" Quicksort
. By C. A, R. Hoare -

A description is given of a new method of sorting in the random-access store of a compuier. The
method compares very favourably with other known methads in speed, in economy of storage, and
in ease of programming, Certain refinements of the method, which may be useful in the optimiz-
ation of inner loops, are described in the second part of the paper,

'}

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems, Each of these subproblems may be
resolved to produce yet simpler problems, The process
is repeated until all the resulting problems are found to

be trivial. These trivial problems may then be solved

by known methods, thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying

consecutive locations in the store of a computer, may be
reduced to that of sorting two lesser segments of data,
provided that it is known that the keys of each of the
items held in Tocations lower than a certain dividing line
are fess than the keys of all the items held in Jocations

“above this dividing line, In this case the two segments
may be sorted separately, and as a regult the whole mass
of data will be sorted. '

In practice, the existence of such a dividing line will .

be rare, and even if it did exist its position would be
unknown. It is, however, quite easy’ to rearrange the
items in such a way that a dividing line is brought into

existence, and its. position is known. The method of -

doing this- has been 'given the name partition. The
description given below is adapted for a computer
which has an exchange instruction; a method more
- suited for computers without such an instruction will be
given-in the second part of this paper.

The first step of the partition process is to choose a

particular key value which is known to be within the
range of the keys of the items in the scgment which is
to be sorted. A simple method of cnsuring this is to
choose the actual key value of one of the items in the
segment, The chosen key value will be called the
bound. The aim is now to produce a situation in which
the keys of all items below a, certain dividing line are

equal to or less than the bound, while the, keys of all”

items above the dividing line are equal to or greater
than the bound. Fortunately, we do not need to know
the position of the dividing line in advance; its position
is determined only at the end of the partition process.
The items to be sorted are scanned by two pointers;
one of them, the lower pointer, starts at the item. with
lowest address, and moves upward in the store, while
the other, the upper pointer, starts at the item with the

highest. address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound, it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an .
item with key value greater than the bound. In this -
case the lower pointer stops, and the upper pointer
starts ifs scan. If the item to which it refers has a key
which is equal to or greater than the bound, it moves
down to point to the item in the next lower locations.
It conlinues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
positions, and they must be exchanged. After the
exchange, each pointer is stepped one item in its appro-"
priate direction, and the lower pointer resumes its
upward scan of the data. The process continues until
the pointers cross each other, so that the lower pointer
refers to an item in higher-addressed locations than the
item referred to by the upper pointer. In this case the
exchange of items is suppressed, the dividing line-is -
drawn between the two pointers, and the partition
process is at an end.) '

An awkward situation is liable to arise if the value of
the bound is the greatest or the least of all the key values
in the segment, or if all the key values are equal. - The

* danger is that the dividing line, according to the rule

given above, will have to be placed outdide thie segment
which was supposed to be partitioned, and therefore the
whole segment has to be partitioned again. An infinite
cycle may result unless special measures -are taken.
This may be prevented by the use of a method which
ensures that at least one item is placed in its correct
position as a result of each application of the partitioning
process. If the ilem from which the value of the bound
has been taken (urns out to be in the lower of the two
resulting segments, it is known to have a key value which
is equal to or greater than that of all the other items of
this segment, It may thercfore be exchanged wilh the

_ item which occupies the highest-addressed locations in

10

‘may be reduced by one.

the segment, and the size of the lower resulting segment
The same applies, mutaris
mutandis, in the case where the item which gave the
bound is in the upper segment. Thus the sum of the
numbers of items in the two segments, resulting from
the partitioning process, is -always one less than the
number of items in' the original segment, so that it is.

~may be overwritten.

Quicksort

cerfain that the stage will be reached, by repeated
partitioning, when ecach scgment will contain one or no
items. Al this'stage (he process will be terminated.

Quicksort

After cach application - of the partitioning process
there remain two segments lo be sorted, If either of
these segments is emply or consists ol a single item, then
it may be ignoved, and the process will be continued on
the other segment only. Furthermore, if' a segment
consists of less than three or four items (depending on
the characteristics of the computer), then it will be
advantageous to sort it by the use of a program specially
written for sorting a particular smail number of items.
Finally, ‘if both segments are fairly’ large, it will be
necessary to postpone the processing of onc of them
until the other has been fully sorted. Meanwhile, the
addresses of the first and last items of the postponed
segment must be.stored. It is very important to econo-
mize.on storage of the segment details, since the number

of segmenis. altogether is proportional to the number

of items being sorted. Fortunately, it is not necessary

to store the details-of all segments simultaneously, since’

the details of segments which have already been fully

“sorted are no longer required.

The recommended method of storage makes use of

a nest, i.e. 2 block of consecutive locations associated

with a pointer. This. pointer always refers to the
lowest-addressed location of the block whose contents
v Initially the pointer refers to the
first Jocation of the block. When information is to be

* stored in the nest, it is stored in the location referred to

by the pointer, and the pointer is stepped on to refer
to the next.higher location. When information is taken
from the list, the pointer is stepped back, and the
information will be found in the location referred to by
the pointer. The important properties of a.nest are
that information is read out in the reverse order to that
in which it is written, and that the reading of information
automatically frees the Jocations in which it has been
held, for the storage of further information.

When the processing of a segmerit has to be postponed,
the necessary details are placed in the nest. When a

" scgment is Tound {o consist of one or no items, or when

it has been soried by some other method which is used
on small scgments, thed 1t is possible (o turn (o the
processing “of one of the postponed sepments; the
segiment chosen should always be the one most recently
posiponed, and its details may therefore be read from
the nest.
may be necessary to make furthet postponements, but
now the segment details may overwrite the locations

ilcms lo be sorled, it is sulficient to adopt the rule of
always postponing the processing of the larger of the
iwo segments, ™ : ’

Estimate of Time Taken ‘

The number of key comparisons necessary 1o partition
a segment of M ilems will dépend on the details of the
method used to choose the: bound, or to test for the
completion of the partition' process. In any case the
number of comparisons is ‘of the form N -+ k, whese
kmaybe —1,0,1,2. 7 f *

The number of exchanges will vary from occasion o

" occasion, and therefore only the expected number can

- of key values of the items in the scgment.

During the processing of this segment, it

used during the processing of the previous segment. -

This is, in fact, achieved automatically by the use of a
nest,

number of locations used by the nest; in order to eisure
that the number of segments postponed at any one {ime

never exceeds the logarithm (base 2) of the number of

It is important to know in advance the maximum

I

be given. An assumption has to be made that the value
of ihe bound is a random sample from the population
If this
assumption is not justified by the nature of the data
being sorted, it will be advisable to choose the item
which yields the bound value af random, so that in any
case the assumption of randomness will be valid.

In the calculations which follow, use is made of the
principle of conditional expectation. We consider
separately the case where the bound is the rth in order
of magnitude of all the key values in the segment; the
value of the conditional expectation of the quantity
which interests us may now be expressed quite simply as
a function of ». The rule of conditional expectation
states that if each conditional expectation is multiplied

" by the probability of occurrence of the condition, and

they are summed over the whole range of conditions, the
result gives the unconditional or absolute expectation.
According to the assumption of vandomuness, all the
values of r between 1 and N inclusive are cqually likely,

- !
so that they each have a probability of N If, thevefore,

the expression which gives the conditional expectation
on assumption of a given » is summed with respect to »
and divided by N, we obtain the value of the absolute
expectation of the quantity concerned.

Consider the situation at the end of the partition
process, when the bound was the rth ke& value in order
of magnitude. As a result of the fingl exchange, the.
item which yielded this key value wi;l occupy the rth
position of the segment, and the r — | items with lesser.
key value will -occupy the » — 1 positions below it in
the store. The number ol cexchanges muade in the
course of the parlition process is equal to the number
of items which originally occupied the » — 1 positions
of the lowér resulting segment, but which were removed
because they were found to have key values greater than
the bound. The probability of any key value being

—r—1
TN T and therefore the
expected number of such items among the r — 1 items

greater than the bound is

* A description of Quicksort in ALGOL (Hoeare, 1961) is rather °
deceptively .simple, since the use of recursion means that the
administration of the nest does not have to be explicitly described.
The claim to a negative sorting time in the reference is, of course,
due to a misprint. ’

Quicksort

which originally occupied what was 1o be the lower
resulting segnént is:

N—r—Dr—-"D
—U—l\—fﬁ—_'

Summing with respeet Lo #, dividing by &, and adding
one for the final exehange of the item which yielded the
bound, we get the absolute'expectation of the number
of exchanges: '

N 5

s T ew

. ' y .
‘This figure may be reduced by W if the final exchange is

always omitted in the case when the item which provided
the bound is already in its correct position. In general
it will not be worth while to test for this case. :
Given the expected theoretical number of comparisons
and exchanges, it should. be quite easy to calculate the
expected time taken by a given program on a given
computer. The formula for the time taken to partition
a segment of & items will take the form '

aN+[)+£,

where the coeflicients a, & and ¢ are determined by the
loop times of the program. The expected time taken
to sort N items will be denoted Ty. We shall suppose
that a different method of sorting is used on segments

.of size less than M. The values of T, for r << M are
‘taken as given. We shall find a recursive relationship
to give the values of T, for r > M.

* Suppose that the value of the bound chosen for the
first partition is the rth in order of magnitude. ‘Then
the time taken to sort the whole segment of N items is
€qual to the time taken to partition the A items, plus
the time taken to sort the r — 1 items of the lower
resulting segment, plus the time taken to sort the
N —r — 1 items of the upper resulting segment. This
assertion must also be true of the expected times

Tn=T,+ Ty aN + b+ 3,

-on condition that the first bound was the rth. Summing
with respect to » and dividing by N we get the uncondi-

tional expectation
Iw=2"S'r ravsvs & W
N—ﬁ; »HaN 4 +1T/’ ‘N.>M'

The exact. solution of this recurrence equation is*

AN A1) M N+ De
YEur s 2 I vt o

-

D, S

M1 :
. N1 4w)
B [2(N+ l)ftf}-:ﬂ!‘ M+1 +N+ 4:|a._

. ¥ Weadopt the convention that a sum is zero If its upper bound
is less than its lower bound. . :

The validity of the solution may be proved by substi-

Tuting -in the original equation, and showing that the

result is an algebraic "identity. For simplicity, the
Af—1

" cocflicients of ¥ 7., ¢, b, and « should be considered
T

12

'scpnra'telyl The corrcciness of the first three coeffi-

cients is casily established. In verifying the cocfficient
of a, the following identities are used. Writing Wy for

N1, 2 2
ME1 ¥ N+1 M+1
ain Ty, "we get

: IKN.= N+ DWWV + 2Dy —~NN+-DWy (1)

and ¥y for the coefficient of .

= %N(N F DWWy N

2 N1

= _ V. + N from (1
N o Vet)

It is interesting to compare the average number of
comparisons required to sort & items, where N is very

- large, with the theoretical minimum number of compari-

sons, We consider the-case M =2, and find the
expected number ‘of comparisons by putting a = J,
b= ¢ =T, =0 1in the formulae of the last paragraph.
When ¥ is very large, all terms except the largest may
be igriored. The figure obtained for the -expected -
number of comparisons is

G|
ZNZ"—NleogeN.
o

The theotetical minimum average number of conpari-
sons required to sort ¥ unequal randomly-ordered items

" may be estimated on information-theoretic considera-

tions. As a result of a single binary comparison, the
maximum entropy which may be destroyed is —log 2,
while the original entropy of the randomly ordered data
is —log N1; the final entropy of the sorted data is zero.
The minimum number of comparisons required to
achieve this reduction in entropy is

- ! .
__Lﬁ)ggl‘rz_' = logy N1 ~ N log, N.
The average number of comparisons required by
Quicksort is greater than the theoretical minimum by a
factor of 2log, 2 ~ [+4, ‘This factor could be reduced
by the expedient of choosing as the bound for each
partition the median.of a small random sample of the
items in the segment. It is very difficult to estimate the
saving which would be achieved by this, and it is possible

- that the extra complication of the program would not be. -

justified. Probably more worthwhile is the attempt to
reduce as far as possible the actual time taken by the
innermost comparison cycle, and a number of simple
programming devices to achieve this will be described
in Part Two of this paper. ' s

“~ - .

R T Pl g Rl it

ST XTI

A Comparisou of Quicksort with Merge Sorting

The National-Elliott 405 computer has a delay-line
working store of 512 locations, and a magnetic-disc
backing store of 16,384 words. The average access
time for the working store is 0-8 msec and the average
access time for a block of 64 words in the backing store
is 32 msec. There are 19 words of - immediate-access
storage, which are used to contain instructions and
working space of the inner loops; the time taken by
such foops is about 0- IS msec per instruction,

Table 1 gives a comparison of iimes taken by
Quicksort and a merge sorting method, both pro-
grammed by Mr. P. Shackleton for the 405. The times

were measured automatically by the computer in tests

on random data conducted by M. D. J. Pentecost.

. The figures relate to six-word items with a single-word
key. S

: Table 1

NUMBER OF ITEMS MERGE'SORT QUICKSORT

500 2 min § sec I min 21 sec
1,000 4 min 48 sec 3 min 8 sec
1,500 8 min 15 sec® Smin 6 sec
2,000 11 min 0 sec* 6 min 47 sec

* These figurcs were computed by formula, since they cannot
be achieved on the 405 owing to limited store size,

Part Two: Implementétion

In the implementation of a sorting method on a given
computer, it is often possible’to make adaptations which

will ensure optimization of the innermost loops. Quick-

sort furns out -to. be exceptionally flexible; a number of
possible variations are described below. The choice of
which variation is adopted on any given computer will,
of course, depend on the characteristies of the computer.
In making the decision, the theoretical estimate of time
taken for various values of @, b, ¢, and M should be used
to determine the optimal method; it will not be necessary
to write and test a large number of different programs.

Partition without Exchange

On some computers the exchange operation. wouid
involve copying one of the items into workspace while
the other item overwrites the locations which it occupied,
On such a computer it would be advantagecus to avoid
exchanging altogether, and a method of achieving this
. is deseribed below.

The item chosen to yield the bound should always be
that which occupies the high#st-addressed locations of
the segment which is to be partitioned. If it is feared
that this will have a harmfully non-random result, a
randomly chosen item should be initially placed in the
highest-addressed locations. The item which yielded
the bound is copied into working ‘'space. Then the
upper and lower pointers are set to their initial values,
and the lower pointer starts its upward scan of the store.

\ Quicksort

When it finds an item with key greater than the bound,
this item is copied into the locations to which the upper
pointer now refers. The upper pointer is stepped down,
and proceeds on its downward scan of the data. When
it finds.an item with key lower than the bound, this item
is copied into the locations referred to by the lower
pointer., The lower pointer is then stepped up, and the
process is repeated until both the pointers are referring
to the same item. Then the item which has supplied the
bound is copied from working space into the locations
to which the pointers refer. Throughout the process,
the stationary pointer refers to Jocations whose contents
have been copiéd elsewhere, while the moving pointer

searches for the item to be copied into these locations.’

The expected number of copying operations is obviously
twice the corresponding figure for exchanges.

Cyclic Exchange

On a machine with single-address-instructions, which
has the facility of exchanging the contents of accumulator
and store, it is more economical to perform long
sequences of exchanges at one time. A single exchange
operation involves reading to the accumulator, exchang- .
ing with store, and writing to store, giving 3N instructions
to perform N exchdhges, If these exchanges are
performed cyclically all at the same time, one exchange
instruction can take the placé of a read and a write
instruction in all the exchanges except the first and the
last. Thus only one read instruction, one write instruc-
tion, and 2N — 1 exchange instructions are required.
Further economy is achieved in the case of multi-word
items by the fact that the count of words exchanged need
be tested only once for each N-fold exchange of each

. word of the item.

The method of Quicksort allows all exchanges to be
saved up until the end of the partitioning process, when
they may be executed together in a cyclic movement.
In practice, the values of the pointers at the time when
they come to a halt are stored in a list for later exchang- -

.ing. The number of locations which can be spared to

hold this list will be a limiting factor in the gain of-
efficiency. .

Optimization of the Key Comparison Loop

Most sorting methods require that a test be made
every time that a pointer is stepped, to see whether it
has gone outside its possible range. Quicksort is one
of the methods which can avoid this requirement by the
use of sentinels. Before embarking on the sort, sentinels
in the form of items with imipossibly large and small

* key values are placed at each end of the data to be

i3

sorted. Now it is possible to remove the pointer test
from the key comparison cycle; the test is made only
when both pointers are;stopped and an exchange is just
about to be made. If, at this time, the pointers have
not crossed, the exchange is made and the partition
process is continued. - If they have crossed over, the
partition process is at an end, .

°

Mars Ly Ty
- N ki T LA et S LT R L et e e

T r——rr

Quicksort

I the value of the bound is the greatest or the feast
(or both) of the key values ol items in the segment being,
partitioned, then one (ar both) of (he pointers will
move oulside the segment: but no harm can resull,
provided neither pointer moves oulside the area in
which the whole mass of data is stored. The upper
sentinel, having a key: value necessarily greater than
that of the bound. will stop the lower pointer, while {he
lower .sentinel will stop the upper pointer. The facl
that "two cextra key comparisont are made on every
application of the partition process will be more than
compensated on fairly large segments by the omission
of pointer comparison from the innermost loop.

Multi-word Keys ,

When, the keys, with 1espect to which the sorting is
pe:foxmed extend over more than one computex word,
then a [ong time may be spent on comp'umg the second
and subscquent words of the key. This is a serious

. problem, sinice it often happens that a large number of
items share a very few values for the first words of their

keys. The problem is aggravated when the items are
nearly sorted, and it is necessary to make many compar i-
sons between keys which are identical except in their
last word. The method described below is due to
Mr. P. Shackleton.

"The principle of the method is to compare only a-
. single word of the keys on each application of the
When it is known that a segment

partitioning process.
comprises aill the items, and only those items, which
have key values identical to.a given value over their
first # words, then, in partitioning this segment, compari-
son is made of the (# -+ Dth word of the keys. A varia-
tion of the method of partitioning is adopted to ensure

that all items with identical values of the key word

currently being compared (and consequently identical
over earlier words of their keys) are gathered together
in one segment as quickly as possible,

The vartation consists in altering the criteria which
determine the stopping of the pointers. If we ensure
that all items with key values equal to the bound are
placed in the upper of the resulting segments, then we
may associate with each segment its so-called charac-
teristic value, which is the greatest value equal to or less

than all the key values of the segment (using the expres--

sion key value to mean the value of the word of the key
which will be compared when the segment is partitioned).

Furthermore, each segment must contain all the items’,

with key value equal to the characleristic value of the
segment. This is easily achieved by making the lower
pointer stop whenever it meets an item with key value
equal to the bound, so that such an item will be trans-
ferred to the upper segment, The value of the bound
may obvioudly be taken as the characteristic value of
the upper resulting segment, while the characteristic
value of the lower resulting segment is the same as that
of the original segment which has just been partitioned.
Where this rule does not determine the characteristic

values (as in the case of the original mass of data), then

I . .
no harm will be occasioned by choosing as characteristic
value the lowest possible value of the key word.

“Now whenever @ segment s Lo be partilioned, the
value chosen as the bound is compared with the charac-
leristic value ol the segment, If it is grealer, parti-
tioning is performed wilh the modification described in
the last paragraph. 1f, however, they are equal, then
it is the upper pointer which is made to stop on
encountering an item wilh key value cqual to the bound.
Thus all items with key values equal to the characteristic
value are collecled together in the Jower resulting
segment, and when this segment comies to be partitioned, .
comparison may be made of the next word of the keys
(f any).

The adoptlon of this refinement means that when the
processing of a segment is postponed, the position of
the key word which is next to be considered, and the
characteristic value for the segment, must be stored
together with the positions of the first and last items.
On many machines, the extra book-keeping will be
jUSt]ﬁGd by the consequent optimization of the innermost
comparison loop.

Muiltilevel Storage

Quicksort is well suited to machines with more than
one level of storage, for instance a fast-access working
store ot magnetic cores and a backing store on magnetic
discs or drums. The data in. the ‘backing store are
partitioned 1epeatedly until each 1esulting segment may
be contained in the fast-access store, in which it may be
sorted at high speed.

The partitioning process can be applied quite economi-
cally to data held on a magnetic drum or disc backing
store. The reason for this is that the movement of the
pointers allows ‘serial transfer of information held -
adjacently in the backing store, and such transfers are
usually faster than if more scattered random access were
required,” This is particularly true if information can

. only be transferred between the backing store and main

store In large blocks. The time lost in searching for
information on the backing store may be reduced to
insignificant proportions, provided that it does not take
an exceptionally long time to search for information at
one end of the store immediately after transferring

. information at the other end. This condition is satisfied

14

by many magnetic drums or disc stores; it is obviously
not satisfied by & magnetic-tape store, on which the
method of Quicksort cannot usefully be applied.

Conclusion
Quicksort is a sorting method ideally adapted for

sorting in the random-access store of a computer, Itis .

equally suited for data held in core storage and data
held in high-volume magnetic drum or disc hacking
stores, The data are sorted in situ, and thercfore the
whole store may be filled with data to be sorted. There
is no need to sort simultaneously with input or output,

Chiicksort

The number of cycles of the innermost comparison loop
is close {o the theoretical minimum, and the loop may
be made very fast. The amount of data movement
within the store is kept within very reasonable bounds.
Quicksort is therefore likely to recommend itself as the
standard sorting method on most computers with a

Reference

large enough random-access store to make interna’
sorting worth while, . '

Acknowledgement
This paper is published by kind permission of Elfiott
Brothers (London) Ltd.

Hoarg, C. A, R, (1961). Algorithm 63, Partition; Algorithm 54, Quicksort; Comnumications of the ACM, Vol, '4, p. 321,

Zero-Address Computers
By P. Wagner

The literature on digital computers makes a distinction
between one-address, two-address and three-address machines,
where the nature of the beast is determined by the number of
references to the main random access memory permitted in a
single instruction of the basic machine code. After some
initial confusion, the one-address machine emerged as the
dominant type, and its pre-eminent position has-been largely
unchallenged during the past five years or so. .

I should like to draw attention to the fact that.the position
of the one-address machine is being challenged by a new
type of animal which, on the basis of the above classification,
must be called a zero-address machine. -

The basic arithmetic operations are of the three-operand
type. For instance, the operation C—= A + B has two.
operands as input and one operand as output. Three-address

machines permit basic machine instructions to refer to the .

three operands explicitly. Two-address machines refer to two
operands explicitly, and one operand (usually the resulf)
implicitly, One-address machines refer to one opcrand
explicitly, and assume that an arithmetic operalion, such as
ADD, finds its sccond opetand in an independently specified
register and stores its result in a second, possibly identical,

) independently specified register. .

A zero-address instruction can be defined as one where the

location of all relevant operands is specified by convention,
so that no operand need be designated explicitly. Zero-
address logical and arithmetic operations are available in

computers like the English Eleetric KDF 9 or the Burroughs

B 5000, in which all operands required as input to an arith-
metic operation are previously stored in a group of temporary
storage registers with last-in-first-out propertics, variously
known as a nesting store, a stack or a pushdenwn store, Further-
more, the result of an arithmetic operation on operands in
the pushdown store s left in a register in the pushdown
store from which it may immedfately be used for further
zero-address arithmetic operations. For instance, three-
address operations, such as addition, perform the addition
operation on the two top registers of the pushdown store,
reduce the size of the pushdown store by deleting the top
register, and store the result in the new top register {previously
the second register), where it is available for immediate use
for subsequent computation.

By means of a pushdown store it is possible to specify
arithmnetic and logical operations without explicit reference
to an operand. However, a machine which is truly a zero-

" address machine, requires elimination of references to

operan_ds for all operations, including data transmission
operations typified by FETCH and STORE. This is accom-
plished in the Burroughs B 5000 by channelling all references

- 1o operands through an operand directory known as_the

“Program Reference Table.”” Since grouped data, such as

15

arrays, need be-specified only by a single “data descriptor”
in such & directory, the number of bits required to reference

. such a directory will be smaller than the number of bits

required to reference the memory as a whole. An indirect
addressing technique of this kind eliminates the need to refer
to operands explicitly in terms of the memory location which ,
they occupy, so that data transmission instructions of this kingd
may, in some sense, be regarded as zero-address instrutions.
The principal remaining class of memory-address references
is that of labels,” Labelling, and transfers to labels within a
program, may also be dealt with by a program directory
technique. A machine like the Burroughs B 5000, which
references operands and labels through a program directory,
may thercfore be regarded as a zero-address computer.
Zero-address computers are more economical in their

‘utilization of memory space for programs than one-address

computers, since it is unnecessary to provide space in an
instruction for referencing a memeory location, For instance, -
the B 5000 has 12-bit instructions and permits four instruc- .
tions to a computer word.

Furthermore, the fact that arithmetic and logical opera-
tions in such an instruction code are “pure” operations,
unencumbered by operands, gives rise to a closer corre-
spondence between mathematical source Janguage and basic

Jnachine code than is the case in one-address computers.

The constituent - in a mathematical source language has a
precise counterpart in the target language; and, in general,
source language constituents retain their identity in the target
fanguage, although the order of their appearance may be -
changed. This correspondence leads to simpler and faster
translation programs than in the case of onc-address machines.

To sum up, there are three principal advantages in a zcro-
address basic machine code;

1. Machine language instrictions can be short, since no-
explicit reference to operands in a large random-access
memory is required. ’

2. The structure of the machine language is close to the
structure of mathematical source languages, leading to
fast translation procedures. ’

3. Execution of sequences of arithmetic and logical opera-

_ tions is speeded up since the number of references to
random-access memory is reduced.

In view of these advantages, computers- with zero-address
arithmetic and logical machine instructions operating through
a pushdown store have probably come to stay. The case for
zero-address operations for all classes of basic machine
instructions is nat quite as compelling. However, a con-
sistent zero-address instruction code, permitting only indirect -
references to locations in the random-access memory, has a
great deal to be said for it. ' -

