoenberg, Berg, Webern, Boulez, Maxwell Davies and Xenakis,
Some of these examples seem to owe more to numerology than to mathematics, but
the claim is made that musical qualities always take precedence over blind application
of a formula. Those with a good appreciation for modern music can judge the merit
of this claim. '

The book ends with two contributions by modern composers, Carlton Gamer and
Robert Sherlaw Johnson. The first gives an example of the use of finite projective
planes and their duals to generate sequences in which every interval between two
notes of the sequence (not necessarily adjacent) occurs exactly once. The second uses
fractal formulae to generate notes, and selects the parameters of the formulae to
achieve the desired musical effects. The composition is to be played on an eight-
channel MIDI synthesizer. Fragments of the scores are displayed.




It is generally beligved that there is a correlation between professional engagement in
music and an amateur interest in mathematics; and conversely, many professional
mathematicians are also good amateur musicians. This book should appeal equally to
both communities. It will also appeal to those whose primary interest is in the history
of science. The book is expensively produced on wide and glossy paper, and is
illustrated by many black-and-white reproductions of old woodcuts and modern
photographs. A few colour illustrations or diagrams would have made the book more
attractive for the coffee table; but more to the point would have been inclusion of a
compact disc, containing illustrative examples and extracts of the music mentioned in
the text. Surely, that could easily have been included in the price of the book.

Professor Sir Tony Hoare, Senior Researcher, Microsoft Research Ltd., Cambridge.
Current research and recent publications.

Tony Hoare is a researcher into the theory and practice of computer programming,
Recent publications include popular articles and keynote addresses on Grand

Challenges for Computing Research. He is neither a mathematician nor a musician,
but takes a keen amateur interest in both.
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