A semantics of compensations for long-running transactions.
Tony Hoare. Draft: June 20, 2003,

~ Abstract

This note provides an executable semantics for an idealised and simplified version of
the compensation capability of the draft standard for the Business Process Worktlow
Language BPELAWS. It illustrates the use of a semantic technique that might be
applicable to a more realistic description of the current draft standard. The ultimate
purpose of such a description would be: (1) to assist the standardisation committee in
exploration of language design options; (2) to define the required level of consistency
between different implementations of the language on different platforms; (3) to
permit proof of the correctness and other properties of implementations of the
language itself; and (4) to provide a secure foundation for the design of a suite of
platform-independent program analysis tools to check the correctness of user
programs expressed in the language. The immediate confribution of semantics to any
one of these individual goals is expected to be small, but it may be significant
cumulatively in the long term.

Introduction

Our executable semantics attempts to deal independently with each major
programming language concept. The concept is presented as if it were a design
pattern which enables the concept to be exploited in the design of programs expressed
in a programming language which does not include it. We will take an unusually
rigorous approach to the specification of a design pattern, which in our view consists
of the following:

(0) purpose : a clear description of the purpose of the concept that is to be
implemented. This may be formalised in terms of assertions (preconditions and
postconditions) that are true before and after each program construct. (1) data : the
declaration of additional global or local program variables, which are accessible only
by primitive actions of the pattern. (2) actions : code for a collection of primitive
actions which access and update these variables, and which can be included in the
user program. (3) protocols : specification of protocols and other conventions
(healthiness conditions) that must be observed by the user program to ensure that the
pattern achieves its intended purpose. (4) transformation : an automatic analysis or
translation algorithm, ensuring that the use of the design pattern conforms to the rules
given above. (5) algebra . valid algebraic laws and correctness principles that may be
used by program analysis tools in checking programs that use the pattern.

Our sole purpose in defining a design pattern is to convey a platform-independent
understanding of the meaning of a language feature, and how to use it safely and
correctly in cach particular application. Although the pattern permits direct execution
of the program that uses it, there is no need for the execution to be efficient.
Furthermore, since execution is only a simulation, it does not have to reflect the
architecture of the target execution platform. In fact, our semantic patterns will be
executable sequentially on a single machine, even when the program is intended for
concurrent or distributed execution on multiple machines. For purposes of efficient

execution in the real world, the real implementation of a programming concept will
use features of the platform architecture which are outside the scope of a more
abstract semantics. This abstraction from implementation technology is what makes
the semantics simpler than the actual implementation, and more useful for its full
range of intended purposes.

As a tutorial example of our semantic technique, in the next section we shall explain
the semantics of exit-jumps (or returns) by showing how to implement them in a
purely structured language that does not have any form of control break. The purpose
of the exit is to avoid further processing when it is known that the objective of a
program structure has already been achieved. The relevant design pattern introduces
a hidden tag variable, which will indicate whether termination of the scope is the
normal kind (by reaching the end), or whether it has been accelerated by an explicit
exit. The tag variable must be tested accessed and assigned in certain specific ways
that conform to healthiness conditions laid down by the design pattern. Of course, in
an actual implementation, it is far more efficient to use a jump instruction provided by
the architecture of the executing machine.

Our design patterns do not impose restrictions on the choice of language in which
they are implemented. We assume only that the language contains assignments,
assertions, sequential composition, conditionals, while loops, and declarations. The
behaviour of each fragment of program can be understood as a relation between a
state of the world before starting its execution, and its state after the fragment has
terminated, or reached some other stable state. The state of the world is modelled as
an allocation of values to all the global variables of the program and other global
variables representing the state of the program environment and the history of
interactions between the environment and the program, We will reason quite
informally about the programs in this language, using simple operational intuition
about the effect of executing the programs. For a formalisation of the base language
and for the rules of reasoning about it see [Laws of Programming] or [Unifying
Theories of Programming] or [a Discipline of Programming].

The main unfarmiliar feature that we will need in the base language is non-
determinism: (P or Q) is a program that behaves either like P or like Q; but we neither
know nor care which one is actually executed. In the relational interpretation of
programs, non-determinism is simply defined as relational union. This interpretation
permits a simple definition of program refinement, namely relational inclusion; this
states that a more refined program is simply one that is more deterministic. The more
refined program is always better, because a deterministic program is easier to predict
and control, no matter what purpose we want it for.

The style of this note is tutorial, and assumes only a passing acquaintance with
operational semantics, with the relational calculus, and with the concept of a long-
running transaction and its compensation.

Tutorial: the exit,

Let us start with a structured procedural programming language, which has no jumps,
exceptions or any other form of control break. In this section, we will introduce a
design pattern that implements a simple exit facility. The ‘exit’ statement causes an

immediate jump to the end of some enclosing structure Q, which has been specified as
an exit-context by the syntax ‘exit_scope(Q)’. Scopes may be nested, and the exit
terminates the smallest enclosing exit scope.

(0) purpose : An exit is invoked when the program discovers that it has already
achieved the objective of its whole scope, so there is no point in executing the
remaining actions of its exit scope. This objective of the exit-scope is normally
specified by a postcondition assert (R); this should automatically be taken as the
precondition of any exit statement occurring in this scope (and not, of course, in a
more deeply nested one). The program immediately following the exit (if any) never
gains control, so the postcondition of any exit is arbitrary. This is indicated by
writing ‘assert(false)” as the postcondition.

exit_scope(....; assert(R) ; exit ; assert(false) ; ... }; assert(R) ;

(1) data : We introduce a hidden global variable into the state of the world. Call it
‘tag’. Normally it contains a value called ‘normal’; but immediately after an exit it
contains a special value ‘exit_break’.

(2) actions : The hidden variable obtains this value only as a result of assignment by
the exit command:

exit isdefinedas {if tag = normal then tag :=exit_break;}
The only place where the value of the tag returns to normal is at the end of an exit
scope.

exit_scope(Q) is defined as

[Q; if tag == exif break then tag ;= normal]

(3) protocol . We now need to ensure that all normal program statements are ignored
when the tag has the exit break value. One way to do this is to surround each normal
statement Q by a conditional that tests the tag, and omits Q unless the tag is normal:

if tag == normal then Q.

In fact, we will use this construction so often, that we introduce an abbreviation

[Q] is defined as if tag ==normal then Q ;
Q is defined to be normal if and only if Q=={Q]

From the first definition, we can prove that double brackets are the same as single
brackets, as shown in the theorem:

[[QIl = [Q]

Proof: expand the definition of [] twice, and use the general law of programming that

ifb then {if b then Q ;} == ifb then Q

From the definition of normality it follows that do_nothing and exit are normal; and
from the theorem it follows that [Q] is normal, even if Q is not. The following
theorem shows that the normality condition achieves its goal of omitting all code after
an exit:

exit; P == exit if P is normal.

{(4) translation : An easy way to enforce the protocol of normality is to translate every
structure Q of the user program into [Q], on the assumption that Q itself does not
mention the tag variable. The gross inefficiency that results can be mitigated by
application of the algebraic laws given under (5). In principle, every statement Q of
the user program must be surrounded by the brackets | and], or rather by their
defined meaning. So a user program

N; {ifcthenPelse Q }; R
will get translated to
[[N]; [if ¢ then [P] else [Q] | ; [R]]

After the optimisation in accordance with the rules described below, this may be
reduced to

~ [N;[ifcthen {P;[RI3}else {Q; [RI;}T]

If'N (or P or Q) contains no exit, the next following square brackets can be omitted.
Also omitted is any material following an exit.

(5) algebra : If Q contains an exit, all the statements that follow the exit will be
omitted (because they are all normal), until the end of the smallest enclosing
exit_scope. Then the tag is set back to normal, to enable the rest of the program to be
executed. The working of the construction is illustrated by the following algebraic
laws

exit_scope(exif) == do_nothing
exit_scope(do nothing) == do_nothing
exit_scope(P;Q) == P; exit_scope(Q), if P does not contain an exit

In fact, any exit that occurs as the last action of an exit scope (e.g., at the end of a
limb of a conditional) can be omitted.

Other laws that may be used in optimisation are :

[[P]; [Q]] == [P;[QI]

[P [Q1]; [RT] = [P;[Q; [RII]

[exit ; [R]] == exit

[P;[Q]] = [P;Q], if P contains no exit

[while b do [P]] == while (b) && (tag == normal) do P

[if b then [P] else [Q] ; [R]] == [if b then {P;[R];} else {Q;[R];}]

Exceptions.

The description given so far applies only to the simplest kind of control break.
However, it is easily extended to allow more general exception handling. Just regard
the exception name as a possible value for the tag. This is tested as a condition for
entry to the handler,

(0) purpose : An exception is thrown when the program discovers that the objective
of the exception_scope can more effectively be achieved in some way other than
exccuting the remaining actions of the scope. The alternative method is provided by
the exception handler which is declared with the exception_scope

Exceptions are often invoked when the preferred goal of the program is found to
impossible. That is why exceptions are commonly identified with failure rather than
success. Our view is more precisely accurate: in principle, the specification of the
original task includes an ‘if possible’ clause, which defines more or less precisely the
consequences of invoking the program in circumstances in which its task is
impossible. The discovery of this impossibility therefore makes the original
specification easier to fulfil. As in real life, impossibility is the perfect excuse.

(1) data : no new data is required.
(2) actions :
throw(e) is defined as [tag :=¢e]
exception_scope(P, e, Q)
is defined as [P ; if tag ==e then {tag :=normal ; Q ;}]

The protocols, the translation, and the algebra of exceptions are the same as for exits.
A few extra laws for exception_scopes are needed :

exception_scope(throw(e), e, Q) == Q

exception_scope(do nothing , e, Q) == do_nothing

exception scope({P ; R}, e, Q) == P; exit_scope(R, ¢, Q)
if P contains no throw(e)

Compensations

In this section we give a similar semantic treatment to the compensation capability
modelled on that of the language BPEL4WS. A compensation allows the effect of a
program to be undone, or at least partially undone. It is therefore useful for recovery
from failure to meet a specification, in those cases where the specification itself does
not permit an alternative outcome.

(0) purpose : A compensation is a fragment of program that is capable of undoing the
external effect of its entire compensation_scope. If can be called only in (some
approximation of) the final state that results after ifs compensation_scope has

terminated normally. The compensation attempts to restore the state of the world as
closely as possible to (some approximation of) the state that it had when the
compensation_scope first started.

To formalisation of this concept introduces an ordering relation APPROX between
states of the world. The predicate s APPROX t means that the state s is an
acceptable approximation of an initial statet . Now C is a correct compensation for
a scope P if on normal termination, it leaves a final state which is an acceptable
approximation of the initial state

{P ; C;} is a refinement of {APPROX ; assert(tag = normal);}

The meaning of the relation APPROX is entirely application-dependent (in the ideal,
it may even be the relationship of equality); and so the proof of the correctness of a
compensation is entirely the responsibility of the application programmer. However,
the implementation of a compensation capability must preserve correctness when
compensation_scopes are assembled into long-running transactions.

(1) data : The design pattern for compensation introduces another hidden variable
called comp, whose value at all times is itself a program. To invoke the current value
of comp will undo the entire effect of the program, back to the point at which this
variable was declared and initialised.

(2) actions : Obviously, at the moment that the whole program starts, nothing needs
to be done to restore the state

initialise comp is defined as [comp := {do nothing}]

A long-running transaction is one whose execution consists of a series of atomic
(ACID) transactions. At the end of each atomic action P, an interaction with the
outside world takes place. This interaction is a commitment because it changes the
state of the world, and it cannot be undone by check-pointing or any other automatic
technique. Instead, the user has to provide a compensating action C, which is saved
up in the comp variable, in case it is needed as a result of a failure that occurs some
time later in the program. The compensating action is provided by a statement

addcomp(C) defined as [comp := {C;comp}]

Theorem addcomp(do nothing) == do_nothing
addcomp(C) ; addcomp(D) == addcomp(D;C)

The last law show the familiar rule that compensations will be executed in reverse
order to the actions which they compensate.

When storing the value of a program C, we assume that any declared non-local
variables that are mentioned in C are replaced by constants denoting the current
values of those variables at the time of the storage. This means that it is safe to call
the compensation even after exit from the scope in which its global variables were
declared.

It is a basic rule of life that a compensation can be invoked at most once for each time
the program that invokes it is executed. This rule is enforced by re-setting the comp
variable immediately after it is called, with a value which indicates a programming
error if it is ever called again. At the end of the compensation, the tag is set to
indicate that termination was not normal

call compensation is defined as
[new save := comp; comp = {assert(false)} ; call(save) ; tag := compensated]

Theorem call compensation ; P = call compensation (because P is normal)
addcomp(C) ; call compensation == C ; call compensation
initialise_comp ; call compensation == initialise comp

Consider now a long-running transaction P that has successfully performed a series of
atomic transactions, and has accumulated a series of compensations in the
compensation variable. But perhaps at in the progress of the program has reached a
certain stage in which there is now a faster way of compensating for all the actions of
P so far, not one at a time in reverse order, but more efficiently in one fell swoop, by
executing some alternative compensation D, To achieve this effect, the definition of
BPEL compensation scope provides a way of over-riding the effect of all the
compensations that have been accumulated during the execution of P, and replacing
them by D .

compensation-scope(P, D) is defined as
[new save = {D; comp ;}; P ; [comp := save]]

Note that the values of the variables of D are frozen at the time of entry into the
scope, whereas D itself can never be executed until after P has terminated normally.

Also, if
(3) protocols : A program P is defined to be correctly compensated if

P; call compensation is a refinement of {APPROX ; assert(tag == normal)}

It is the responsibility of the programmer to ensure that each atomic
compensation_scope is correctly compensated. It is the responsibility of the designer
and implementer of the language to ensure that all the larger structures of the
language preserve this property. That responsibility is discharged by proof of the
following fundamental theorem of compensation

If P and Q are correctly compensated,
then so are {P;Q;}, if ¢ then P else Q, and whilecdo P

(4) translation : none needed.

(5) algebra . The following theorems show that our definitions achieve at least pait
of their intended effect.

compensation_scope(call compensation, C) == call_compensation

compensation scope(do_nothing, C) == addcomp(C)

compensation_scope(compensation_scope(P, C), D) ==
compensation_scope(P, D)

The last theorem shows the over-riding effect of the compensation_scope.
Pick

The compensation capability described so far permits the entire effect of a program to
be undone. But we are considering applications in which programs are written to
define the behaviour of a system over periods of indefinite length. It is just not
acceptable to ‘go back to April 1 1983°. The pick capability of BPEL is designed to
stop the backtracking execution of compensations at some suitable point, and start
moving forward again on some alternative course of action. The construction

‘pick first(P, Q)* first tries P, and succeeds at once if P does so; but if P has failed by
calling its own compensation, Q is executed instead of P.

(0) purpose : Let P and Q be alternative ways of achieving the same objective R.
Suppose it is not reasonable to test in advance which one of them will succeed, but for
reasons irrelevant to correctness, P is preferable. Then pickfirst(P, Q) has the same
postcondition R as both P and Q. Its precondition is the union of the preconditions of

~PandQ.

... to be continued.

Semantics in the service of standardisation, Tony Hoate. 7 June 2003

Summary.

This short note summarises the ways in which the formalisation of the semantics of a
programming language may assist in its standardisation, implementation and
subsequent use. The goals of a formal semantics may be summarised under the
following headings.

1. To help a language designer or a standardisation committee to explore design
options, particularly for proposed extensions to a draft standard. A semantic
definition can reveal and resolve unexpected complexities and interaction
cffects between a new feature and the main body of the language.

2. To define the required degree of conformity of an implementation to the
standard, and so contribute to troubie-free program interchange and inter-
operation.

3. To assist in the design of correct, compatible and efficient implementations of
the common standard on different platforms.

4. To guide the design of programmer productivity tools, for example program
analysers, test harnesses, test case generators, fault injectors, model checkers,
cettification suites and even program verifiers. These tools should certainly be
consistent with the language as standardised and implemented.

5. To assist in the construction of user manuals and educational materials,
introducing the minimum number of essential concepts in the right order, with
explanation how to use them correctly, efficiently and effectively.

The contribution of a formal semantics to each of these goals individually may be
small; but cumulatively and in the longer term, the benefits may be sufficient to
justify the effort of formalisation.

One must recognise that formalisation of semantics in the past has made rather rare
contributions to programming language design and standardisation, However, the
underlying science has made continuing progress, and scale of the problems continues
to increase. So we propose to address the question whether this progress is now
sufficient to achieve some of the goals listed above. In particular, we will attempt to
supply a semantics for certain aspects of the new business choreography language
BPELAWS, now in process of standardisation.

This language is intended for the description of long-running transactions, which
engage in communications with other similar transactions, perhaps defined by other
businesses, which require their code to be kept secret. Because these transactions are
not independent, their failure cannot be compensated by any automatic technique of
reverting to a check-pointed state. To undo the effect of the failed transaction on the
external world, it is therefore necessary to engage in further communications,
retractions, cancellations, apologies, penalty payments, etc. The program that does
this is called a compensation; and it has to be written in an application-dependent way

by the original programmer. However, the language does provide structured methods
for composing such compensatable transactions into larger and longer-term
transactions which are also compensatable. A formal semantics can provide a check
of the soundness of the strategy for doing this.

Varieties of semantics.

There are now a number of styles available for the presentation of the semantics of a
programming language. Each of them is well suited to describing different aspects of
the language, and in achieving various subsets of the goals listed above. Fortunately,
it is also known how to use the different styles in combination, and so describe the
whole language in a consistent way, with some hope of achieving all the goals
simultaneously. To justify this hope would be the objective of the research that we
propose.

The main styles of semantic presentation may be summarised under the following
headings.

1. A structured operational semantics specifies in an abstract way the individual
steps that may be taken by an implementation of the language in executing a
program. It is strong in describing interleaving and interaction of concurrently
executing components of a system, preferably one that does not update shared

~memory. The semantics is directly amenable to model checking, which
detects the risk of deadiock in concurrent systems. An operational semantics
may be presented as an executable PROLOG program; and PROLOG non-
determinism may be exploited to explore the full range of non-deterministic
possibilities in programs expressed in the original source language.

2. An assertional semantics specifies the proper correspondence between a
program and the assertions (preconditions and postconditions) that express
what it is supposed to do. Assertional semantics is good for sequential
programs that update named internal variables inside the memory of a
computer. The assertions are used as oracles in test harnesses, and they can be
potentially exploited in test case generation, and even in program verification,
Ideally, assertions can help even at the design stage for systems.

3. A denotational semantics translates every program into a mathematical object
that exhibits corresponding behaviour in some abstract mathematical domain.
It is especially good for programs expressed as higher-order functions, and for
applications that make heavy use of recursion, in defining both program
structures and data structures. The semantics may be presented as suite of
functional programs, expressed in a language like Haskell.

4. An algebraic semantics is a presentation of a more or less complete set of
algebraic equations between programs written in the same language, The
equations may be used as correctness-preserving transformations in program
optimisation, both manual and automatic. Equations are surprisingly good at
expressing or even conveying an engineering intuition about the intention and
the meaning of a program feature. If sufficient equations are given to support
a normal form, they can be executed in an algebraic system like Maude,

5. A translational semantics translates the programs of a complex language into a
simpler subset of its own language, which may itself have a semantics of a
different kind. The result of the translation may be a fully instrumented
program, which can be executed directly as a test harness, or subjected to a
more penetrating program analysis to reveal its errors, or even to prove that it
has none. The semantics can be presented as a collection of design patterns,
representing each concept independently.

Where the semantics of a language is presented in an executable form, the execution
does not have to be efficient; nor does it have to exploit the concurrent or distributed
structure of the target architecture on which the real programs will be run,

Abstraction from the realistic concerns of a practical implementation is the only
reason for hoping that a formal semantics will be any simpler than the implementation
itself. And if it is not significantly simpler, the semantics will fail in its original goal
of aiding the understanding of its users, its implementers, and its designers,

Modularity.

One of the most important aids to understanding in the presentation of semantics is its
modularity. Modularity can be achieved in three orthogonal ways.

1. Each feature of the language should be defined independently of all other
features. It should be possible to prove properties of each feature directly
from its definition. Of course, this is only possible for a language which has
been designed to be reasonably free of feature interaction.

2. Each module of a program should have a meaning which is understandable
independently of the context in which it is run. Thus each module can be
tested, analysed, and even verified independently of the much larger system in
which it is embedded.

3 Wherever possible, the features and confrol structures of the language should
be defined in terms of binary operators that are associative. Associativity
ensures that a structure consisting of a long string of operands can be
understood by considering only one pair of adjacent operands at a time.

We propose to explore a combination of these semantic techniques in application to
some of the features of BPEL4WS. We will start with a simple language due
primarily to Dijkstra, which has a clearly established assertional semantics. It is
already effectively a subset of all procedural languages, including BPEL. We will
then use the translational technique to define other more advanced and specialised
features of the language. The translation will produce an executable test harness,
fully instrumented by the relevant assertions. The relevant algebraic laws will be
derived wherever possible as theorems.

We would then like to present a denotational semantics, by implementing the same
collection of features in the higher order functional language Haskell. Monads are a

splendid way to maintain the desirable modularity. Finally, it would be interesting to
explore PROLOG as a directly executable presentation of an operational semantics,

