Exemplar Project: the Verifying Compiler.

A verifying compiler [2] uses automated mathematical and logical reasoning methods
to check the correctness of the programs that it compiles. The critetion of correctness
is specified by types, assertions, and other redundant annotations that are associated
with the code of the program, often inferred automatically, and increasingly often
supplied by the original programmer. The compiler will work in combination with
other program development and testing tools, to achieve any desired degree of
confidence in the structural soundness of the system and the total correctness of its
more critical components. The only limit to its use will be set by an evaluation of the
cost and benefits of accurate and complete formalization of the criterion of
-correctness forthe software.

An important and integral part of the project proposal is to evaluate the capabilities
and performance of the verifying compiler by application to a representative selection
of legacy code, chiefly from open sources. This will give confidence that the
engineering compromises that are necessary in such an ambitious project have not
damaged its ability to deal with real programs written by real programmers. 1t is only
after this demonstration of capability that programmers working on new projects will
gain the confidence to exploit verification technology in new projects.

Note that the verifying compiler itself does not itself have to be verified. Itis
adequate to rely on the normal engineering judgment that errors in a user program are
unlikely to be compensated by errors in the compiler. Verification of a verifying
compiler is a specialized task, forming a suitable topic for a separate grand challenge.

This proposed grand challenge is now evaluated under a relevant selection of the
standard headings suggested for evaluation of a Grand Challenge Project.

Historical. The idea of using assertions to check a large routine is due to Turing [12].
The idea of the computer checking the correctness of its own programs was put
forward by McCarthy [13]. The two ideas were brought together in the verifying
compiler by Floyd [14]. Early attempts to implement the idea [15] were severely
inhibited by the difficulty of proof support with the machines of that day. At that
time, the source code of widely used software was usunally kept secret. It was
generally written in assembler for a proprietary computer architecture, which was
often withdrawn after a short interval on the market. The ephemeral nature and
limited distribution for software written by hardware manufacturers reduced
motivation for a major verification effort.

Since those days, further difficulties have arisen from the complexities of modern
software practice and modern programming languages [16]. Features such as
concurrent programming, object orientation and inheritance, have not been designed
with the care needed to facilitate program verification. However, the relevant
concepts of concurrency and objects have been explored by theoreticians in the ‘clean
room’ conditions of new experimental programming languages [17,18]. In the
implementation of a verifying compiler, the results of such pure research will have to




be adapted, extended and combined; they must then be implemented and tested by
application on a broad scale to legacy code expressed in legacy languages.

Feasible. Most of the factors which have inhibited progress on practical program
verification are no longer as severe as they were.

1. Experience has been gained in specification and verification of moderately scaled
systems, chiefly in the area of safety-critical and mission-critical software; but so
far the proofs have been mainly manual [20,21].

2. The corpus of Open Source Software [http://sourceforge.net] is now universally
available and used by millions, so justifying almost any effort expended on

improvement of its quality and robustness. -Although-it-is subject to-continuous
improvement, the pace of change is reasonably predictable. It is an important part
of this challenge to cater for software evolution.

3. Advances in unifying theories of programming [28] suggest that many aspects of
correctness of concurrent and object-oriented programs can be expressed by
assertions, supplemented by automatic or machine-assisted insertion of
instrumentation in the form of ghost (model} variables and assignments to them.

4. Many of the global program analyses which are needed to underpin correctness
proofs for systems involving concurrency and pointer manipulation have now been
developed for use in optimising compilers [29].

5. Theorem proving technology has made great strides in many directions. Model
checking [30-33] is widely understood and used, particularly in hardware design.
Decision procedures [34] are beginning to be applied to software. Proof search
engines [35] are now well populated with libraries of application-dependent
theorems and tactics, Finally, SAT checking [36] promises a step-function increase
in the power of proof tools. A major remaining challenge is to find effective ways
of combining this wide range of component technologies into a small number of
tools, to meet the needs of program verification.

6. Program analysis tools are now available which use a variety of techniques to

discover relevant invariants and abstractions [37-39]. It is hoped that that these will

formalize at least the program properties relevant to its structural integrity, with a

minimum of human intervention.

7. Theories relevant for the correciness of concurrency are well established [40-42];

and theories for object orientation and pointer manipulation are under development

[43,44].

Cooperative. The work can be delegated to teams working independently on the
annotation of code, on verification condition generation, and on the proof tools.

1. The existing corpus of Open Source Software can easily be parcelled out to
different teams for analysis and annotation; and the assertions can be checked by
massive testing in advance of availability of adequate proof tools.

2. It is now standard for a compiler to produce an abstract syntax tree from the source
code, together with a data base of program properties. A compiler that exposes the
syntax tree would enable many reseatchers to cotlaborate on program analysis
algorithms, test harnesses, test case generators, verification condition generators,
and other verification and validation tools.

3. Modern proof tools permit extension by libraries of specialized theories [34]; these
can be developed by many hands to meet the needs of each application. In




particular, proof procedures can be developed that are specific to commonly used
standard application programmer inferfaces for legacy code [45].

Effective. The promulgation of this challenge is intended to cause a shift in the
motivations and activities of scientists and engineers in all the relevant research
communities. They will be pioneers in the collaborative implementation and use of a
single large experimental device, following a tradition that is well established in
Astronomy and Physics but not yet in Computer science.

1. Researchers in programming theory will accept the challenge of extending proof
technology for programs written in complex and uncongenial legacy languages.
They will nced to design program analysis algorithmsto test-whether actual legacy
programs observe the constraints that make each theoretical proof technique valid.

2. Builders of programming tools will carry out experimental implementation of the
hypotheses originated by theorists; following practice in experimental branches of
science, their goal is to explore the range of application of the theory to real code.

. 3. Sympathetic software users will allow newly inserted assertions to be checked
dynamically in production runs, even before the tools are available to verify them.

4, Empirical Computer Scientists will apply tools developed by others to the analysis
and verification of representative large-scale examples of open code.

5. Compiler writers will support the proof goals by adapting and extending the
program analyses cmrently used for optimisation of code; later they may even
exploit for purposes of further optimization the additional redundant information
provided with a verified program.

6. Providers of proof tools will regard the project as a fruitful source of low-level
conjectures needing verification, and will evolve their algorithms and libraries of
theories to meet the needs of actual legacy sofiware and its users.

7. Teachers and students of the foundations of software engineering will be enthused
to set student projects that annotate and verify a small part of a large code base, so
contributing to the success of a world-wide project.

Incremental. The progress of the project can be assessed by the number of lines of
legacy code that have been verified, and the level of annotation and verification that
has been achieved. The relevant levels of annotation are: structural integrity, partial
functional specification, specification of total correctness. The relevant levels of
verification are: by testing, by human proof, with machine assistance, and fully
automatic. Most software is now at the lowest level — structural integrity verified by
massive testing, It will be interesting to record the incremental achievement of higher
Ievels by individual modules of code, and to find out how widely the higher levels are
reasonably achievable; few modules are likely to reach the highest level of full
verification.

References

[1] J Gray, What Next? A Dozen Information-technology Research Goals, MS-TR-50, Microsoft Research, June
1999,

[2] KM. Leino and G Nelson. An extended static checker for Modula-3. Compiler Construction:, CC'98, LNCS
1383, Springer, pp 302-305., April 1998.

[3] B Meyer, Object-Oriented Software Construction, 2™ edition, Prentice Hall, 1997

[4] A Hall’and R Chapman: Correctness by Construction: Developing a Commercial Secure System, IEEE
Software 19(1): 18-25 (2002)




{51 T Jim, G Morrisett, D Grossman, M Hicks, J Cheney, and Y Wang. Cyclone: A safe dialect of C, In USENTX
Annual Technical Conference, Monterey, CA, June 2002,

[6] See hitp:/www.fbigovicongress/congress02/mipe072402 htm, a congressional statement presented by the
director of the National Infrastructure Protection Center.

[7] FB Schneider (ed), Trust in Cyberspace, Commiittee on Information Systems Trustworthiness, National
Research Council (1999),

[8] D Wagner, J Foster, E Brewer, and A Aiken. A first step towards automated detection of buifer overrun
vulnerabilities, Tn Network and Distributed System Security Symposium, San Diego, CA, February 2000

{91 WH Gates, internal communication, Microsoft Corporation, 2002

[10] Plaming Report 02-3. The Economic Impacts of Inadequate Infrastructure for Software Testing, prepared by
RT1 for NIST, US Department of Commerce, May 2002

[11] G Necula. Proof-carying £odé. In Proceedings of the 24th Anmual ACM SIGPLAN-SIGACT Symposium on
Principtes of Programming Languages (POPL '97), January 1997

[12] AM Turing, Checking a large routine, Report on a Conference on High Speed Automatic Caleulating
machines, Cambridge University Math, Lab, (1949) 67-69

[14] RW Floyd, Assigning meanings to programs, Proc. Amer. Soc. Symp. Appl. Math. 19, (1967) pp 19-31

[15] ¥C King, A Program Verifier, PhD thesis, Carnegie-Melon University (1969)

[16] B Stroustoup, The C++ Programming Language, Adison-Wesley, 1985

[17] A Igarashi, B Pierce, and P Wadler. Featherweight Java: A Minimal Core Calculus for Java and GJ,
QOPSLA99, pp. 132-146, 1999.

[18] Haskell 98 language and libraries: the Revised Report, Journal of Functional Programming 13(1) Jan 2003,

[19] CAR Hoare, Assertions, fo appear, Marktoberdorf Summer School, 2002.

[20] § Stepney, D Cooper and JCPW Woodcock, An Electronic Purse: Specification, Refinement, and Proof,
PRG-126, Oxford University Computing Laboratory, July 2000.

[21] AT Galloway, TJ Cockram and JA McDermid, Experiences with the application of discrete formal methods to
the development of engine conirol software, Hise York (1998)

[22] WR Bush, D s, and DJ Sielaff, A static analyzer for finding dynamic programming errors, Software --
Practice and Expenence 2000 (30): pp. 775-802.

[23] D Evans and D, Larochelle, lmproving Security Using Extensible Lightweight Static Analysis, IEEE Software,
Jan/Feb 2002,

[24] S Hallem, B Chelf, ¥ Xie, and D Engler, A System and Language for Butidmg System—Spemﬁc Static
Analyses, PLDI 2002,

[25 ] GC Necula, S McPeak, and W Weimer, CCured: Type-safe retrotting of legacy code. In 29th ACM
Symposium on Principles of Programming Languages, Portland, OR, Jan 2002

[26] U Shankar, K Talwar, JS Foster, and D Wagner. Detecting format string vulnerabilities with type qualifiers,
Proceedings of the 10th USENIX Security Symposium, 2001

{271 D Evans. Static detection of dynamic memory errors, SIGPLAN Conference on Programming Languages
Design and Implementation, 1996

[28] CAR Hoare and He Jifeng, Unifying Theories of Programmiing, Prentice Hall, 1998.

[29] E Ruf, Context-sensitive alias analysis reconsidered, Sigplan Notices, 30 (6), June 1995

[30] GI Holzmann, Design and Validation of Computer Profocols, Prentice Hail, 1991

[31] AW Roscoe, Model-Checking CSP, A Classical Mind: Essays in Honowr of C.A.R. Hoare, Prentice-Hall
International, pp 353-378, 1994

[32] M Musuvathi, DYW Park, A Chou, DR. Engler, DL Dill. CMC: A pragmatic approach to model checking
real code, to appear in OSDI 2002,

[33] N Shankar, Machine-assisted verification using theorem-proving and model checking, Mathematical Methods
of Program Development, NATO ASI Vol [38, Springer, pp 499-528 (1997)

{34} MIC Gordon, HOL: A proof generating system for Higher-Order Logic, VLSI Specification, Verification and
Synthesis, Kluwer (1988) pp. 73—128

[35] N Shankat, PVS: Combining specification, proof checking, and model checking, FMCAD '96,LNCS 1166,
Springer, pp 257-- 264, Nov 1996 i

[36] M Moskewicz, C Madigan, Y Zhao, L Zhang, § Malik, Chaff: Engineering an Efficient SAT Selver, 38th
Design Automation Conference {DAC2001), Las Vegas, June 2001

[37] T Ball, SK Rajamani, Automatically Validating Temporal Safety Properties of Interfaces, SPIN 200/, LNCS
2057, May 2001, pp. 103122,

[38] JW Nimmer and MD Ernst, Automatic generation of program specifications, Proceedings of the 2002
International Symposium on Software Tesfmg and Analysis, 2002, pp. 232-242,

[39] C Flanagan and KRM Leéino, Hodini, an annotation assistant for ESC/Java. International Symposium of
Formal Methods Europe 2001, LNCS 2021, Springer pp 500-517, 2001

f40] R Milner, Contmunicating and Mobile Systems: the pi Calculus, CUP, 1999

411 AW Roscoe, Theory and Practice of Concurrency, Prentice Hall, 1998

[42] KM Chandy and J Misra, Parallel Program Design: a Foundation, Adisan-Wesley, 1988

[43] P O’Hearn, J Reynolds and H Yang, Local Reasoning about Programs that Alter Data Structures, Proceedings
of CSL'0T Paris, LNCS 2142, Springer, pp 1-19, 2001,

[44] CAR Hoare and He Jifeng, A Trace Model for Pointers and Objects, ECOOP, LNCS 1628, Springer {1999},

pp 1-17




[45] A Stepanov and Meng Lee, Standard Template Library, Hewlett Packard (1994)




