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Abstract. We propose a method to synthesise optimal values of timing
parameters for probabilistic timed automata, in the sense that the prob-
ability of reaching some set of states is either maximised or minimised.
Our first algorithm, based on forward exploration of the symbolic states,
can only guarantee parameter values that correspond to upper (resp.
lower) bounds on maximum (resp. minimum) reachability probability.
To ensure precise reachability probabilities, we adapt the game-based
abstraction refinement method. In the parametric setting, our method
is able to determine all the possible maximum (or minimum) reachabil-
ity probabilities that arise for different values of timing parameters, and
yields optimal valuations represented as a set of symbolic constraints
between parameters.

1 Introduction

Stochastic aspect is very important for modelling numerous classes of systems,
such as communication and security protocols, due to component failures, unre-
liable channels or randomisation. The correctness of such systems can be guar-
anteed only with some probability. Many of them also operate under timing
constraints. In such cases, the probability of a property being true depends on
those timing aspects in the system: for example, increasing a certain delay might
increase the maximum or minimum probability of reaching an error state.

Automatic synthesis of timing constraints to ensure the satisfaction of a
given property has received a lot of attention lately. Its aim is to overcome
the disadvantage of model checking, which requires complete knowledge of the
system. This is often difficult to obtain, especially in the early design stages,
when the whole environment is not yet known. The use of parameters instead of
concrete values gives more freedom to the designers. A parametric timed model
can specify that a transition is enabled for a time units or that a system can
stay in a location for b time units, where a and b are parameters. The goal is
then to automatically synthesize the values of model’s parameters such that the
specification is guaranteed. Parameterisation, however, makes verification more
difficult, as most problems become undecidable.

In this paper, we are dealing with the synthesis of timing parameters for
probabilistic real-time systems modelled as probabilistic timed automata (PTA)
[18]. PTA have been introduced as an extension of timed automata (TA) [1] for
modelling and analysing systems which exhibit real-time, nondeterministic and
probabilistic behaviour. They are finite-state automata extended with clocks,
real-valued variables which increase at the same, constant rate. The edge relation
of a PTA differs from that of a TA, in the sense that non-deterministic choice over
the set of edges is replaced by a set of discrete probability distributions, each of
which is defined over a finite set of edges. A fundamental property of PTA is the
maximum/minimum probability of reaching a certain set of states in the model
(i.e. the reachability probabilities). These probabilities allow one to express a
broad range of properties, from quality of service to reliability, for example,
deadline properties: “the maximum probability of an airbag failing to deploy



within 0.02 seconds” or “the minimum probability that a packet is correctly
delivered within 1 s”. PTA have been successfully used to analyse protocols such
as FireWire, Bluetooth, IEEE 802.11, etc. These are embedded in a networked
environment and their properties are almost always expressed parametrically,
as concrete values make sense only when the network environment is known.
It is thus desirable to provide a tool to automatically derive the constraints on
parameters for probabilistic systems, so that their correctness is ensured with
optimal probability.

Contributions We propose an algorithm for parameter synthesis for PTA
based on the symbolic state-space exploration. As the forward approach gives
only upper (resp. lower) bounds on maximum (resp. minimum) reachability prob-
ability, we adapt the game-based abstraction refinement method. This method
has been introduced in [13] for Markov decision processes, and extended in [15]
for PTA, for the computation of exact max/min reachability probabilities. As
we consider parametric models, these probabilities are not unique and depend
on particular parameter valuations. Our algorithm allows us to choose the val-
uations for which these probabilities are either maximised or minimised, and to
synthesise them as a finite set of symbolic constraints on parameters. To the best
of our knowledge, this is the first paper dealing with optimal timing parameter
synthesis for probabilistic timed automata.

Related work An orthogonal line of work on parameter synthesis for un-
timed probabilistic models is that of [8], where the authors consider Markov
chains and transition probabilities as parameters. Regarding timed systems,
parametric timed automata have been introduced in [2] as a means to spec-
ify parametric timing constraints. The reachability-emptiness problem, which
asks whether there exists a parameter valuation such that the automaton has an
accepting run, is undecidable. Subsequent research has thus concentrated on find-
ing subclasses for which certain problems would be decidable by restricting the
use of parameters [10] or by restricting the parameter domain [11]. In [7], the au-
thors consider fully deterministic networks of timed automata with priorities and
parametric guards, and extended MTL with counting formulas. They develop an
algorithm based on constraint solving and Monte Carlo sampling to synthesise
timing delays. There is little work, however, on timing parameter synthesis for
probabilistic real-time systems. In [9], a technique is proposed to approximate
parametric rate values for continuous-time Markov chains for bounded reacha-
bility probabilities. In [3], the authors apply their Inverse method for parameter
synthesis for TA to PTA. The method starts from reference parameter values of
a TA, and derives the constraints on parameters such that the obtained models
are time-abstract equivalent. Time-abstract equivalence preserves untimed prop-
erties, and thus the parameter values derived on the non-probabilistic version of
the model preserve reachability probabilities. Termination is not guaranteed and
the derived constraints are not weakest in general. In [4], the authors consider
a fully deterministic parametric model, where the remaining time in a node is
unique and given as a parameter, and provide a method to compute the expected
time to reach some node as a function of model’s parameters.



2 Preliminaries

A discrete probability distribution over a set S is a function p : S — [0, 1], such
that > o pu(s) = 1 and the set {s | s € S A u(s) > 0} is finite. By Dist(S) we
denote the set of such distributions. y, is a point distribution if p,(s) = 1 for
some s € S. We now define Markov decision processes, a formalism for modelling
systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1 (Markov decision processes). An MDP is a tuple M = (S, so, X,
Steps ), where S is a set of states, so is a set of initial states, X is a set of
actions and Steps, : S x X — Dist(S) is a probabilistic transition function.

A transition in M from state s is first made by nondeterministically selecting
an action ¢ € X and then the successor state s’ is chosen randomly according to
the probability distribution Steps (s, d). A path is a sequence of such transitions
and represents a particular resolution of both nondeterminism and probability.
A state s is reachable in M if there exists a path from the initial state of M to
s. A strategy A is a function from finite paths to distributions which resolves
nondeterminism in an MDP. For a fixed strategy A, the behaviour of an MDP
is purely probabilistic, and we can define the probability p*(F) of reaching a
target set F' € S from s under A. By quantifying over all strategies in M, we
can define the minimum and maximum probability of reaching F":

PRA(F) = infyeginf 4 p2(F) and pi™(F) = sup,e,,sup4 pat(F)
These values can be computed efficiently together with the corresponding strate-
gies using, e.g., value iteration, which approximates the probability value.

Stochastic 2-player games [5] are turn-based games involving two players and
probability. They generalise MDPs by allowing two types of nondeterministic
choice, each controlled by a separate player.

Definition 2 (Stochastic games). A stochastic game is a tuple G = (S, (S1, S2),
50, X, Stepsg), where S is a set of states partitioned into sets Sy and Sa, s is a
set of initial states, X is a set of actions and Stepsg : Sy x X' x Sy — 2Dist(S) s
a probabilistic transition function.

S1 and S5 represent the sets of states controlled by player 1 and player 2, respec-
tively. The behaviour of a game is as follows: first player 1, in state s € S, selects
an available action € X', which takes the game into a state s’ € So. Player 2
then selects a probability distribution p from the set Stepsg (s, d, s"). Finally, the
successor state s” is chosen according to u. A resolution of nondeterminism in G
is a pair of strategies o1, 09 for player 1 and player 2, respectively, under which
we can define the probability p?t:72(F) of reaching a subset F' € S from state s.

Clocks and parameters. Let R, Rs¢ and Z be the sets of reals, non-negative
reals and integers, respectively. Let X be a finite set. A linear expression on X
is an expression of the form A :=k | k-z | A+ A, where k € Z and z € X.

Now let X = {x1,...,x,} be a finite set of clock variables. A clock valuation
u: X — Ryg is a function assigning a non-negative real number to each x € X.



Let 0 be a valuation that assigns 0 to all clocks in X. For any R € X and any
valuation u on X, we write u[R] for the valuation on X such that u[R](z) =0
if z € R and u[R](z) = u(z) otherwise. For ¢t > 0, u + t denotes the valuation
which assigns (u+t)(z) = u(x) +t to all z € X. Let P = {p1, ..., pm} be a finite
set of parameters. A (linear parametric) constraint on X u P is an expression
of the form v :=z; ~c|x;—x; ~c|yAywhere 1l <i#j<n,z,z X,
~€ {<,<} and c is a linear expression on P. By C(X, P) we denote the set of
such parametric constraints and by C’'(X, P) we denote the set of (non-diagonal)
constraints of the form: v’ := z; ~ ¢ | ¥/ A 4. For any valuation v on P and
any linear constraint v on X u P, v(y) is the linear constraint on X obtained
by replacing each parameter p € P by the (concrete) value v(p). Given some
arbitrary order on X U P, a valuation can be viewed as a real-valued vector of size
|X U P|. The set of valuations satisfying some linear constraints is then a convex
polyhedron of RIX“Pl. A zone is a polyhedron defined only by conjunctions of
the constraints of the form z —y ~ c or x ~ ¢ with z,y € X, ¢ € Z and
~€ {<,<}. If v is a valuation on both clocks and parameters X u P (as v is
used throughout the paper, unless specified otherwise) then by vjp (resp. v x)
we denote the projection of v onto P (resp. X). We now give a formal definition
of Parametric Probabilistic Timed Automata (PPTA), which are PTA extended
with timing parameters.

Definition 3 (PPTA). A PPTA is a tuple P = (L, ly, X, P, X, prob, Inv) where:
L is a finite set of locations; ly € L is the initial location; X is a finite set
of clocks; P is a finite set of parameters; X is a finite set of actions; prob :
L x ¥ x C(X,P) — Dist(2X x L) is a probabilistic transition function; and
Inv: L — C'(X,P) is a function that assigns an invariant to each location.

For any rational valuation v on P, the structure v(P) obtained from P by
replacing every constraint v by v(y) is a PTA. The behaviour of a PPTA P is
described by the behaviour of all PTA v(P) obtained by considering all possible
parameter valuations. A (concrete) state of v(P) is a pair (I,u) € L x RS, such
that the clock valuation u satisfies the invariant (notation u = v(lnv(l))). A
transition in the semantics of v(P) is a timed-action pair (¢,6). In each state
certain amount of time ¢ € Rx¢ can elapse, as long as u + t = v(Inv(l)). Time
elapse is followed by the choice of an action § € X, for which the set of clocks
R to reset and successor locations I’ are selected randomly according to the
probability distribution prob(l,d,). The action § can only be taken once its
constraint v(y) (called guard) is satisfied by the current clock valuation. Each
element (R,1') € 2% x L, such that prob(l,§,7)(R,l’) > 0, is called an edge and
the set of all such edges, denoted edges(l, d,7), is assumed to be an ordered list
{e1,...,eny. We now formally define the semantics of a PPTA under a parameter
valuation v.

Definition 4 (Semantics of a PPTA). Let P = (L,ly, X, P, X, prob, Inv) be
a PPTA and v be a R-valuation on P (v: P — R) . The semantics of v(P) is
given by the infinite-state MDP M, py = (Q, qo, Rx0 x X, Stepst(p)) where:

-Q={(l,bu)e Lx X —» Rxo | ul v(lnv(])}, g0 = (lo,0)



- StepsMU(p)((l,u),(t,d)) = p iff I(R,1") € edges(l,d,7) such that u +t =
v(y) Au+t E=Inv(l) for all0 <t < ¢, and for any (I',u') € Q:
p(l' ') = X[ prob(l,6,7)(R,I') | R € 2X nu' = (u+t)[R][}

Note that the definition of p involves summation over the cases in which multiple
clock resets result in the same target state (I, u’), expressed as a multiset, since
some of the probabilities might be the same.

We study the optimal timing parameter synthesis problem for PPTA, i.e.,
automatically finding values of parameters such that the probability (either
maximum or minimum) of reaching a certain set of locations is optimised. For
example, in the case of property “the maximum probability of an airbag failing
to deploy”, we would want to choose the timing parameters that minimise this
probability value. On the other hand, we would want to maximise “the maxi-
mum probability that the protocol successfully terminates”. We therefore call
such maximisation/minimisation - an optimisation, and refer as so hereinafter.

3 Synthesis with Forward Reachability

A naive approach to parameter synthesis for PTA is to restrict parameter values
to bounded intervals of integers (or rationals that can be scaled to integers) and
perform verification for each such (non-parametric) model using a probabilistic
model checker, e.g. PRISM [16]. However, this approach is shown to be inefficient
for (non-probabilistic) TA compared to symbolic techniques, especially when the
sets of possible parameter values are large [11]. This is why we aim to formulate
a symbolic algorithm for deriving constraints on parameters that ensure the
optimisation of some reachability probability in the model. For the symbolic
exploration of the state-space, we use the notion of parametric symbolic state
and forward symbolic operations on valuation sets given below, defined in [11].

Definition 5 (Parametric symbolic state). A (parametric) symbolic state
of a PPTA P, with set of clocks X and set of parameters P, is a pair S = (I, ()
where 1 is a location of P and ¢ is a set of valuations v on X U P.

— future (time successors): (7 = {v' |v e ( AV (x) = v(z) +d,d = 0ifx €
X;v'(z) = v(x) if x € P}

— reset of clocks in R € X: ([R] = {v[R] |ve(}

— successor by edge e = (R, 1) in the distribution prob(l, d,v): Succ((l,¢),e) =
(', (A N[R]” A inv(l'))

— initial symbolic state: Init(P) = (ly, {v e RXVT | Vx € {0x} Av(Inv(lp))}).

The sets of valuations of all reachable symbolic states of a PPTA are convex
polyhedra [10], since the set of valuations of the initial symbolic state is a convex
polyhedron and all the operations preserve convexity.



Forward reachability exploration The forward exploration, which builds an
MDP-based abstraction of a given PTA [18], is an extension of the well-known
zone-based forward reachability algorithm, ubiquitous for model-checking TA,
and implemented in tools such as UPPAAL [19] and KrRONOS [6]. This algorithm
performs the exploration of the state-space by successively computing symbolic
states using Succ, starting from the initial state. For probabilistic models, on-
the-fly techniques are not used, as the goal is to compute the probability of
reaching a state, instead of just checking the existence of a path.

In Fig. 1 we present our extension of the forward reachability algorithm
from [18] to parametric probabilistic timed automata. It takes a PPTA P and
some subset of its locations F' as input, and returns the reachability graph
(Sym, Trans). Sym is the set of all reachable parametric symbolic states S of the
model and Trans is the set of symbolic transitions. Waiting is the set of those
symbolic states which have not yet been explored. As long as there are sym-
bolic states unexplored (Waiting # @), successor states are computed for each
possible edge using Succ operator. Each symbolic transition T € Trans is of the
form T = ((1,¢),9,{(l1,¢1), -, (In, Cn))), where n = |edges(l,d,~)|. A symbolic
transition 7" induces probability distribution 7 over symbolic states Sym. For
any (llv <I) € Sym: NT(lla C/) = Z{| prOb(lv 9, 7)62' ‘ € € edges(l,& ’7) NG o= CI |}

Using these distributions, the algorithm BUILDMDP (Sym, Trans) constructs
an MDP similarly to that of [18] for PTA, which can then be analysed to compute
the reachability probabilities. For PTA, and therefore for PPTA, this approach
only gives upper (resp. lower) bounds on maximum (resp. minimum) reachability
probability in the model. This is because the reachability graph is too coarse to
preserve precise time the actions can be taken, and thus constructs an over-
approximation of the possible strategies.

Let us highlight the differences between our algorithm and its non-parametric
counterpart from [18]. In the non-parametric case, all the symbolic states (I, ()
containing some location [ € F are collected into a set Reached. Then, in the
constructed MDP, the max. (or min.) probability of ending up in Reached is
calculated. In our setting, we are interested in finding the optimal parameter
valuations (that maximise or minimise some reachability probability). We thus
need to keep separate those symbolic states containing different parameter val-
uations and calculate the max/min reachability probability for each one. We
divide the set Reached into subsets Reached;, each of which contains the sym-
bolic states (I;, ¢;) with equivalent parameter values (obtained by projection onto
parameters (;p). Another difference arises when building symbolic transitions
Trans. This follows from the property of TA (and therefore PTA) proven in
[10], which states that weakening (resp. strengthening) the guards in any TA T,
e.g decreasing lower and increasing upper (resp. increasing lower and decreasing
upper) bounds on clocks, yields an automaton whose reachable states include
(resp. are subset of) those of 7. We therefore add, for any two symbolic states
(lis Gi)s (15, ¢5) € Sym which satisfy (;x < lex AGip S lep Aly =1, a tran-
sition (point distribution) from (I, {;) to (I;,(;), in order to obtain the correct



probabilities in the MDP. By {Reached;}|p in Fig. 1, we denote the parameter
values contained in Reached,;.

PARREACH(P, F)

Sym = @; Trans := &; Reached := &; Waiting := {Init(P)}; n := 0; Reachedy := @
while Waiting # @
choose and remove ([, () from Waiting
Sym = Sym v {(l,¢)}
for § € ¥ such that edges(l,d,v) # &
for each e; € edges(l,d,v) = {e1,...,en)
(lg’ Cll) = Succ((l, C)v ei)
if (I5,¢)) ¢ Sym A () # @ A l; ¢ F then Waiting := Waiting U {(I}, )}
else if (I;,()) ¢ Sym A ¢, # @ then Reached := Reached U {(I;,(})}
Trans := Trans v {((1,¢),0,{(l1,¢1), .., (In, Cn)))}

/] Additional transitions from a state to its subsets
for each (I,¢) € Sym
if 3(',¢") € Sym such that | =1I' A {|x S {[x A {|p S ([p then
Trans := Trans v {(I', "), 2,{(1,¢))}
//Divide Reached into subsets Reached; according to different parameter valuations
for each (I, () € Reached
if ({|p = {Reached;} p for some Reached; where i € [0..n]) then
Reached; := Reached; u {(1,¢)}
else Reached, := Reached,, v {(I,{)}; n + +;
return (Sym, Trans)
// BUILDPARMDP (Sym, Trans)
symo = {(I,¢) € Sym | 1 = lo}
for (I,¢) € Sym and T € Trans(l, ()
Steps (((1,¢),T) := pr
return M = (Sym, sym,, Trans, Steps )

Fig. 1. Parametric forward reachability and construction of the corresponding MDP

Example 1. Let us consider a PPTA shown in Fig. 2, which represents a commu-
nication protocol operating over a lossy channel. We have simplified the model
from [18] and added a parameter b to the guard of the first transition. The pro-
tocol starts with the delivery of new data which resets both clocks « and y. The
data are retained at least b time units before being send onto the medium, which
resets clock x to zero. The medium then sends the data to the receiver, and the
attempt is successful with probability 0.65. The medium re-sends the data at the
time varying between 3 and 7 time units. If exactly 7 time units are elapsed since
the delivery of the data, the system aborts. We are interested in the values of the
parameter b which maximise the probability of the medium successfully send-
ing the data (reaching location l3). The MDP constructed from the reachability
graph is shown in Fig. 3. There are three symbolic states holding Iy with different
parameter valuations, Reached, = {(l3,2 = y Ab < 1)}, Reacheds = {(la,x = y A
b < 3)} and Reacheds = {(la,x = y A b < 5)}. Using PRISM, we calculated maxi-
mal probabilities of reaching those states in the MDP: p™®* ({ Reached;) = 0.65,



™ (O Reacheds) = 0.8775, and p™** (O Reacheds) = 0.957125, where ¢¢ means
that ¢ must hold eventually. If we want to mazimise the probability of reaching
lo, it is clear that we should choose b < 1. Note that, if we were to consider
reachability via action time_out or abort, instead of send, we would be inter-
ested in actually minimising the maximum probability of reaching ls. In that
case we would choose 3 < b < 5.

< A <
release x > b m

Fig. 2. An example of a Parametric Probabilistic Timed Automata

i,z <3Ab+a+4 <
y<T7TAb<3

I,z <3Ab+2+6 <
y<7Ab<1

Fig. 3. MDP for PPTA of Fig. 2

The forward reachability algorithm provides only upper (resp. lower) bound
on the max. (resp. min.) reachability probability. In Example 1, this method
actually gives the correct values, but consider now the automaton of Fig. 4,



Fig. 4. Another example of a PPTA Fig. 5. MDP for PPTA of Fig. 4

inspired by [18]. The probability of reaching I3 obtained using forward approach
(the resulting MDP is shown in Fig. 5) is 1, regardless of the value of a. By
careful inspection, we observe that the max. probability is 1 only if @ = 0 (when
the transition from [y is taken at z = y = 0), and otherwise it is at most 0.5.

Theorem 1. For a PPTA P and a subset of its locations F, if (Sym, Trans) =
PARREACH(P, F) and M = BUILDMDP (Sym, Trans), then:

- P (Reached) < pp™(F) and p3i®(Reached) > pip*®(F);

- if M gives the precise reachability probabilities in P and if some (I, Cx) €
Reached has the optimum (maz. or min.) reachability probability, among all
(1;,¢;) € Reached, then {Cklp\(Uvj#ijeF Cj|p)} is the solution to the optimal
parameter synthesis problem.

The reachability-emptiness problem for parametric timed automata is unde-
cidable [2], and the algorithm for forward reachability exploration for this model
might not terminate [11,10]. Since our algorithm for PPTA can be viewed as its
extension, termination cannot be guaranteed either.

To resolve the limitation of the forward approach, namely, that it can only
compute bounds on the reachability probabilities, in the next section we adapt
the game-based abstraction refinement method from [15] to synthesise the op-
timal timing parameter values for PPTA. We choose this approach as it can
compute precise min. and max. probabilities and is shown to perform better
then the alternative model checking technique for PTA, digital clocks [17].

4 Synthesis with Game-based Abstraction Refinement

In [14], stochastic two-player games are used as abstractions for MDPs. In such
a game, the two players represent nondeterminism introduced by the abstraction
(player 1) and nondeterminism from the original model (player 2). By quantifying
over all possible strategies for players 1 and 2, we can obtain both the lower
bound (lb) and upper bound (ub) on either maximum or minimum reachability
probability in the original MDP. If a game G is constructed from an MDP M
using the approach from [14], where F is a subset of states of M, we have:

pg ™" (F) < pRg™(F) < pg"™"(F) and pg "™ (F) < pie= (F) < pg" """ (F).

g
In case of maximum probability we have: pé”max (F) sy PscsoiNfo, SUp,, I 72 (F)



and pgb’m‘” (F) sy PsesySUPy, SUP,,pZ" 7% (F'). Using similar techniques to value

iteration for MDPs [5], these probabilities can be efficiently approximated, to-
gether with the corresponding strategy pairs which achieve them.

In [15], the concept of gamed-based abstractions is used for PTA in order
to compute the maximum and minimum reachability probabilities. The method
starts from the MDP obtained via forward reachability algorithm, and subse-
quently builds and refines the stochastic game abstraction. In this section, we
generalise this method by taking into account timing parameters.

Game-based abstraction for PPTA The game-based abstraction is con-
structed by analysing transitions outgoing from each location in a PPTA. The
transitions are divided into subsets according to the common part of the symbolic
state in which they are enabled. This analysis is based on the wvalidity opera-
tor [15]. In the non-parametric case, this operator takes the symbolic transition
T = ((1,0),0,{(I1,(1)s -y (In, Cn))) and returns false if the part of ¢ from which
it is possible to let time pass and then perform action 9, such that taking the
ith edge (R;, ;) gives some state (I;,v) € (I;,(;), is empty. Such analysis requires
several backward operators, defined for the parametric domain in [12]:

— past (time predecessors): (<" = {v' |ve ( AV (z) = 0,V (x) +d = v(x),d >
0if z € X;v'(z) = v(x) if z € P}

— inverse reset of clocks in set R < X: ([R]™! = {v/ | Jv € (s.t. v/ (x) =
0if z € R A v'(z) = v(x) otherwise}

We extend the validity operator to parametric domain and replace Boolean op-
erations with the corresponding set-theoretic operations, in order to obtain the
valuations on X U P from which it is possible to perform such a transition:
valid(T) = ¢ n ((v 0 (AP (G[R]71)))¢"). The transition T is therefore valid
if the set of valuations (polyhedron) walid(T) is non-empty. The projection of
these valuations onto parameters gives the corresponding values of parameters.
In order to construct a stochastic game, the notion of validity is extended to sets
of symbolic transitions with the same source. Again, we replace Boolean with
set-theoretic operators: valid(T) = (nrervalid(T)) N (N re trans,c)r—valid(T)).
valid(T) defines the set of valuations v = ¢ on X u P, such that from (I,v) it is
possible to perform any symbolic transition 7' € T, but it is not possible to per-
form any other transition of Trans(l,¢). In a symbolic state (I, () of a stochastic
game abstraction of a PPTA, player 1 first picks a subset T of symbolic transi-
tions (in other words, part of the symbolic state in which these transitions are
valid), and player 2 then picks a transition 7' € T. Fig. 6 shows the algorithm
for the construction of a stochastic game from a given reachability graph, which
yields (by quantifying over all possible strategies for player 1 and player 2) upper
and lower bounds on the max/min reachability probabilities in a PPTA.

Theorem 2. If (Sym, Trans) = PARREACH(P, F), G = BUILDGAME(Sym, Trans)
and % € {min, maz} then: plgb’*(Reached) <pH(F) < pgb’*(Reached).



BUILDGAME(Sym, Trans)

symy = {(l,{} € S [ 1 =lo}
for (I,{) e S
for T € Trans(l,¢) s.t. T # @ and valid(T) # &
Steps((L,0), T) := {ir | T€ T}
return G = (Sym, symg, 27", Stepsy)

Fig. 6. Algorithm for stochastic game abstraction

REFINE(Sym, Trans, (1,¢), Tw, Tu)

Cw = valid(Tp); Cup := valid(Tyu)
Sym™ = {(1,Cw), (I, Guv), (1, { A —=(Cw v Cus))}\ {2}
Sym™ = (Sym\{(,¢)}) w S""; Trans™ := &
for each T' = (S0, 0, (51, ..., Sn)y) € Trans
if (1,¢) ¢ {So, 51, ..., Sn} then
Trans™ := Trans™ U {T}
else T := {(Sg,6,(S1, ..., S0)) | S; € Sym™" if S; = (I,{) A S; = S; otherwise}
for 7" € T™" such that valid(T"") # @
Trans™ := Trans™ o {T™"}
return (Sym™, Trans™)

Fig. 7. Algorithm for parametric abstraction refinement

T
@ﬁﬁo
D

Fig. 8. Game-based abstraction Fig. 9. Refinement of a symbolic state

Ezample 2. A game constructed from the forward reachability graph of a PPTA
in Fig. 2 is shown in Fig. 8. We represent player 1 states by ellipses containing
symbolic states (I, (), and player 2 states by a black dot. In two of its states
(containing I; and l3), player 1 can choose between the part of the state where
both transitions are valid and the part where only one transition is valid (a
self-loop). The analysis of this game, however, gives values 0 and 1 for lower
and upper bound, respectively, on the maximum probability of reaching 3. We
address this issue below by applying a method to refine the abstraction.

Parametric abstraction refinement Stochastic game abstractions might be
too imprecise for reachability probabilities, as shown in Example 2. The abstrac-
tion refinement method proceeds by iteratively computing refined abstractions
until suitable precision is obtained. The game-based abstraction refinement for



MDPs from [13] uses the difference between lower and upper bounds on max,/min
reachability probability computed thus far as the quantitative measure of pre-
cision. This method has been subsequently used in [15] for the abstraction re-
finement for PTA. We now explain our extension for the parametric case, which
leads to parameter values corresponding to precise probabilities in the model.
After the construction and analysis of a stochastic game, the refinement algo-
rithm, presented in Fig. 7, takes the reachability graph (Sym, Trans), splits one
symbolic state per iteration and modifies symbolic transitions accordingly. The
split of a symbolic state (I, () is done with respect to player 1 strategy choices,
T.» and Ty, in (I,¢), which achieve lower and upper bounds (such choices
must exist in a state where these bounds differ, [14]). The symbolic state (I, ()
is therefore split into (I, valid(Ty)), (1, valid(Typ)), and (I, A —(valid(Ty) v
valid(Typ))). By construction, both wvalid(Ty) and valid(T,;) are non-empty
and valid(Ty) # valid(Typ), and thus the split produces strict refinement. The
MDP of Fig. 5, after a refinement of one symbolic state, is shown in Fig. 9.
The complete game-based abstraction refinement scheme, shown in Fig. 10,
provides a means to compute the precise values for max/min reachability prob-
ability, each corresponding to a particular parameter valuation. We can then
choose those valuations that optimise (either maximise or minimise) these prob-
abilities. Algorithm SYNTH uses function ANALYZEGAME of [5] to compute
bounds on max/min probability of reaching some set of locations in a stochas-
tic game and the corresponding strategies. The choice T; of player 1, in some
(1,¢), is a set of symbolic transitions 7" and also represents the part of ¢ in
which these transitions are valid. To find the optimal parameter valuations,
we first need to take the projection onto the parameters for each wvalid(T;)
in the optimal strategy of player 1 (the strategy for reaching some Reachedy,
which gives the optimal probability), and take their intersection. Then, for some
(Ik, (k) € Reachedy, (all of them have the equivalent (j|p), we obtain the solution

as {ﬂz ”alid(Ti)\P N (CMP\(UV]’;HC,IJ-EF Cj\P))}-

Theorem 3. For a PPTA P, a subset of its location F and % € {min, mazx}, let
(Sym, Trans) = PARREACH(P, F). If (Sym™, Trans") is the result returned
by applying REFINE to (Sym, Trans), G by BUILDGAME(Sym, Trans) and G
by BUILDGAME(Sym™ | Trans™) then:

- (Symref, Tmnsmf) is a reachability graph for (P, F);

- pg”*(Reached) < pg’;:fk(Reached) and pgb’*(Reached) > pgi’.e’f*(Reached);

-Ifp* = pgjk (I, C) = pgi’f*(lk, Ck), for some (Ix, () € Reached, is the opti-
mum % reachability probability, among all (1;,¢;) € Reached, then the solution to
the optimal parameter synthesis can be extracted from the strategy o1 of Player

1 (which achieves p*) and (.

The algorithm is designed to terminate when the difference between the up-
per and lower bound falls below some threshold e for reasons of computational
efficiency. We show that this is, however, not necessary. If the initial forward
reachability exploration terminates (PARREACH), then our algorithm, similarly



SYNTH(P, F, %, ¢, %)

(Sym, Trans) = PARREACH(P, F); G = BUILDGAME(Sym, Trans); p* := 0; Opx 1=
for each Reached; € Reached
(po*,pei*, ol ot*) := ANALYSEGAME(G, Reached;, %)

while p“b & pg’ F e

choose (I, () € Sym
(Sym™ | Trans™) = REFINE(Sym, Trans, (1,¢), ol (1,¢), ot (1, ()
g = BUILDGAME(Symref, Trans™)
(P, pe*, o, ot?) := ANALYSEGAME(G, Reached;, %)
if p* ~ p”’ * then // put < (resp. >) instead of ~ when x is mazimisation
p* = pg’*; Opr =01 (resp. minimisation)
return [p*,0,x]

Fig. 10. Parameter synthesis using game-based abstraction refinement loop

to its non-parametric counterpart from [15], is guaranteed to terminate in a finite
number of steps with a precise answer.

Theorem 4 (Termination). Let % € {min, maz}. If forward reachability al-
gorithm (PARREACH) terminates, then the algorithm for parameter synthesis
SYNTH terminates after a finite number of steps and returns p* = p'b-¥* = pubs*,

Example 3. We return to the PPTA in Fig. 4. The final stochastic game, after
two refinement iterations, is shown in Fig. 11. The validity of each new symbolic
transition T;, obtained in the refinement process, gives the following parameter
valuations:

- T =(lo,z=y),9,{(l1,z =0Ary=a),(lz,za=y=0))) #Jifa=0
—Tr=((lo,z=y),9,{(l1,z =0Ary=a),(lz,za=y>0))) #Jifa#0
- T3 = ((lo,x—y),®,<(ll,x20Ay¢a),(l2,x=y=0)>) #Jita+#0
- Ty = ((lo,z=v),9,{(l1,z =20 Any #a),(ls,x =y >0))) # & for a € Rxo.

The set of transitions Ty = {T5, T3, T4} is valid if a # 0, in which case the max.
probability of reaching I3 is 0.5, and Ty = {T}, T4}, is valid if a = 0, in which case
the max. probability of reaching I3 is 1. If we wish to maximise this probability,
the algorithm obtains the constraint a = 0.

5 Conclusion

We presented a technique for PPTA which derives symbolic constraints on pa-
rameters of the model, such that the max/min probability of reaching some set
of locations is optimised. We focused on probabilistic reachability, but can easily
consider more expressive target sets that refer to locations and clocks by syn-
tactically modifying the model as in [18]. Computing expected time properties
using game abstractions is still open for PTA. Termination of our algorithm
depends on whether the forward reachability exploration terminates. Unlike for



Fig. 11. Final stochastic game for PPTA of Fig. 4 (probability of 0.5 assumed on each
edge of probabilistic transitions)

TA/PTA, where the extrapolation operator on zones can be used, in the para-
metric case we need to impose certain restrictions to ensure termination. One
possibility is to restrict the parameter domain to bounded integers as in [11]. We
are currently implementing the algorithm in PRISM and plan to explore expected
time properties for PTA/PPTA.
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A  Proofs

Theorem 1. For a PPTA P and a subset of its locations F, if (Sym, Trans) =
PARREACH(P, F) and M = BUILDMDP (Sym, Trans), then:

- p™(Reached) < pi™(F) and pi*(Reached) = phe®(F).

- if M gives the precise reachability probabilities in P and if some (lx, (x) €
Reached has the optimum (maz. or min.) reachability probability, among all
(1;,¢;) € Reached, then {Ck|p\(Uv#k7ljeF Cjip)} is the solution to the optimal
parameter synthesis problem.

Proof. Let us fix PPTA P = (L,ly, X, P, X, prob, Inv). (Sym, Trans) is the reach-
ability graph of P and M = (Sym, symg, Trans, Steps ) the MDP obtained with
BUILDMDP (Sym, Trans). Reached is the set of all symbolic states (I,() from
Sym such that [ € F.

For any parameter valuation v, we obtain a PTA v(P). The semantics of
v(P) is given by an (infinite state) MDP M, (p) = (@, qo, R>0 x %, StepsMU(m).

For any such v(P), the first part of the theorem is a direct consequence of
the following Lemma 1, proven in [15]. By v(Sym) we denote the set of all reach-
able (non-parametric) symbolic states obtained using the forward reachability
algorithm applied to v(P), and by v(M) the corresponding MDP. In a similar
way, we define v(S) € v(Sym) as (I,v({)), a (non-parametric) symbolic state,
obtained in a forward reachability algorithm applied to v(P), and v(Reached) is
the set of all symbolic states (I,v({)) such that [ € F. For the sake of simplicity,
we redefine an edge e = (R, 1) in the distribution prob(l, §,~v) as e = (1, 4,7, R, ')
and v(e) = (1,4,v(v), R,1').

Lemma 1. For any strategy A of M, py and q € Q, there exists a strategy B.a
of v(M) where pH(QF) = pf(f‘g)(v(Reached)), for all v(S) € v(Sym) such that
qev(S), where QF is a set of states (I,u) € Q such thatl e F.

For the second part of the theorem, we first define a run as a finite sequence
p = q101G20s...0n_1Gy such that for all i, ¢; € Q,a; € ¥ URsg and ¢; = g1 A
sequence of symbolic successor by edges ey, ..., e,: Succ(S, ey, ...e,) is defined as
Succ(...Succ(Suce((1,¢), e1), €2)..., €). Moreover, we need the following lemma
proven in [11].

Lemma 2. For any symbolic state (1,(), for all edges e and valuations v,

v(Succ((Z;€), e)) = Suce((l,v(C)), v(e)).

We can safely use Lemma 2 as the Succ operator is not impacted by proba-
bilities. The corollary of Lemma 2 is that for any sequence of edges e, ..., ey:
v(Succ(S, e1, ..., en)) = Succ(v(S),v(e1), ..., v(en)).

Let us assume that the set Reached is divided into subsets Reached; for
i € [1..n]. According to our forward reachability algorithm, V(I, (), (I',¢’) €
Reached;, for any i € [1..n], {|p = CIIP'

Let us assume that some Reached, = {(Ix,Cx)},lx € F has the optimum
reachability probability among all Reached; € Reached in the MDP M.



To prove the second part of the theorem, let us first prove that (yp is a
solution to the reachability synthesis problem, i.e., for any parameter valuation
v € Cp|p, lr is reachable in v(P).

Let us consider the possibly infinite directed labeled tree, whose root is la-
beled by Init(P) and for every node n, if n is labeled by a symbolic state S,
then, for all edges e of the PPTA, there exists a child n’ labeled by Succ(S, e) iff
Succ(S, e) is not empty. For easier reference, we also label the arc from n to n’
by e.

Now, consider that the forward reachability algorithm has terminated. Then
only a finite prefix (a subset closed under the parent relation) T of the infinite
tree has been visited and each leaf must correspond to one of the leaf conditions
of the algorithm or to the absence of children. This means that all leaves n of
the tree are labeled by symbolic states S such that:

— either S = (I,¢) and I = Ij;
— or S € Sym;
— or S has no successor.

We first state the following lemma from [11].

Lemma 3. Let n be a node of T, labeled by some symbolic state S, and such
that the subtree rooted at n has depth N. We have that a parameter valuation
v € g p 18 the solution to the reachability synthesis problem, starting the forward
reachability algorithm from S, iff there exists a state q in v(S) and a run p in
v(P), with fewer then N discrete steps, that starts in q and reaches ly,.

Proof. We prove this by induction on N. Note that the tree T' is always non-
empty (it contains at least the root which is labeled by Init(P)).

— Case of a leaf n labeled by S: the subtree rooted at n has depth 1.

e If v is the solution to the reachability synthesis problem then the only
leaf condition of the algorithm that can be verified is S = (I, k), so, for
all states ¢ = (I, ) in v(5), there is a run with no discrete steps that
starts in ¢ and reaches [j.

e If there exists a state ¢ € v(S) and a run with no discrete steps that
starts in g and reaches [i, then if [ is the location of ¢, we have | = [},
and therefore v is the solution to the reachability synthesis problem.

— Case of a non-leaf node n labeled by S: suppose the subtree rooted at n has
depth k& > 1 and that, for all nodes n’ with subtree rooted at n’ of depth
k' < k, the property holds.

e If v is the solution to the reachability synthesis problem then, since n is
not a leaf, the following condition must be true:
there exists a successor n’ of n, labeled by S” = Succ(.5, e) for some edge e
such that v is the solution to the reachability synthesis problem, starting
the forward reachability algorithm from S’. Since it is a successor of n,
n’ has depth less than k. So we can use the induction hypothesis: there
exists a run with less than k — 1 discrete steps, starting in some state
¢ € v(S’) and reaching lj, in v(P). By Lemma 2, ¢’ € Succ(v(5),v(e)) so
¢ has a predecessor ¢ by e in v(S) and we get the expected result.



e If there exists a run p starting in some state g € v(S) and reaching Iy,
with fewer than k discrete steps, then this run has at least 1 discrete

step, as otherwise n would be a leaf of T'. So we can write it ¢ LN qq 5 p'
where a is the action of some edge e. Then p’ is a run starting from some
state ¢’ € Succ(v(S), v(e)), reaching I, and with less than k — 1 discrete
steps. Moreover ¢’ € v(S’) with S’ = Succ(S, e) (by Lemma 2) So we can
apply the induction hypothesis and v is the solution to the reachability
synthesis problem, starting the forward reachability algorithm from S’.

With Lemma 3, we immediately have that if (;p is a solution to the reacha-
bility synthesis problem, then there exists a run in v(P) that starts in the initial
state and reaches ;.

In the other direction, suppose there exists such a run p. Then p is finite and
its last state has a location belonging to [;. Let ey, ..., e, be the edges taken in p
and consider the branch in the tree T obtained by following this edge sequence
on the labels of the arcs in the tree as long as possible. If the whole edge sequence
is feasible in T, then the tree T has depth greater or equal to the size of the
sequence and we can apply Lemma 3 to obtain that v is the solution to the
reachability synthesis problem.

Otherwise, let S = (I, () be the symbolic state labelling the last node of the
branch, e be the first edge in eq, ..., e, that is not present in the branch and ¢
be the state of p just before taking eg.

Using Lemma 2, v(Succ(S, ex)) is not empty so Succ(S, ex) is not empty.

Since the node labeled by S has no children in 7', it follows that either [ = I,
or there exists another node on the branch that is labeled by S. In the former
case, we can apply Lemma 3 to the prefix of p ending in ¢ and we obtain that v
is the solution to reachability synthesis problem.

In the latter case, by the corollary of Lemma 2, there exists a run along edges
€1, ..., €m, With m < k, that reaches ¢ in v(P).

From that run we can construct another run p’ by merging with the suffix
of p that starts from ¢. p’ has strictly fewer discrete actions than p and also
reaches [; and we can repeat the same reasoning as we have just done. We can
do this only a finite number of times (because the length of the considered run
is strictly decreasing) so at some point we have to be in some of the other cases
and we obtain the expected result.

We have proven that (jp is a solution for the reachability synthesis prob-
lem. The same stands for any (;p, such that (l;,(;) € Reached. If we were
interested in the reachability synthesis problem, we would take | J ; jip, for all
(1;,¢;) € Reached, as a solution. As we are interested in the optimum parameter
synthesis problem we must exclude the parameter valuations contained in the
other symbolic states of Reached. We therefore take {C|p\(Uy;zri,er Gilp)} a8
a solution.

Theorem 2. If (Sym, Trans) = PARREACH(P, F'), G = BUILDGAME(Sym, Trans)
and sk € {min, maz} then: pg”*(Reached) <ph(F) < pgb’*(Reached),



Proof. For any parameter valuation v, we obtain PTA v(P). As in the proof of
Theorem 1 its semantics is given by an MDP M,,(p). We now recall the following
lemmas, whose proofs can be found in [15]. v(S), v(Reached) and v(Sym) are
defined as in the proof of Theorem 1, and v(G) is the stochastic game obtained
from v(P).

Lemma 4. For any strategy A of M, py and q € Q, there exists a strategy pair
(01,02) of v(G) where qu(QF) = p‘;(ls‘;z (v(Reached)) for all v(S) € v(Sym) such
that q € v(S).

Lemma 5. For any symbolic state v(S) € v(Sym) and player 2 strategy oo
of v(G), there exists a strategy A of M,p)y where: infglpazé‘;Q( v(Reached)) <

PA(QF) and sup,, p7L5 (v( Reached)) > p(QF)
We now briefly present the proof of Theorem 2. From Lemma 4 we have:

_ |nfal,azp01,az( (Reached)) < inf 4 p{;‘(QF)
- supm,@pjgé‘;z( v(Reached)) = sup 4 p(QF)

for all v(S) € v(Sym) such that ¢ € v(S5), and therefore:

Pty (F) = pi)b(’gm(v(Reached)) and pliE; (F) < pZE’gT‘”( (Reached)).

Using Lemma 5, we have that for any ¢ € Q and v(S) € v(Sym) such that g €
v(8):inf 4 pH(QF) < inf,,zsupmpZEL’q‘;2 (v(Reached)) = sup,,, inf,, pzzé‘gz (v(Reached)).
The last equality follows from properties of stochastic games [5]. In a similar way,

we have: sup 4 p;H(Q") = inf,, sup,, p‘;(léf;? (v(Reached)).

It follows: PT(%L)(F) < pZE)ng (v(Reached)) and s (F) = pi)b(ga:r( v(Reached)).
As the behaviour of P is described by the behaviour of all v(P), obtained by

considering all possible parameter valuations v, we can complete the proof with:

— pPp(F) < pgb ™ Reached) and PR (F) = pgb *(Reached)
— P (F) = pg L™ Reached) and pipe® (F) < PG ubmar Reqched)

Theorem 3. For a PPTA P, a subset of its location F and % € {min, max}, let
(Sym, Trans) = PARREACH(P, F). If (Sym™ | Trans™) is the result returned
by applying REFINE to (Sym, Trans), G by BUILDGAME(Sym, Trans) and G"
by BUILDGAME(Sym™ | Trans™) then:

- (Symref , Trans™ ) is a reachability gmph for (P, F);

- pg”*(Reached) < pg”,, (Reached) and pg b* (Reached) > pgn,f *(Reached);

- If p* = pgi (ks k) = Do (ks G, for some (I, Gi) € Reached, is the opti-
mum 3k reachability probability, among all (1;,(;) € Reached, then the solution to
the optimal parameter synthesis can be extracted from the strategy o1 of Player
1 (which achieves p*) and (.

Proof. — We first prove that (Symref , Trans™ ) is the reachability graph for
(P, F). We state the following lemma, modified from [15] for the parametric
case.



Lemma 6. If S ¢ Sym™, (57 §,(S7,...,S7) € Trans(S™) and
S € Sym such that ST < S, then there exists (S,8,(S1,...,Sp)) € Trans
such that Siref cS; foralll <i<n.

Let us consider any ™ € Sym™, (7 6,(ST,...,S"*/Y) € Trans(S™)
and S € Sym such that S™ € S. The proof is split into two cases:

e If S™ € Sym, then by construction S = S, and therefore we have
that either (S™f,6,(ST, ..., S7f}) € Trans(S), in which case the lemma
holds, or there exists (S, 8,{(S1, ...5,)) € Trans(S) from which (™, 8,(S7, ...Sre))
was constructed. In the second case, it follows from REFINE, Fig. 7, that
Sl-ref € S;, for all 1 < i < n, as required.

o If S™ ¢ Sym, then for S™ < § it follows that S™ was formed by
splitting S. Thus, there exists a symbolic transition (S, 4,{S, ..., Sn)) €
Trans which was used to construct (S7,8,(S7, ..., Smf)). It follows
from this construction that S;" “f e 8, for all 1 <i < n, as required.

The fact that (Sym"™, Trans™) is the reachability graph for P follows from
the fact that we split only symbolic states and remove transitions which are
not valid.

We now prove the second part of the theorem which states:

plgb’*(Reached) < pg),f}((Reached) and pgb’*(Reached) > pqétf.;f*(Reached);

We consider v(P) for any parameter valuation v, and the following Lemma
7 and Lemma 8, from [15]. v(Sym), v(S), v(Reached) and v(G) are defined

as in proofs of Theorem 1 and Theorem 2.

Lemma 7. For any v(S) € v(Sym) and player 2 strategy oo of v(G) there
exist a strategy pair (o7, 03 of v(G™) where: inf,, pZEé%z (v(Reached)) <

o_re/’o_ref o1 .0 o_ref’o_ref
Py(srer) (v(Reached)) and sup,, pv(léf (v(Reached)) = Py(srer) (v(Reached)).

Lemma 8. Given a player 2 strategy agef of v(G™) the proof follows by

constructing a player 1 strategy a{ef of v(G™) and strategy pair (o1,03) of

ef

ref 1
v(G) such that: pg(lé‘? (v(Reached)) = pgésaf) (v(Reached)) for all v(S™)
such that v(S™) < v(9).

The proof of the theorem then follows similarly to the proof of Theorem 2,
using Lemma 7 and Lemma 8 instead of Lemma 4 and Lemma 5. We refer
to [15] for the complete proof.

We now focus on the last part of the theorem:

If p* = pg’;j(lk, k) = pg?gf*(lk, Ck), for some (I, (k) € Reached, is the
optimum % reachability probability, among all (1;,(;) € Reached, then the
solution to the optimal parameter synthesis can be extracted from the strategy
o1 of Player 1, (that corresponds to p* ), and (.

Combining the proof of Theorem 1 and the first part of Theorem 3, which
states that (Sym"™, Trans™) is a reachability graph of P, we obtain that
Ck|p 1s a solution to the reachability synthesis problem.



Upon the termination of the iterative procedure of the algorithm SYNTH, we
are sure that no state (I, () € Reached has been divided, therefore parameter
valuations (|p of any (I,() € Reached stay unchanged. On the other hand,
some of the symbolic states from Sym are divided and therefore their pa-
rameter valuations are refined. Optimal strategy o; of player 1 (a strategy
to reach (lx, (x) which has the optimum reachability probability) consists of
choices T in symbolic states of the final set of symbolic states Sym™ .

For each such T, valid(T) gives the set of valuations on X u P, in which T is
valid. valid(T)|p then gives the corresponding parameter values. To allow all
choices T; in the optimal strategy o1, we need to take [, valid(Ti)‘p. Finally,
the optimal solution is obtained as {[ ), valid(T:) | p O (G p\(Uvj r,i,er Gi1p)) -

Theorem 4 (Termination). Let s € {min, maz}. If forward reachability al-
gorithm (PARREACH) terminates, then the algorithm for parameter synthesis
SYNTH terminates after a finite number of steps and returns p* = plo-¥* = pubs*

Proof. As stated in Section 3, for stochastic game G = (.5, (S1, S2), so, X, Stepsg)
and maximum reachability probabilities, for some F' < S we have:

def .
— P (F) L sup e, inf o, SUP,, pI17 (F)

— pebmer(F) Csup, . sup,, sup,,pl 72 (F)

S

For the minimum reachability probabilities, similar equations hold:

— pg;ml’ﬂ (F) d:ef infseSOinfUIinfazpal,az (F)

S

— pe ™ (F) Lef infses,SUP,, infq, g 72 (F)

S

At each iteration, a split of a symbolic state provides a strict refinement. At
the point where each symbolic states (I,¢) in a game G has only one out-
going subset of edges T (thus, only one possible choice for player 1), we have
pg’;j(Reached) = pgb;k (Reached), because the upper and the lower bounds, for
either maximum or minimum reachability probability, are obtained for the dif-
ferent strategy choice of player 1 (player 2 plays either its best or its worst choice
(in terms of probability), depending on whether we are considering maximum
or minimum reachability probabilities, respectively). The algorithm then termi-
nates with the precise answer, as, according to Theorem 3, pg’,’j(Reached) <

pE(F) < pg?;;k(Reached).



