PROGRAMMING LANGUAGES

PREDICTIONS AND PROSPECTS.

The safest predictions are those which assume that the
future will be closely similar to the past. In the area of
computing, such predictions are not quite so safe but there
must come a time when they will be. For programming languages,
perhaps the time has already come; so here are the predictions:

1. The languages in most widespread use in the 1970's
will be ALGOL 60, and FORTRAN for technical calculations, and
COBOL and PL/I for business-oriented data processing.

2. The amount of effort expended in the design and
implementation of hopeful new languages will be no less in
the 1970's than in the 1960's.

Why is it that new programming languages find it so
difficult to make headway against the established languages?
Even the sales effort of the largest manufacturer, guite
successful in persuading people to adopt a new hardware design,
has failled to achieve any widespread abandonment of an older
programming languadge. The basic reason for this is that
there is a strict limit on the practical benefit which can
be achieved by use of a high-level programming language, and
within their respective areas of application, the existing
languages are already quite close to that limit. The margin
for possible improvement is therefore not great enough to
persuade programmers to sacrifice their existing programs and
to abandon their familiar practices.

This sad fact, confirmed now by ample experience, will
not be acceptedbyscientists designing new languages, who are
searching for techniques which will actually make programming
an easy task. But this is a pursuit as vailn as that of the
philosopher's stone. The design of computer programs will
always be a signiticant intellectual endeavour, requiring
the same inspiration, insight, experience, and meticulous
care as the design of cathedrals, aeroplanes, bridges, and
computers. No programming language will reduce the importance
of the human intellect in this task; nor will it enable a
programmer to get away with slipshod reasoning, inadequate
planning, imprecise decisions, or inattention to detail. WJ%/

There 1s another ultimate limitation on the design of
programming languages, and this concerns the pursuit of
machine-independence. There are many classes of problem for
whichiit is possible to construct programs in a relatively
machine-independent fashion; and the acceptability of the
results of the program is not affected by differences in the
machines on which the program is run. For example, many




-2 -

scientific and engineering calculations, provided that they

are numerically well-conditioned, will run on machines with
widely differing floating point representations; and most of
them use an integer range well within the capabllities of
virtually all computers. It is this property of the problem
itself which makes it possible to design and effectively use

a machine-independent programming language such as ALGOL or
FORTRAN. These languages have also been used successfully

for programs outside the range of purely technical calculations;
but it is notorious that such programs cannot be freely passed
between one machine and another, because they have needed to
take advantage of particular features of the implementation,
such as word-length, storage layout, etc. Thus it seems that
the possibility of machine-independence is much more a property
of a particular application than of the language in which the
program is expressed; and no language will ever cover the
whole range of potential computer application in a machine-
independent fashion.

This fact is well illustrated by the difficulty of trans-
ferring programs written in COBOL between machines of differing
design. The successful solution of many commercial data
processing problems is critically dependent on particular
features of the machine on which the program is run, for
example, the speed and number of magnetic tapes, the internal
collating sequence of characters, the file labelling conventions,
the standard file structure, etc. It is just not practical
to design data processing programg which ignore these details;
and the use of a high-level language can never be, in itself,

a guarantee of program interchange.

Tt was originally hoped that the underlying character-
orientation of COBOL would be the basis for interchange
of programs and data; and if all machines were character-
oriented, this would be an excellent solution. However,
many modern machines are fundamentally word-oriented, and
few actually perform arithmetic on digits expressed as
characters. Thus COBOL implementations virtually have to
simulate a character machine on a word machine, and this
leads to heavy losses in computing power and storage
capacity. For this reason, COBOL permits the programmer
to specify that his data is to be stored in a manner more
suited to the internal processing capability of the machine
(SYNCHRONISED and COMPUTATIONAL). However, as soon as the
programmer+ takes advantage of this, he loses machine-independ-
ence. Thusg it proves possible to achieve machine-independ-
ence only for problems for which the resulting loss of
efficiency is not intolerable.

The solution to this dilemma may be found in the more
skilful design of a programming language, such as to permit
full advantage to be taken of the characteristics of individual
hardware designs, without losing machine-independence.
In this prspect, the new BCL language, developed by David Hendry
at the Institute of Computer Science, offers great promise.
But if my theory is correct, a language which guarantees
machine~independence can never be applicable to those ranges
of problem which require essentially machine-dependent




-3 -

solutions.

The area of application which enforces on programmers the
greatest degree of machine-dependence is that of the construction
of the software itself - executives, operating systems, compilers,
etc. The machine-dependence here arises largely from the
nature of the problem itself, and only partly from the need to
achieve very high efficiencies in both running space and
running time. However, the impossibility of machine-independ-
ence does not mean that the software programmer will always
be barred from the other benefits of high-level language
utilisation, and be forever condemned to use the inelegant
and inexpressive notations of assembly code. Among the
chief advantages of high-level languages is the use of nested,
bracketed, and indented notations to reveal the basic structure

of the algorithm to be executed. There is no reason why
these notational advantages should not be grafted onto assembly

language, or at least a language which is in one-to-one correspond-
ence with assembly language. An early example of
such/language is Niklaus Wirth's PL/360 (for 360-like computers)
developed and used as a software-writing tool at Stanford
University, '

In this language
the programmer retains complete control over the use of store,
of registers, and has every machine code function and facility
at his disposal. Furthermore, there is absolutely no overhead
in the shape of run-time routines; in fact, there must not
be, since the language is intended to be used for constructing
run—~time routines for other programming systems.

One current problem which is likely to progress towards
solution in the 1970's is that of the standardisation of
programming languages based on a rigorous formalisation of
their syntax and semantics. At the present time, interchange
of programs in supposedly machine-independent languages is
inhibited by numerous minor and trivial incompatibilities,
which have no explanation other than oversights on the part
of the implementor,or incompleteness in the definition of
the language. The Report on ALGOL 60 (ed. P. Naur and
M. Woodger) was a significant advance in clarity of language
definition, particularly in the syntactic area; and the 1966
drafts for a standard for FORTRAN are certainly an improvement
on the previous situation. In extending techniques of lang-
uage definition into the area of semantics, it is essential
not to be too inflexible. The implementor must be given some
freedom to adapt the language implementation to the character-
istics of his machine/&fbas gsuch as integer range and floating
point representation. But in other more organisational
aspects such as parameter transmission, the description should
allow of no ambiguity whatsoever.

Apart from its contribution to easing standardisation and
program interchange, the formal definition of programming
languages will be a task of mainly academic interest. It
will sharpen the understanding of language designers, implement.-
ors and tutors; and it will obviate certain kinds of
philosophical or metaphysical problem; but as far as practical




- 4 -

application is concerned, it will be as relevant as the
study of the foundations of mathematics and analysis is to
the use of mathematics in engineering and scientific
calculations: as relevant as the geometry of REuclid is to
the practice of surveying and mapmaking.

Among the most important contributors to rigorous
definition of semantics are, Professor John McCarthy of
Stanford University, Peter Iandin of Queen Mary College,
and Peter ILucas and his team at the I.B.M. Research Laboratory
at Vienna.

In the area of language design itself, the 1970's will
see the appearance of languages in which the possibility
of coding errors has been eliminated; for example,
the most freguent coding errors are:

1. Array subscript out of range
Use of a variable before assignment to it.

3. Mismatch of parameters on suboroutine call.

These errors canh now be dealt with only by inserting highly

inefficient checks at run time. The theory is that these
checks will be used only during program testing, and omitted
in production runs. This theory seems basically unsound.

In the first place, in many of the most important application
areas, program testing runs outnumber production runs by a
significant factor. Secondly, it is absurd to insert checks
on occasions when we are not going to rely on the results,
anyway; and to omit them only when the results are going to
be of importance to us. This is like wearing safety belts
when the car is standing still, but throwing them off when

travelling at speed.

The solution to this problem can only be in the design
of languages in which coding errors are detected mainly at
compile time, with only a minimum of run-time checking.
This direction of progress is illustrated to some extent by
ALGOL 60, and by contributions towards the development of
its successor: for example, the so-called ALGOL W, implemented
by Niklaus Wirth for the I.B.M. 360, and SIMULA, designed and
developed by Ole-Johann Dahl and Kristen Mygaard at the
Norwegian Computing Centre.

The other most promising line of development is that of
the "self-extending" language, which contains a simple basic
nucleus together with a means of defining language extensions
in terms of the nucleus. This technique will to some extent
reduce the demand for massive and complex languages, with a
host of built—in features and facilities, intended to fore-
stall every possible requirement. The ability to make your
own language®" is likely to prove as important and fruitful
as the facility of FORTRAN and ALGOL to "make your own
subroutine". Tt may give rise to comprehensive families of
gspecial-purpose problem-oriented language extensions, each
of them exactly aimed towards the needs of a given application
area, and all of them defined in terms of a common nucleus of




-5 4

procedural facilities. This will assist in solution of many
of the problems at present assoclated with the design and use

of special purpose languages, namely:

1. Restricted avallability on differing machines
2. Absence of standardisation

3. Poor documentation

4. Difficulty of adaptation and extension

- b. Difficulty of integration with other
existing languages

6. Continuous alteration of specification on
the part of the designer.

The solution of these problems is likely to lead to a major
advance in the development and use of high-level problem-
oriented languages in many application areas.

One of the earliest proponents of self-extending languages
was John McCarthy; and their practical implementation is
illustrated in Alan Perlis' FORMULA ALGOL. Recent language
proposals which incorporate this feature are J. Garwick's
GPIL, and A. van Wijngaarden's draft design for a successor
to ALGOL 60.

So these are directions which offer the brightest hope
for progress in the next few years:
1. The emergence of machine-~dependent high-level
languages.

2. The achievement of greater machine-independence
in other languages.

3. Rigorous language definition to assist in
program interchange

4. The elimination of coding errors.

5. The introduction of self-extending facllities
for the development of problem-oriented
languages.

These developments are likely to feature in many proposals

for new programming languages, but they are unlikely to £ind
widespread application unless they can be incorporated within
the framework of existing established languages. This leads
to my final tip, that we shall hear a great deal more of

SIMULA 67. This language has gone a long way towards machine--
independence, the abolition of coding error, and towards the
incorporation of self-extension features. At the same time

it is based on ALGOL 60, which forms a proper subset of SIMULA.
T+ is likely to have a great impact on the ALGOL-speaking world.

publitud v Cowpuir WMUV\, 1968
wdie Mo A Siaakiods o @,/7,.,3;,"




