Assert early and assert often

Practical hints on effective asserting

Tony Hoare

Techfest February 2002

... and more tomorrow

+ Accuracy of program analysis

+ Test case generation/prioritisation
* Post-mortem dump-cracking

+ Concuirency safety

* Validation of security

+ Programming language design

Macros

#ifdef DEBUG
#define CHECK(b,str) {
if (b) { }
else [report (str)};
assert (false)} }
#else #define CHECK(b,str)
#endif

Benefits of assertions today...

Test probes

Program documentation
Interface specification

Code optimisation

Defect tracking

Reduction of noise from analysis
Hardening of retail code

Engineering test probes

Analogy: engine on a tes{ bench
Instramented at internal interfaces
To test tolerances continuously
And avoid test to destruction
Opportunity to improve quality by
tightening the tolerances

Explanations

CHECK(assertion, “reason why I think
the assertion is true”)

Otherwise it’ s easy to forget.
Helps both writer and reader.
Pinpoints risk of similar errors
Helps to avoid them in future

Other variants
* VSASSERT Visual Studio
+ MsoAssert Office

* Debug.Assert C#

Assumptions

+ Used only during early test

SIMPLIFYING ASSUMPTION

(strlen(input) < MAX PATH,
“not yet checking for
overflow' ')

* Failure indicates test was irrelevant
+ Prohibited in ship code

Invariants

« True of every object ...

+ ...before and after every method call

* bool invariant ()
{...tests that list is circular...}

Documentation

» Protection for system against future changes

if (a >=Db){ .. at+ ; .. };
CHECK{a != b, ‘a has just
been incremented to aveid
equality’) ;
x = c/(a ~ b}

Compile-time

¢ #define COMPILE TIME CHECK (b)
extern dummy{(b)?1l:-1]

* Generates report at compile time

* COMPILE_TIME CHECK (sizeof(x)
==sizeof(y), ‘addition
undefined for arrays of
different sizes)

Invariants

+ Integrity checking
+ Software audits

+ Post-mortem dump-cracking.

Interface assertions

Useful to implementer and all users
Used again on each release

Reduce need to examine code

Aid the unit test of each module
Permit modular anatysis and proof

Post-conditions

POST CONDITION (£ind(n)&&
invariant(), ‘the inserted

object will be found in the

list’)

}

obligation on method writer to verify

Defect tracking

Office Watson keys defects by assertions
Integrates with RATD data base
Identifies bugs across builds/releases

Integral to the programming process

Preconditions

void insert(node *n){

PRECONDITION {(n != NULL &&
invariant{), ‘don’t insert a
non-existent object’);

SIMPLIFYING-ASSUMPTION
(find(n)== 0);

Optimisation

switch (condition) {
case 01 : break;
case 1: 1break;

default: UNREACHABLE(‘condition
is really a boolean’ };}

« Compiler emits less code

PREFIX ASSUME

+ Reduces PREFIX noise

¢ pointer = find (something);
PREFIX_ASSUME (pointer 1= NULL,
“see the insertion three lines back™);
pointer ~>mumble = blat ...

Rugged code in retail

+ VSASSERT assertions are ignored
» VsVerifyThrow ... generate exception
* VsVerify ...user chooses

... continued

¢ In later refease: detect regression
* Defect tracking: fault classification
* Inretail: crash-proofing

¢ Defect analysis: dump-cracking

* Evolution of legacy: documentation

Apologies to...

‘Vote early, vote often’
is the Politishun’ s golden rule.
Josh Billings

American humorist, 1816-85.

Life of an assertion

* Design discussions: record decisions

* Project planning: interface contracts

+ Test planning: harness design

+ Test case selection: violate post-conditions
+ Coding: correctness concerns

* Prototyping: simplifying assumptions

Conclusion

Assert early,
assert often,

and assert more strongly every time.

Acknowledgements
thoare@microsoft.com

Rick Andrews, Chris Antos, Tom Ball, Pete
Collins, Terry Crowley, Mike Daly, Robert
Deline, John Douceur, Sean Edmison, Kirk
Glerum, David Greenspoon, Yuri Gurevich,
Martyn Lovell, Bertrand Meyer, Jon Pincus, Harry
Robinson, Hannes Ruescher, Marc Shapiro, Kevin
Schofield, Wolfram Schulte, David Schwartz,
Amitabh Srivastava, David Stutz, James Tierney

