T (
RANEA \ Lo s
' i

fl!,ﬂ /: l {,\ L)&’x N -
Tools and technology for trusted code.

Jon Pincus and Tony Hoare. __ | Febmary 2002.

oot«w& ‘Dro(j e \T/’ W‘N\’”X

\ P1og1ammer productivity too g like PREfix and PREfast are
%’D ¢ M" “ already making a valuable ontnbutlon to the current Microsoft
oot drive to justify and incre f e our customers’ trust in our code. This
S&é\}/\ \: ,k note describes the techndlogy appropriate to intensifying th1s duve

ot in a way that 1sa}se~c dueive to progr er productivi
/ \N\ y m P u%\) A maﬁp wab F{y

N W ,\u W beo\fwwh u,-,s vusz. AN
: M“‘” ?B 'f} “The key concept 1che 1nst1umentatlon of interfaces between the
w,j o L\} modules assembhes and components of a large system by means V_"\-%‘ il
. ool ’of probes ‘which contmuously monitor the safety, the behaviour
‘i;ﬁf ”‘\ " /and the con31stency of each’ part dunng arun of the system asa
% M’”‘Q .+~ whole. The p10g1ams which define the probes are at present run
" \Bfi\\v %/ on the same-machine-as_the system itself; and it is too expensive to -

S O\gﬂ,ﬁ-f"/’1un all of them all the tl@ Means must be prov1ded toswitch
“’\ M them off when sufficient trust has developed in the assembly on
.mﬁ% one or both sides of the 1nte1face and switch them on again when
\\b a change in the code (or worse, a detected error) diminishes that
trust. Our ultimate goal is that trust in the whole system can be
\)\/\Q (;J}UL confirmed by progiam verification technology, which guarantees |
which of the probes can be safely turned off in ship code. In this - rmj
cocom:

v WA way, the | 1obes will pl&y-«themsameerole as the compﬂe -time type-

"' comj/mf s g,n;!
[)/ejvf £{E *% ‘:ﬁ-ig

y\, checking i in'a modem programmmg language’ which makes the--. 2 l »
i call of methods far safer t an in-older languages like FORTRAN., v
and Si}) stw hod | o \
6}11\ ;/\Q\X ' O Mo\,w\hk/ NS R .
e ! Test probes a1e aheady wzdely used by Micr osoft developers in the
guise of assertion macros, which are cond1t1onally compiled for
v test code, and jgnored in sh1p code. A recent count has revealed

over a mﬂho" assertions 1n the code for Windows XP. Over

aq [M[{/TP&‘Y’ U?

W\cw;\ 04

m\w@ Ao dnii

thousanclr" different cenditionally.compiled-assertion macmf have
been written by different product teams. It is a goal of too

currently under development to exploit and extend the expertise of
Microsoft Developers in the use of assertions, to generalize the km
concept of an assertion to cover behavioural sgensity properties, Se.cw/v
and to rationalize the notatio assertions across the entire code . -prrper "

base) ma\ _'f“o W\ M;;j,ﬁ:]? |
W\GL')C. . .%\Q"’ Gx_. bwnt V#M%ﬁ:ﬁvi; s JQQ 4%

U‘/é&v\‘s & C

(/Uv\ﬁ\ C@ﬂc{/\f‘f‘i’»’cxol

Assertlons the existing expertlse

The main use of asser tlons today is to assist in p1ogram test and
fault diagnosis. In all branches of engineering, product testis an
essential prerequisite before release to manufacture of anew or
improved product. For example in the. development of a new aelo
-jet engine, an early working model is installed on an engineer ing
test bench for exhaustive trials. ThIS model engine will first be.
thomughly instrumented by 1nse1t1on of test probes at every
accessible mternal interface. A 11g0rous test sehedule is de31gned
to exercise the engine at all the extremes of its mtended operating
range. By continuously checkmg tolerances at all the. crucial
internal interfaces, the engineer detects incipient errors.
immediately, and never needs to test the assembly as a whole to
destruction. By contmuously stmvmg to improve the set points and
tlghten the tolerances at each internal interface, the quality of the
whole ploduot can be gradually raised. T hat is the reason for the
success of the six sigma quality improvement initiative, at least m .
Compames engaged in more traditional forms of engineering.

In the engineering of software, it is the assertions at the interfaces
between modules of the program that play the same role as test

probes in engine design. My analogy with tightening tolerances
suggests that programmers who wish to write trustworthy

programs should gradually increase the number and strength of \Huiﬂ
assertions, in code. Paradoxically, the intended effect of assertions

Do st ¥ OJ

T oo

is to make a system more likely to fail under test; but the reward is
that failure is much less likely after shipping to the customer.

The defining characteristic of an engineering test probe is that it is
removed from the engine before manufacture and delivery to the
customer. In computer proglams this effect is achieved by means

of condltlonally defined macros. The macro is resolved at compile

time in one of two Ways dependmg on a compile-time switch
called DEBUG, set for a debuggmg run, and unset when compﬂmg

retall code | N R

st
Mﬁ’ﬂ&w o

In addition to their use as test probes, as ertiSns play an important

role in program documentat10 “Fhis is part1cula11y valuable for
Microsoft, because ourf ai business is now the continuous

" evolution and improvemnent of old code to meet new market needs.

Even quite trivial assertions give added value when the time comes
to change the code for the next release. One Development
Manager (Hannes Ruescher) recommends that for every bug
corrected in test, an asseruon should be added to the code which
will fire if that bug is ever reintroduced by futu1e changes. in-the™™
ocode. An even stronger 1ecommendat10nvF10m the beginning,
there should be enough assertions in the code to ensure that nearly
all bugs will be caught by assertion fallure much easmr to
dlagnose than any other faﬂure

Some developers (Chris Antos) are willing to spend a whole day to
design p1ecaut1ons that will avoid a week’s work by a less

- experienced programmer, tracing an error that may be introduced

by a later change to the code. Success in such documentation by
assertions depends on long experience and careful judgment in
pred1ct1ng the most likely errors a year or more from now. Not
everyone can spare the time to do this under pressure of ti ght
delivery schedules. But it is likely that the current liberal
sprinkling of assertions in the code is a significant contribution to

oy tgww

C,{}éa“{» E):ii;x,«a

the accumulated value of Microsoft legacy/ making it more
adaptable for a new release.

Here is an unexpected use for assertions, suggested by Marc
Shapiro. In the early testing of a prototype program, the developer
wants to check out the main paths in the code before dealing with
all the exceptional conditions that may occur in practice. In order.,
to document such a development plan, PREfast provides a variety
of assertion which is called a simplifying assumption. The quoted
assumption documents exactly the cases which the developer is not
yet ready to treat, and it also serves as a reminder of what remains
to do later. Violation of such assumptions in test will simply cause
a test case to be ignored, and should not be treated as an error. But |
the priority of the test case should be increased, to ensure that the
eventual special case code will be adequately tested Of course, in

a retail build when the debug flag is not set, the macro w111 give
rise to a compile-time error; it will not just be ignored like an.
ordinary assertion. This gives protection against the risk mcu1red _.
by more informal TO DO comments, which occasionally and
embarr assmgly fmd their way into retail code.

Itis sometimes useful for an assertion to refer to the previous
values of variables, or to a log of significant actions that a program

_—*‘"'

has performed. That is the purpose of the(asseI tlonaﬁnaelo |
provided with PREfast; its parameter may consist-of arbitrary
declarations of variables and assignments to them. Typically, such
a variable is used to hold the initial value of a parameter or object
propetty, so as to check in the postcondition that its value has been

Ca,f)

correctly changed by, the body of a method.
OVV\OWCJW _ wa UV(GP\("
e e N

Al the best debu g messages are those g1ven at compile tlme since
that avoids all the hassle of diagnosis of errors by test, In the
Windows product team, a special class of assertion has been
implemented called a compile-time check, because it can be
evaluated at compile time. The compile time error message is

generated by a macro that compiles to an invalid declaration
(negative array bound) in C in the case that the compiler evaluates
the assertion to false; of course, the assertion must be one that uses
only values and functions computable by the compiler. (The
compiler will still complain if not.) -

Ofcguise, @nly a very few assertions can be evaluated at compile

time ~at present. To change this is exactly the long-term goal of mwaw
future programmer productivity tools. By more sophisticated -

program analyses, it will be increasingly possible to guarantee

(with mathematical certainty) that each assertion will be true on

every occasion that it is evaluated. If this guarantee cannot be

given, the tool should ideally generate a test case automatlcally

that w111 expose the fault - - -

Of course, an assertion that has been proved to be always true can
be optimised away, to avoid the overhead of evaluation, even on
test runs. Because it is known that there will be no errors left for -
run-time testing. The state of the art in theorem proving
technology is not yet sufficiently advanced to achieve this
desirable goal, and may always be too expenswe foruniversal
apphcatmn o

The global program analys1s tool PREfIX works by analysmg all
paths through each method body, and it gives a report for each path
on which there may be a defect. The trouble 1s that most of the
paths considered can never in fact be activated. The resulting false
positive messages still require considerable effort to analyse and
reject; and the rejection is prone to error too. |

Assertions help the PREfix anomaly checker to avoid unnecessary
noise. If something has only just three lines ago been inserted in a
table, it is annoying to be told that it might not be there. A special
ASSUME macro allows the programmer to tell PREfix
information about the program that cannot be automatically

deduced. This is a much better way of reducing noise than just
switching off the warning. This macro is not yet w1dely used.

S O
Assertions can help a compiler produce better code. For example,
in a C-style.case statement, a default clause that cannot be reached
can be marked with an UNREACHABLE assertion, and the
compiler avoids emission of unnecessary code for this case. In \ 0
future, perhaps assertions will give further help in optimisation, for
example by asserting that pointers or references do not point to the
same location. This will encourage the compiler to continue
optimisation, in spite of the risk of an alias. - The optimisation
depends on confidence in the validity of the assertion. = At present
this confidence is built up on massive testing — in fact, assertions - -
are widely believed to be the only reliable form of program
documentation. When assertions are automatically proved by an
ana1y31s tool they wﬂl be even more behevable |

Assertions are parucularly valuable for documenting object-
oriented programs. An invariant is defined as an assertion that is
intended to be true of every object of a class at all times, except
while the code of the class is actually running. The present -
practice is to code an invariant as a suitably named boolean

method of the same class. For example, in a class that maintains a
private list of objects, the invariant could state the implementer’s
intention that the list should always be circular. While the program
is under test, the invariant can be retested after each method call, or
even before as well. :

Invariants are widely used today in software engineering practice,
though not under the same name. For example, every time a PC is
switched on, or a new application is launched, invariants are used
to check the integrity of the current environment and of the data
held in long-term storage. In Microsoft Office, invariants on the
structure of dynamically allocate storage on the heap are used to
help diagnose storage leaks. In the telephone industry, they are

v/
P

\

used by a software auditing process, which runs concurrently with
the switching software in an electronic exchange. Any call records
that are found to violate the invariant are simply re-initialised or
even just deleted. It is rumoured that this technique once raised the
reliability of a system from undeliverable to irreproachable.

e-caT See a future role for invariants in post-mortem dump-
cracking, to check whether a failure was caused perhaps by some
incident long ago that corrupted object data on the heap. Such a
test has to be made on the customer machine, because the heap is
too voluminous to communicate the whole of it to a central server.

Asseltlons feature stlongly in the code f01 M1crosoft Office —
around a quar ter of a million of them. They are automatlcally
given unique tags so that they can be tracked in successive tests,
builds and releases of the product, even thou gh thelr line-number
changes with the program code. Office Watson automatically
records and classifics asscrtion violations in RAID. When the

same fault is detected by two differ ent test cases, it is twice as casy

to diagnose, and twice as valuable to correct. This kmd of fault
classification defines an 1mp0rtant part of the team S ploglammmg

—
pI‘OCGSS] mawvd

(\..,—"‘A-../“‘“

The 0r1g1nal pu1 pose of asseruons was to ensure that program
defects are detected as early as p0831b1e in test, rather than later-on,
after check-in, after code complete, or even after delivery. But the
power of the custome1 8 processor is constantly increasing, and the
frequency of delivery of software upgrades in the dot.NET

environment is also increasing. It is therefore more and more cost-

effective to leave a certain proportion of the assertions in retail
code; when they fire they generate an exception, and the choice is
offered to the customer of sending a bug report to Microsoft. This |
is much better than a crash, which is a likely 1esult of entry into a
region of code thatyeu-alreadyknow has never been encountered
in test. A common idiom is to g1ve the programmer control over

such a range of options by means of different ASSERT macros.
In libraries provided by Microsoft to its customers, most of the
preconditions will be SHIP-ASSERTS like this.

\ swaeyvow
Ti future, we may expect that the decision whether to Shlp an

assertion can be made later, even after the code is released. Obj ect
code manipulation tools like VULCAN will be able to inject
assertions into code where necessary, even on the customer site.

Interfaces, the way of the /Jltﬂfé \omw-wd

Assertions written at the interfaces between program modules,
assemblies and components. give except1onally good value. .
Iirstly, they are exploited at least twice, by the Implementel of the
interface and by its user — indeed by all its users. Secondly, B
interfaces are usually more stable over releases than the code, so
the asser tions that define an interface are used lepeatedly wheneve1
code is enhanced for a later release. This should make it safer for
the users of a libr: ary to read the mterface documentatlon than the
code itself. Intelface assertions perrmt unit testing of each module
separately from its use; and they give good guidance in the design
of rigorous test cases. Finally, they enable the analysis and proof
of a large system to be spht into smaller parts, so that each part can
be analysed separately in a modular fash10n This is absolutely |
critical. Even with fully modular checkmg, the first application of
PREfix to Wmdows 2000 took three weeks of machine time; and
even after a seues of optlrmsatlons and compromlses it stﬂl takes |
three days |

The first ImpOItant kind of assertion that one sees at an interface is
a precondition. A precondition i is defmed as an assertion made at
the beginning of a method body It is the caller of the method
rather than the 1mplementer who is responsible for the validity of
the precondition on every entry to the method; the implementer of

the body of the method can just take it as an assumption.
“Recognition of this divisiomof responsibility-acrossthe interface—"
protects the virtuous writer of a method from being cal ,ed’(’)'ﬁ? to
inspect faults which have been caused by a cargless caller of the
method. As an example, consider the inseftion of a node in a
circular list, which may require-thidt the parameter is not NULL.
The example shown on-this slide includes also a test of the class
invariant and rﬁ’-?)ﬁt;mg assumption; the assumption uses the
find mg (mij;l to the same class to check that the 1nserted object

is-n0L. alreaely there: S

The second main kind of interface assertion is the postcondition,

defined as an assertion evaluated on return from the method. TFhe- | D-

posteondition-is-an assertion which describes (at least partially) the
purpose of a method call. The caller of a method is allowed to

assume its validity on return from the call. The obligation is on the:
writer of the method to ensure that the post-condition is always
satisfied, and that the class invariant is satisfied too. Preconditions
and post-conditions document the contract between the

implementer and the user of the methods of a class. This aspect of .
assertions has been heavily exploited in the Eiffel programrmng
language. o -

In future, defect tracking in the style described above for Office
will be assisted by the distinction between preconditions and
postconditions. Violation of a precondition will be attributed to
the calling program, whereas violation of a postcondition or
invariant will be attributed to the calied method. At present Offlce
Watson has no way of makmg this Vltal dxstmctlon -

Ordinary in-line assertions can also be regarded as interface
assertions, lying on the boundary of the code that comes before
them and the code that comes after. The distinctions between the
different kinds of assertion are useful when it comes to the
decision which assertions tp switch off. In principle, the assertions

m

- W?}M
should be tested for the less tl}vé side of each interface. When a
method has just been written; all its internal assertions should be
switched on. The invariant can be thought of as attached to the
interface between alt the public methods of a class. To begin with,
it should be tested between every call of any method of the class.
Preconditions and postconditions sit on the interface between a
class and its user. If the user is less trusted than the class, the
preconditions should be tested. If the class has been recently
written or recently changed, it will certainly be less trusted than the
regression tests that exercise it, and so the postconditions should
also be tested. In future, we foresee tools that will assist in the
selective allocation of trust levels to code under development, and
the selective disablement of probes in conformance with project

management pOhCY (/u/u, W_,UV\{, ,W,I: _t’/\’\-é;.vw@

Conventlonal assertions are restricted to testing the properties of a -
single machine state, the one in which it is evaluated. This is a
serious restriction, and must be relaxed. We have already” Covin N
mentioned one example, where a postcondition needs to est the "
current value of a variable against a previous value. But this case

needs to be generalised, because many impotrtant security

properties of a program can be defined only in terms of a trace of

its long-term behaviour. Any move towards concurrent

PI’Ogramming'will reinforce this necessity: T)
' e pose—

The technology that seems to be most effective/s that oﬂﬁmt

state machines, whose transitions are fired by interactions between

the assemblies on each side of the interface. Examples are mnputs N;,,ow‘j
and outputs, events-and exceptions, method calls and returns= This
technology has already been applied to the static checking of s \ k‘) %
device drivers in the SLAM project. It is the basis of an automatic

test case generator developed by Jason Taylor for use in IE. It is

proposed to standardise on a notation and tool suite for the

expression, display and analysis of finite state machines, equally

useful for all these purposes.

C/Q*"
U{\

