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Abstract. We identify a class of Horn ontologies for which standard
reasoning tasks such as instance checking and classification are tractable.
The class is general enough to include the OWL 2 EL, QL, and RL
profiles. Verifying whether a Horn ontology belongs to the class can be
done in polynomial time. We show empirically that the class includes
many real-world ontologies that are not included in any OWL 2 profile,
and thus that polynomial time reasoning is possible for these ontologies.

1 Introduction

In recent years there has been growing interest in so-called lightweight ontology
languages, which are based on logics with favourable computational properties.
The most prominent examples of lightweight ontology languages are the EL, QL
and RL profiles of OWL 2 [23]. Standard reasoning tasks, such as classification
and fact entailment, are feasible in polynomial time for all profiles, and many
highly scalable profile-specific reasoners have been developed [3,6,8,16,24,26,28].

All the OWL 2 profiles are Horn languages: any ontology in a profile can be
translated into a set of first-order Horn clauses. However, many Horn OWL 2
ontologies fall outside the profiles, and when reasoning with such ontologies we
are forced to resort to a fully-fledged OWL 2 reasoner if a completeness guar-
antee is required. Indeed, in contrast to the lightweight logics underpinning the
profiles, the logics required to capture Horn OWL 2 ontologies are intractable:
standard reasoning is ExpTime-complete for the description logic Horn-SHOIQ
and 2-ExpTime-complete for the more expressive Horn-SROIQ [25].

Our aim is to push the tractability boundaries of lightweight ontology lan-
guages, and devise e�ciently implementable reasoning algorithms that can be
applied to most existing Horn ontologies. In our recent work, we took a first step
towards achieving this goal by defining a new class of tractable ontologies based
on a role (aka property) safety condition, the idea behind which is to preclude
the interactions between language constructs that are ultimately responsible for
intractability [9]. We showed that Horn-SHOIQ ontologies in the QL, RL and
EL profiles contain only safe roles,3 and that for ontologies containing only safe

3 The intersection of the normative profiles and Horn-SHOIQ excludes certain fea-
tures such as property chain axioms.



roles, standard reasoning tasks are still tractable even if the ontology is not cap-
tured by any of the profiles. However, our evaluation revealed that, although this
usefully extends the range of ontologies for which tractable reasoning is known to
be possible, many real-world Horn ontologies contain (a relatively small number
of) unsafe roles, and for these ontologies tractability remains unclear.

In this paper we go a step farther and define a new class of Horn-SHOIQ
ontologies in which unsafe roles are allowed to occur, but only under certain
restrictions. Membership in this class can be e�ciently checked by first generat-
ing a graph from the materialisation of a Datalog program, and then checking
whether the generated graph is an oriented forest. We call the ontologies satisfy-
ing this condition role safety acyclic (RSA), and show that standard reasoning
tasks remain tractable for RSA ontologies. To this end, we employ a reasoning
algorithm based on a translation from a Horn-SHOIQ ontology O into a set NO
of first-order Horn rules with function symbols. We show that this transforma-
tion preserves standard reasoning outcomes and hence one can reason over NO
instead of O. Furthermore, if O is RSA, then the Skolem chase [10,22] terminates
in polynomially many steps when applied to NO, and yields a Herbrand model
of polynomial size from which the relevant reasoning outcomes can be directly
retrieved. Finally, we propose a relaxation of the acyclicity condition for which
tractability of reasoning is no longer guaranteed, but that still ensures termina-
tion of the Skolem chase over NO with a Herbrand model of exponential size.
We refer to ontologies satisfying this relaxed condition as weakly RSA (WRSA).

We have tested our acyclicity conditions over two large ontologies reposi-
tories. Our results show that a large proportion of out-of-profile ontologies are
RSA. Our conditions can thus have immediate practical implications: on the
one hand, RSA identifies a large class of ontologies for which reasoning is known
to be tractable, and on the other hand, we show that reasoning for both RSA
and WRSA ontologies can be implemented using existing Logic Programming
engines with support for function symbols, such as DLV [21] and IRIS [5].

Finally, we note that our notion of acyclicity is related to (yet, incomparable
with) existing acyclicity notions applicable to existential rules and ontologies
[4,10,11,18,22]. Unlike existing notions, our main goal is to ensure tractability of
reasoning rather than chase termination. Indeed, even if O is RSA, the Skolem
chase applied to (the clausification of) O may not terminate.4

This paper comes with an extended version with all proofs of our results.5

2 Preliminaries

The Logic Horn-SHOIQ We assume basic familiarity with the logics un-
derpinning standard ontology languages, and refer the reader to the literature
for further details [1,13,14]. We next define Horn-SHOIQ [20,25] and specify its
semantics via translation into first-order logic with built-in equality. W.l.o.g. we
restrict our attention to ontologies in a normal form close to those in [19,25].

4 We defer a detailed discussion to the Related Work section.
5 http://www.cs.ox.ac.uk/isg/TR/RSAcheck.pdf



Horn-SHOIQ axioms ↵ First-order sentences ⇡(↵)
(R1) R1 v R2 R1(x, y) ! R2(x, y)
(R2) R1 v R

�
2 R1(x, y) ! R2(y, x)

(R3) Tra(R) R(x, y) ^R(y, z) ! R(x, z)
(T1) A1 u . . . uAn v B A1(x) ^ . . . ^An(x) ! B(x)
(T2) A v {a} A(x) ! x ⇡ a

(T3) 9R.A v B R(x, y) ^A(y) ! B(x)
(T4) A v 1S.B A(x) ^ S(x, y) ^B(y) ^ S(x, z) ^B(z) ! y ⇡ z

(T5) A v 9R.B A(x) ! 9y.(R(x, y) ^B(y))
(T6) Ran(R) = A R(x, y) ! A(y)
(T7) A v 9R.{a} A(x) ! R(x, a)
(A1) A(a) A(a)
(A2) R(a, b) R(a, b)

Fig. 1. Horn-SHOIQ syntax and semantics, where A(i) 2 N

C

, B 2 N

C

, R(i), S 2 N

R

with S simple, and a, b 2 N

I

. Universal quantifiers are omitted. Axioms (T6) and (T7)
are redundant, but are useful for defining (resp.) the EL and the RL profiles.

A (DL) signature ⌃ consists of disjoint countable sets of concept names N
C

,
role names N

R

and individuals N
I

, where we additionally assume that {>,?} ✓
N

C

. A role is an element of N
R

[ {R�|R 2 N
R

}. The function Inv(·) is defined
over roles as follows, where R 2 N

R

: Inv(R) = R� and Inv(R�) = R.
An RBox R is a finite set of axioms (R1)-(R3) in Fig. 1. We denote with vR

the minimal relation over roles in R s.t. R vR S and Inv(R) vR Inv(S) hold if
R v S 2 R. We define v⇤

R as the reflexive-transitive closure of vR. A role R
is transitive in R if there exists S s.t. S v⇤

R R, R v⇤
R S and either Tra(S) 2 R

or Tra(Inv(S)) 2 R. A role R is simple in R if no transitive role S exists s.t.
S v⇤

R R. A TBox T is a finite set of axioms (T1)-(T5) in Fig. 1.6 An ABox
A is a finite, non-empty set of assertions (A1) and (A2) in Fig. 1. An ontology
O = R[ T [A consists of an RBox R, TBox T , and ABox A. The signature of
O is the set of concept names, role names, and individuals occurring in O.

We define the semantics of a Horn-SHOIQ ontology by means of a mapping
⇡ from Horn-SHOIQ axioms into first-order sentences with equality as specified
in Fig. 1. This mapping is extended to map ontologies to first-order knowledge
bases in the obvious way. Ontology satisfiability and entailment in first-order
logic with built-in equality (written |=) are defined as usual.

We sometimes treat > and ? as ordinary unary predicates, the meaning of
which is axiomatised. For a finite signature ⌃, we denote with F>?

⌃ the smallest
set with a sentence A(x) ! >(x) for each A 2 N

C

and R(x, y) ! >(x) ^ >(y)
for each R 2 N

R

. This is w.l.o.g. for Horn theories: a Horn-SHOIQ ontology O
with signature ⌃ is satisfiable i↵ ⇡(O) [ F>?

⌃ 6|= 9y.?(y). Furthermore, O |= ↵
with O satisfiable and ↵ an axiom over ⌃ i↵ ⇡(O) [ F>?

⌃ |= ⇡(↵).
Similarly, we may treat the equality predicate ⇡ as ordinary and denote with

F⇡
⌃ its axiomatisation as a congruence relation over ⌃, and we denote with |=⇡

6 For presentational convenience, we omit axioms A v �nR.B. These can be simu-
lated using axioms A v 9R.Bi and Bi uBj v ? for 1  i < j  n.



the entailment relationship where equality is treated as an ordinary predicate.
Axiomatisation of equality preserves entailment: for each set F of sentences with
signature ⌃ and each sentence ↵ over ⌃, we have F |= ↵ i↵ F [ F⇡

⌃ |=⇡ ↵.

OWL 2 Profiles The OWL 2 specification defines three normative profiles,
EL, QL, and RL, all of which are captured by Horn-SROIQ. In this paper
we restrict our attention to the intersection of these profiles with Horn-SHOIQ
(which excludes features such as property chain axioms), as this greatly simplifies
the algorithms and proofs. A Horn-SHOIQ ontology O is: (i) EL if it does not
contain axioms of the form (R2) or (T4); (ii) RL if it does not contain axioms of
the form (T5); and (iii) QL if it does not contain axioms of the form (R3), (T2)
or (T4), each axiom (T1) satisfies n = 1, and each axiom (T3) satisfies A = >.

Horn rules and Datalog A Horn rule is a first-order sentence of the form

8x8z.['(x, z) !  (x)]

where tuples of variables x, z are disjoint, '(x, z) is a conjunction of function-
free atoms, and  (x) is a conjunction of atoms (possibly with function symbols).
A fact is a ground, function-free atom. A Horn program P consists of a finite
set of Horn rules and facts. A rule (program) is Datalog if it is function-free.7

Forward-chaining reasoning over Horn programs can be realised by means of the
Skolem chase [10,22]. We adopt the treatment of the Skolem chase from [10].

A set of ground atoms S0 is a consequence of a Horn rule r on a set of ground
atoms S if a substitution � exists mapping the variables in r to the terms in S
such that '� ✓ S and S0 ✓  �. The result of applying r to S, written r(S), is the
union of all consequences of r on S. ForH a set of Horn rules,H(S) =

S
r2H r(S).

Let S be a finite set of ground atoms, let H be a set of rules, and let ⌃ be the
signature of H [ S. Let H0 = H [ F⇡

⌃ [ F>?
⌃ .The chase sequence for S and H

is a sequence of sets of ground atoms S0
H, S1

H, . . . where S0
H = S and, for each

i > 0 : Si
H = Si�1

H [H(Si�1
H )

The Skolem chase of the program P = H [ S is defined as the (possibly
infinite) Herbrand interpretation I1P =

S
i S

i
H. The Skolem chase can be used to

determine fact entailment: for each fact ↵ it holds that P |= ↵ i↵ ↵ 2 I1P . The
Skolem chase of P terminates if i � 0 exists such that Si

H = Sj
H for each j > i.

If P is a Datalog program, then I1P is the finite least Herbrand model of P,
which we refer to as the materialisation of P. Furthermore, by slight abuse of
notation, we sometimes refer to the Skolem chase of a Horn-SHOIQ ontology
O as the chase for the program obtained from ⇡(O) by standard Skolemisation
of existentially quantified variables into functional terms.

3 The Notion of Role Safety

In contrast to the logics underpinning the OWL 2 profiles, the logics required
to capture existing Horn ontologies are intractable. In particular, satisfiability is
7 We adopt a more liberal definition of Datalog that allows conjunction in rule heads.



ExpTime-hard already for Horn-ALCI (the fragment of Horn-SHOIQ without
nominals [15,19] or cardinality restrictions).

A closer look at existing complexity results reveals that the main source of
intractability is the phenomenon typically known as and-branching : due to the
interaction between between existential quantifiers over a role R (i.e., axioms of
type (T5)) and universal quantifiers over R (encoded by axioms of type (T3)
and (R2)), an ontology may only be satisfied in models of exponential size. The
same e↵ect can be achieved via the interaction between existential quantifiers
and cardinality restrictions (axioms of type (T4)): reasoning in the extension of
the EL profile with counting is also known to be ExpTime-hard [2].

And-branching can be tamed by precluding the harmful interactions between
existential quantifiers and universal quantifiers, on the one hand and existential
quantifiers and cardinality restrictions, on the other hand. If we disallow exis-
tential quantifiers altogether (axioms (T5)), then we obtain the RL profile, and
ontologies become equivalent to Datalog programs with equality. Similarly, if we
disallow the use of inverse roles and cardinality restrictions, thus precluding both
universal quantification over roles and counting, then we obtain the EL profile.

The main idea behind our notion of role safety is to identify a subset of the
roles in an ontology over which these potentially harmful interactions between
language constructs cannot occur. On the one hand, if a role does not occur
existentially quantified in axioms of type (T5), then its “behaviour” is similar
to that of a role in an RL ontology, and hence it is safe. On the other hand, if
a role occurs existentially quantified, but no axioms involving inverse roles or
counting apply to any of its super-roles, then the role behaves like a role in an
EL ontology, and hence it is also safe.

Definition 1. Let O = R[T [A be an ontology. A role R in O is safe if either
it does not occur in axioms of type A v 9R.B, or the following properties hold
for each role S:

1. R 6v⇤
R S and R 6v⇤

R Inv(S) if S occurs in a concept  1S.B;
2. R 6v⇤

R Inv(S) if S occurs in an axiom of type 9R.A v B with with A 6= >.

Example 1. Consider the example ontology O
Ex

in Figure 2, which is not cap-
tured by any of the normative profiles. The role Attends is safe: although it occurs
existentially quantified in axiom (2), its inverse AttendedBy does not occur in an
axiom of type (T3), and the ontology does not contain cardinality restrictions.
In contrast, the role AttendedBy is unsafe since it occurs existentially quantified
in (5) and its inverse role Attends occurs negatively in (3). ⇧

Note that Definition 1 explains why (Horn-SHOIQ) ontologies captured by
any of the normative profiles contain only safe roles: in the case of EL, roles can
be existentially quantified, but there are no inverse roles or cardinality restric-
tions, and hence conditions 1 and 2 in Definition 1 hold trivially; in the case of
RL, roles do not occur existentially quantified in axioms of type (T5); and in the
case of QL, there are no cardinality restrictions, all axioms of type (T3) satisfy
A = >, and hence conditions 1 and 2 also hold.



LazySt v Student (1)

Student v 9Attends.Course (2)

9Attends.MorningCourse v DiligentSt (3)

LazySt u DiligentSt v ? (4)

Course v 9AttendedBy.Student (5)

Attends

� v AttendedBy (6)

AttendedBy

� v Attends (7)

LazySt(David) (8)

Fig. 2. Example ontology O
Ex

4 Role Safety Acyclicity

In this section, we propose a novel role safety acyclicity (RSA) condition that
is applicable to Horn-SHOIQ ontologies and that does not completely preclude
unsafe roles. Instead, our condition restricts the way in which unsafe roles are
used so that they cannot lead to the interactions between language constructs
that are at the root of ExpTime-hardness proofs; in particular, and-branching.

To check whether an ontology O is RSA we first generate a directed graph
GO by means of a Datalog program PO. The edges in GO are generated from the
extension of a fresh “edge” predicate E in the materialisation of PO. Intuitively,
the relevant facts over E in the materialisation stem from the presence in O
of existential restrictions over unsafe roles. Once the directed graph GO has
been generated, we check that it is a directed acyclic graph (DAG) and that it
does not not contain “diamond-shaped” subgraphs; the former requirement will
ensure termination of our reasoning algorithm in Section 5, while the latter is
critical for tractability. Furthermore, we define a weaker version of RSA (WRSA)
where GO is only required to be a DAG. Although this relaxed notion does not
ensure tractability of reasoning, it does guarantee termination of our reasoning
algorithm, and hence is still of relevance in practice.

Definition 2. Let O be an ontology, let ⌃ be the signature of O, and let ⇡ be the
mapping defined in Figure 1. Let PE and E be fresh binary predicates, and let U
be a fresh unary predicate. Furthermore, for each pair of concepts A,B and each
role R from ⌃, let vAR,B be a fresh constant. Let ⌅ be the function mapping each
axiom ↵ in O to a datalog rule as given next, and let ⌅(O) = {⌅(↵) | ↵ in O}:

⌅(↵) =

(
A(x) ! R(x, vAR,B) ^B(vAR,B) ^ PE(x, vAR,B) if ↵ = A v 9R.B

⇡(↵) Otherwise.

Then, PO is the following datalog program:

PO = ⌅(O) [ {U(x) ^ PE(x, y) ^ U(y) ! E(x, y)} [ {U(vAR,B) | R is unsafe}



LazySt(x) ! Student(x)
Student(x) ! Attends(x, vSt

At,Co) ^ Course(vSt
At,Co) ^ PE(x, vSt

At,Co)
Attends(x, y) ^MorningCourse(y) ! DiligentSt(y)

LazySt(x) ^ DiligentSt(x) ! ?(x)
Course(x) ! AttendedBy(x, vCo

Ia,St) ^ Student(vCo
Ia,St) ^ PE(x, vCo

Ia,St)
Attends(y, x) ! AttendedBy(x, y)

AttendedBy(x, y) ! Attends(y, x)
U(x) ^ PE(x, y) ^ U(y) ! E(x, y)

LazySt(David)
U(vCo

Ia,St)

Fig. 3. Checking acyclicity of our example ontology O
Ex

.

Let GO be the smallest directed graph having an edge (c, d) for each fact E(c, d)
s.t. E(c, d) 2 I1PO . Then, O is Role Safety Acyclic (RSA) if GO is an oriented
forest.8 Finally, O is weakly RSA (WRSA) if GO is a DAG.

The core of the program PO is obtained from O by translating its axioms
into first-order logic in the usual way with the single exception of existen-
tially quantified axioms ↵, which are translated into Datalog by Skolemising
the (unique) existential variable in ⇡(↵) into a constant. The fresh predicate PE

is used to track all facts over roles R generated by the application of Skolemised
rules, regardless of whether the relevant role R is safe or not. In this way, PE
records “possible edges” in the graph. The safety distinction is realised by the
unary predicate U, which is populated with all fresh constants introduced by
the Skolemisation of existential restrictions over the unsafe roles. Finally, the
rule U(x) ^ PE(x, y) ^ U(y) ! E(x, y) ensures that only possible edges between
Skolem constants in the extension of U eventually become edges in the graph.

Example 2. Figure 3 depicts the rules in the program PO
Ex

for our example
ontology O

Ex

. The constant v

Co

Ia,St is the only fresh constant introduced by the
Skolemisation of an existential restriction (9AttendedBy.Student) over an unsafe
role (AttendedBy), and hence the predicate U is populated with just vCo

Ia,St.
Next consider the application of the Skolem chase on PO

Ex

, which applies to
the initial facts S = {LazySt(David),U(vCo

Ia,St)} and rules H = PO
Ex

\S. The chase
terminates after the following iterations:

S1
H = S [ {Student(David)}

S2
H = S1

H [ {Attends(David, vSt
At,Co),Course(v

St

At,Co),PE(David, v
St

At,Co)}
S3
H = S2

H [ {AttendedBy(vSt
At,Co, v

Co

Ia,St), Student(v
Co

Ia,St),PE(v
St

At,Co, v
Co

Ia,St)}
S4
H = S3

H [ {Attends(vCo
Ia,St, v

St

At,Co),PE(v
Co

Ia,St, v
St

At,Co)}
8 An oriented forest is a disjoint union of oriented trees; that is, DAGs whose under-
lying undirected graph is a tree.
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R,n
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L,n+1

v

n
R,n+1

Fig. 4. An acyclic graph which is not an oriented forest

No more atoms are derived in subsequent steps and hence I1PO
Ex

= S4
H. Note

that the graph induced by the auxiliary PE predicate is cyclic; in contrast, the
extension of E is empty and GO

Ex

has no edges. Clearly, O
Ex

is thus RSA. ⇧

The following example illustrates the di↵erence between RSA and WRSA.

Example 3. Consider the (family of) ontologies On consisting of the fact A1(a)
and the following axioms for each n � 1 and each 1  i  n:

Ai v 9L.Ai+1, Ai v 9R.Ai+1

> v 1L.>, > v 1R.>.

Clearly, both R and L are unsafe roles since they are defined as functional.
The program POn then contains facts A1(a) and U(viL,i+1), U(v

i
R,i+1) for each

1  i  n, as well as the following rules for each 1  i  n:

Ai(x) ! Ai+1(v
i
L,i+1) ^ L(x, viL,i+1) ^ PE(x, viL,i+1)

Ai(x) ! Ai+1(v
i
R,i+1) ^ L(x, viR,i+1) ^ PE(x, viR,i+1)

U(x) ^ PE(x, y) ^ U(y) ! E(x, y)

The chase terminates in n + 1 steps. The graph GOn induced by the edge
predicate E is given in Figure 4. Note that the graph is always a DAG, but it is
a tree only if n < 3; hence all ontologies On are WRSA, but they are RSA only
for n < 3. ⇧

The following theorem establishes that checking RSA and WRSA is tractable.
Intuitively, the program PO is linear in the size of O and each of its rules contains
at most three variables regardless ofO; as a result, the materialisation (and hence
also the resulting graph) is polynomially bounded.

Theorem 1. Checking whether an ontology O is RSA (resp. WRSA) is feasible
in polynomial time in the size of O.

5 Reasoning Over Acyclic Ontologies

In this section, we show that standard reasoning tasks are tractable for RSA
ontologies. To this purpose, we propose a translation from a Horn-SHOIQ on-
tology O into a set NO of first-order Horn rules, which may contain function



LazySt(x) ! Student(x)
Student(x) ! Attends(x, vSt

At,Co) ^ Course(vSt
At,Co)

Attends(x, y) ^MorningCourse(y) ! DiligentSt(y)
LazySt(x) ^ DiligentSt(x) ! ?(x)

Course(x) ! AttendedBy(x, fCo
Ia,St(x)) ^ Student(fCo

Ia,St(x))
Attends(y, x) ! AttendedBy(x, y)

AttendedBy(x, y) ! Attends(y, x)
LazySt(David)

Fig. 5. Running Example: Reasoning

symbols in the head. Axioms in O are translated directly into first-order rules as
specified in Fig. 1. As can be seen, axioms of type (T5) are translated into rules
with existentially quantified variables in the head; such variables are eliminated
via Skolemisation into a constant (if the corresponding role is safe) or into a
function term (if the corresponding role is unsafe).

Definition 3. Let O be an ontology, let ⌃ be the signature of O, and let ⇡ be the
mapping defined in Fig. 1. Furthermore, for each pair of concepts A,B and each
safe role R from ⌃, let vAR,B be a fresh constant, and for each pair of concepts

A,B and each unsafe role R from ⌃, let fA
R,B be a fresh unary function symbol.

Let ⇤ be the function mapping each axiom ↵ in O to a Datalog rule as given
next:

⇤(↵) =

8
><

>:

A(x) ! R(x, vAR,B) ^B(vAR,B) if ↵ = A v 9R.B with R safe

A(x) ! R(x, fA
R,B(x)) ^B(fA

R,B(x)) if ↵ = A v 9R.B with R unsafe

⇡(↵) Otherwise.

Finally, we define the Horn program NO as the set {⇤(↵) | ↵ in O}.

Example 4. Figure 5 depicts the rules of the Horn program NO
Ex

for our running
example O

Ex

. Let us compare NO
Ex

with the Datalog program PO
Ex

in Fig. 3,
which we used for acyclicity checking. In contrast to PO

Ex

, the program NO
Ex

con-
tains function terms involving unsafe roles; furthermore, NO

Ex

does not include
the auxiliary graph generation predicates from PO

Ex

. Next, consider the appli-
cation of the Skolem chase on NO

Ex

, i.e., to the initial fact S = {LazySt(David)}
and rules H = NO

Ex

\ S. We can check that the chase terminates after four it-
erations and generates function terms of depth at most one. Furthermore, the
only fact that is derived over the individuals from O

Ex

is Student(David). ⇧

We next show that this translation preserves satisfiability, subsumption, and
instance retrieval reasoning outcomes, regardless of whether the ontology O is
acyclic or not. Thus, we can reason over NO instead of O without sacrificing
correctness. Since NO is a strengthening of O, due to the Skolemisation of some



existential quantifiers into constants, completeness is trivial. To show soundness,
we propose an embedding of the Skolem chase of NO into the chase of O. This
embedding is not a homomorphism, as it does not homomorphically preserve
binary facts; however, we can show that unary facts are indeed preserved.

Theorem 2. The following properties hold for each ontology O, concept names
A,B and constants a and b, where ⌃ is the signature of O and c is a fresh
constant not in ⌃:

1. O is satisfiable i↵ NO is satisfiable i↵ I1NO contains no fact over ?.
2. O |= A(a) i↵ NO |= A(a) i↵ A(a) 2 I1NO ;
3. O |= A v B i↵ NO [ {A(c)} |= B(c) i↵ B(c) 2 I1NO[{A(c)}.

A closer inspection of the proof of the theorem (see our online technical
report) reveals that preservation of binary facts can also be ensured if the rele-
vant role satisfies certain properties. The following example illustrates the only
situation for which binary facts may not be preserved.

Example 5. Consider the ontology O consisting of ABox assertions A(a), A(b),
TBox axiom A v 9R.B and RBox axioms R v S, R v S�, and Tra(S). Clearly,
R is a safe role, and the fresh individual vAR,B is introduced by Skolemisation.

We can check that NO |= {S(a, vAR,B), S(v
A
R,B , b)} and hence NO |= S(a, b) since

role S is transitive. Note, however that O 6|= S(a, b) since O has a canonical tree
model in which a and b are not S-related. ⇧

Proposition 1. Let O be an ontology with signature ⌃. Furthermore, let R 2 ⌃
be a role name satisfying at least one of the following properties: (i) R is simple,
(ii) for every axiom of type A v 9S.B in O, with S being a safe role S 6v⇤

R R, or
(iii) for every axiom of type A v 9S.B in O, with S being a safe role S 6v⇤

R R�.
Then, O |= R(a, b) i↵ NO |= R(a, b) i↵ R(a, b) 2 I1NO .

Example 6. Coming back to our running example, recall that the only relevant
facts contained in the chase of NO

Ex

are LazySt(David) and Student(David). Thus,
we can conclude that NO

Ex

is satisfiable and does not entail unary facts other
than these ones. Furthermore, all roles in O

Ex

are simple and hence we can also
conclude that O

Ex

entails no relevant binary facts. ⇧

So far, we have established that we can dispense with the input ontology
O and reason over the Horn program NO instead. The Skolem chase of NO,
however, may still be infinite. We next show that acyclicity of O provides a
polynomial bound on the size of the Skolem chase of NO. Intuitively, every
functional term occurring in an atom of the chase of NO corresponds to a single
path in GO, and the size of the graph is polynomial in O. In an oriented forest
there is at most one path between any two nodes, which bounds polynomially
the number of possible functional terms. In contrast, the latter condition does
not hold for DAGs, where only a bound in the length of paths can be guaranteed.



Theorem 3. Let O be an RSA ontology with signature ⌃. Then, the Skolem
chase of NO terminates with a Herbrand model of polynomial size. Furthermore,
if O is WRSA, then the Skolem chase of NO terminates with a Herbrand model
of size at most exponential.

Example 7. As already mentioned, the chase for NO
Ex

terminates and computes
only ground atoms of functional depth at most one. Consider, however, the chase
for the programs NOn corresponding to the family of ontologies On in Example
3. Program NOn contains the following rules for every 1  i  n:

Ai(x) ! Ai+1(f
i
L,i+1(x)) ^ L(x, f i

L,i+1(x))

Ai(x) ! Ai+1(f
i
R,i+1(x)) ^R(x, f i

R,i+1(x))

When initialised with the fact A1(a), the Skolem chase will generate in each step
i the following atoms:

Ai(f
i+1
L,i (ti)), Ai(f

i+1
R,i (ti)), L(ti, f

i+1
L,i (ti)), R(ti, f

i+1
R,i (ti)),

where ti 2 {gi(. . . (g2(a)) . . .) | gj = f j
L,j�1 or gj = f j

R,j�1, 2  j  i}. Note that
for every i, the number of terms ti is exponential in i. ⇧

Theorems 2 and 3 suggest a reasoning algorithm for acyclic ontologies O. First,
compute the program NO as in Definition 3. Then, run the Skolem chase for NO
and read out the reasoning outcomes from the computed Herbrand model. If GO
is an oriented forest (i.e., O is RSA) we can implement our algorithm e�ciently,
which yields the following result as a corollary of the previous theorems.

Theorem 4. Satisfiability and unary fact entailment is feasible in polynomial
time for the class of RSA ontologies.

In contrast to RSA, our algorithm runs in exponential time for WRSA ontolo-
gies. We next show that, indeed, reasoning with WRSA ontologies is intractable
under standard complexity-theoretic assumptions.

Theorem 5. Unary fact entailment is Pspace-hard for WRSA ontologies.

Finally, note that our reasoning technique can be implemented by reusing
existing Logic Programming engines with support for function symbols [21,5].

6 Stronger Notions of Acyclicity

Note that Theorem 4 does not make any claims about the tractability of concept
subsumption for RSA ontologies. To check whether O |= A v B we need to
extendNO with an assertion A(c) over a fresh individual c, run the Skolem chase,
and check whether B(c) is derived (see Theorem 2). However, as illustrated by
the following example, RSA is not robust under addition of ABox assertions.



Example 8. Let O consist of a fact B(c) and the following axioms:

A v B B v C A v 9R.A > v 1.R.>

Ontology O is RSA because the rule corresponding to the “dangerous” axiom
A v 9R.A involving the unsafe role R does not fire during materialisation; as a
result, the graph generated by PO is empty. Indeed, the chase terminates on NO
and determines satisfiability as well as all the facts entailed by O. In contrast,
if we add the fact A(c) to NO to determine the subsumers of A, the chase will
no longer terminate because the ontology O extended with A(c) is now cyclic. ⇧

To ensure tractability of subsumption and classification, we therefore propose
the following stronger notion of acyclicity.

Definition 4. Let O be an ontology with signature ⌃. For each concept name
A 2 ⌃, let cA be a fresh constant and let A

Cl

= {A(cA) | A 2 ⌃}. We say that
O is RSA for classification if O extended with A

Cl

is RSA.9

Tractability of subsumption immediately follows from our results in Section 5.

Proposition 2. Checking whether O |= A v B is feasible in polynomial time
for ontologies O that are acyclic for classification.

Although this notion is well-suited for TBox reasoning, data-intensive appli-
cations where the ABox changes frequently require a further strengthening.

Definition 5. An ontology O is universally RSA if O [ A0 is RSA for every
ABox A0.

Checking whether O = R [ T [ A is universally RSA can be reduced to
checking whether the ontology O extended with a special critical ABox AO

⇤ is
RSA, where AO

⇤ consists of all facts that can be constructed using concept and
role names from O, all individuals occurring in T , and a fresh individual ⇤.

Proposition 3. An ontology O is universally RSA i↵ O [AO
⇤ is RSA.

Example 9. The critical ABox for our example ontology O
Ex

consists of all facts
A(⇤) and R(⇤, ⇤) for A a concept name and R a role name from O

Ex

. It can be
checked that O

Ex

is universally RSA, and hence also RSA for classification. ⇧

Universal RSA is, however, a rather strict condition, especially in the presence
of equality. The following example illustrates that, e.g., every ontology with a
functional role used in an existential restriction is not universally RSA.

Example 10. Consider O consisting of axioms A v 9R.B and > v 1R.>.
The critical ABox contains facts A(⇤), B(⇤), and R(⇤, ⇤). The corresponding
Datalog program entails a fact R(⇤, vAR,B) due to axiom A v 9R.B. Due to the

functionality of R, the individuals ⇤ and vAR,B become equal, and hence we have

A(vAR,B) and eventually also R(vAR,B , v
A
R,B). Since R is unsafe, the graph contains

a cyclic edge E(vAR,B , v
A
R,B). Indeed, the chase of both O and NO is infinite. ⇧

9 Note that ontologies that are RSA for classification are also RSA.



It is well-known that the Skolem chase often does not terminate in the presence
of equality [10,22]. The standard approach to circumvent this issue is to exploit
the so-called singularisation technique [22]. Roughly speaking, singularisation
replaces equality ⇡ in O with a fresh predicate Eq. The Eq predicate is axioma-
tised in a similar way to equality, but without the usual replacement rules (i.e.,
rules of the form A(x) ^ Eq(x, y) ! A(y), for each concept name A, are not in-
cluded in the axiomatisation); instead, the premises of rules in the ontology are
modified to compensate for the lack of replacement rules. After application of
the singularisation transformation, the ontology is thus equality-free. Singulari-
sation preserves reasoning outcomes in a well-understood way, and it is e↵ective
in addressing non-termination problems.

We have exploited this technique by checking acyclicity over a singularisation
Os of the input ontology O, instead of checking acyclicity over O itself (see
our online TR for further details). If the singularised ontology Os is acyclic,
then our results in Section 5 ensure that the chase I1NOs

of NOs is finite and
captures reasoning outcomes over Os. The properties of singularisation then
ensure that reasoning outcomes over the original O are also preserved, and they
can be retrieved from I1NOs

. The use of singularisation significantly increased the
number of universally acyclic ontologies in our evaluation (see Section 8).

7 Related Work

In recent years the computational properties of Horn Description Logics have
been extensively investigated. The logical underpinnings for the EL and QL
profiles of OWL 2 are provided by, respectively, the Horn logics EL++ [2] and DL-
LiteR [7], while the RL profile is based on Datalog and its intersection with DLs
[12]. Hustadt et al. proposed the expressive logic Horn-SHIQ, and establised its
complexity [15]. Krötsch et al. studied the complexity of a wide range of Horn
DLs with complexities in-between the tractable logics underpinning the profiles
and Horn-SROIQ [20,19]. Finally, the exact complexity of Horn-SHOIQ and
Horn-SROIQ was determined by Ortiz et al. [25].

Our techniques in Section 5 extend the so-called combined approach to rea-
soning in EL [17,27], where ontologies are transformed into Datalog programs
by means of Skolemisation of all existentially quantified variables into constants.
Skolemisation into constants was also exploited by Zhou et al. [29] to compute
upper bounds to query answers.

Finally, in the literature we can find a wide range of acyclicity conditions that
are su�cient to ensure chase termination. Weak acyclicity [11] was one of the
first such notions, and was subsequently extended to joint acyclicity [18], acyclic-
ity of a graph of rule dependencies [4], and super-weak acyclicity [22], amongst
others. The notion of acyclicity closest to ours is model summarising acyclicity
(MSA) [10], where acyclicity can also be determined by the materialisation of
a Datalog program. Unlike existing acyclicity notions, ours was designed to en-
sure tractability of reasoning rather than chase termination. In particular, the
Skolem chase of our example RSA ontology O

Ex

is infinite and hence O
Ex

cannot



Repository Reasoning Task Total Safe
RSA Cyclic Time-out

no Sing. Sing. no Sing. Sing. no Sing. Sing.
Oxford Satisfiability 126 37 37+43 37+44 46 39 0 6
Ontology Classification 126 37 37+35 37+35 52 48 2 6
Repository Universality 126 37 37+2 37+31 87 57 0 1
Ontology Satisfiability 23 14 14+9 14+9 0 0 0 0
Design Classification 23 14 14+8 14+8 1 1 0 0
Patterns Universality 23 14 14+4 14+8 5 1 0 0

Table 1. Acyclicity evaluation results for ontologies outside the OWL 2 profiles.

be captured by any acyclicity condition designed for chase termination. Instead,
our notion ensures termination of the Skolem chase over a particular transformed
Horn program NO, which we can use for reasoning over O. Another important
di↵erence is that, in contrast to the chase of O, the chase of the transformed pro-
gram NO is not a universal model of O, and hence it does not preserve answers to
general conjunctive queries (but only for satisfiability and fact entailment). Fi-
nally, although existing acyclicity conditions guarantee termination of the chase,
none of them ensures polynomiality of the computed Herbrand model. Indeed,
checking fact entailment over Horn-SHI ontologies that are weakly acyclic [11]
(the most basic acyclicity notion for chase termination) is Pspace-hard [10].

8 Proof of Concept

We have implemented RSA and WRSA checkers using RDFox [24] as a Datalog
reasoner. For testing, we used the ontologies in the Oxford Repository and the
Design Patterns repository. The former is a large repository currently containing
761 real-world ontologies; the latter contains a wide range of smaller ontologies
that capture design patterns commonly used in ontology modeling (these ontolo-
gies are particularly interesting as they highlight common interactions between
language constructs). Experiments were performed on a laptop with 16 GB RAM
and an Intel Core 2.9 GHz processor running Java v.1.7.0 21, with a timeout of
30 min. The software and data used for testing are available online.10

Our results are summarised in Table 1. For each repository, we first selected
those ontologies that are Horn-SHOIQ and are not captured by any of the
OWL 2 profiles. We found 126 such ontologies in the Oxford Repository and
23 in the Design Patterns repository. We then tested our acyclicity conditions
for satisfiability (Def. 2), classification (Def. 4) and universality (Def. 5) on all
these ontologies.11 We performed tests both with and without singularisation.
Interestingly, in both repositories we could not find any ontology that is WRSA
but not RSA, and hence the two notions coincided for all our tests.

10 https://www.dropbox.com/sh/w1kh3vuhnvindv1/AAD59BK3s5LlD7xCblIsrlSHa
11 For classification and universality, we disregarded the ABox part of the ontologies.



As we can observe, 37 ontologies in the Oxford Repository contained only
safe roles, and hence are RSA. Without singularisation, we found 43 additional
ontologies with unsafe roles that are RSA, 35 of which were also RSA for classifi-
cation and only 2 universally acyclic. When using singularisation the number of
additional RSA ontologies increased significantly, and we obtained 29 additional
universally RSA ontologies, but unfortunately our tests timed-out for several on-
tologies. This can be explained by the fact that the use of singularisation leads
to more complicated Datalog rules for which RDFox is not optimised.

In the case of the Design Patterns repository, all ontologies are RSA. We only
found one ontology that was not universally RSA when using singularisation.
Ontologies in this repository are smaller, and we encountered no time-outs.

9 Conclusions and Future Work

We have proposed the new tractable class of RSA ontologies, which is based
on the notion of safe roles, and a novel acyclicity condition. Our experiments
suggest that a significant proportion of out-of-profile ontologies are RSA; as a
result, we can exploit a worst-case optimal algorithm that runs in polynomial
time to solve standard reasoning tasks over such ontologies, where only worst-
case exponential algorithms were applicable before. This result thus opens the
door to further optimisation of ontology reasoning.

So far, our experiments have established that many ontologies satisfy our
RSA condition. Our next goal is to develop and optimise our reasoning algorithm
as well as our acyclicity checker. We also plan to extend our techniques to apply
to Horn-SROIQ and hence to all Horn OWL 2 ontologies.
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with Ontologies” and “La Caixa” Foundation.
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A Proofs

Theorem 1. Checking whether an ontology O is RSA (resp. WRSA) is feasible
in polynomial time in the size of O.

Proof. The program PO is linear in the size of O. Furthermore, each rule in
PO contains at most three variables. Note that the only rule that requires three
variables is the first-order translation of axiom (T4); the remaining rules contain
at most two variables. Thus, the materialisation PO is bounded in size by O(n3)
for every ontology. Finally, checking whether a directed graph is an oriented
tree (resp. acyclic) is feasible in polynomial time by means of standard graph
traversal algorithms. ut

Theorem 2. The following properties hold for each ontology O, concept names
A,B and constants a and b, where ⌃ is the signature of O and c is a fresh
constant not in ⌃:

1. O is satisfiable i↵ NO is satisfiable i↵ I1NO contains no fact over ?.
2. O |= A(a) i↵ NO |= A(a) i↵ A(a) 2 I1NO ;
3. O |= A v B i↵ NO [ {A(c)} |= B(c) i↵ B(c) 2 I1NO[{A(c)}.

Proof. For each claim of the form A i↵ B i↵ C in the theorem it is enough
to show that A i↵ C as B i↵ C follows from the properties of the chase (see
Section 2). We also reformulate all ‘A’ statements regarding satisfiability of and
entailments w.r.t. O in terms of properties of the chase of O. For the third
claim in the theorem, we note that for a Horn ontology O, it is well-known that
O |= A v B i↵ O [ {A(c)} |= B(c), where c is a fresh constant (see also Section
2). It remains to be shown that:

a) I1O contains no fact over ? i↵ I1NO contains no fact over ?; and
b) A(a) 2 I1O i↵ A(a) 2 I1NO .

To prove the ‘if’ part of these claims (soundness) we map each term occurring
in I1NO to a set of terms occurring in I1O and show inductively that certain prop-
erties hold between atoms/terms in I1NO and atoms over mapped terms/mapped
terms in I1O .

We first introduce some notations and notions which will make the formula-
tion of the IH and also the proof of Proposition 1 more straightforward.

For a Horn-SHOIQ ontology O, its skolemization sk(O) is the program ob-
tained from ⇡(O) by standard Skolemisation of existentially quantified variables
into functional terms. For a Horn program P , its grounding, ground(P ), is the
program obtained by replacing each variable occurring in P with each term
that can be formed using constants and functional symbols occurring in P . The
derivation level of a ground atom a in I1P , level(a, I1P ), is a natural number
k s.t.: a 2 Sk

H and a /2 Sk�1
H , where S is the set of facts occurring in P and

H is the set of rules occurring in P . The derivation level of a ground term t
in I1P , level(t, I1P ), is a natural number k s.t.: t occurs in some atom a with



level(a, I1P ) = k, but t does not occur in any atom a with level(a, I1P ) < k. For
a set of ground atoms S, terms(S) is the set of all terms occurring in some atom
in S.

Definition 6. Let O be a Horn-SHOIQ ontology, let ⌃ be the signature of O,
and let R be a role name which occurs in ⌃. We say that R is a forward-sound
role i↵ for every axiom of type A v 9S.B in O, with S being a safe role: S 6v⇤

R R.
Conversely, R is a backward-sound role i↵ for every axiom of type A v 9S.B
in O, with S being a safe role: S 6v⇤

R R�.

Lemma 1. Let O be a Horn-SHOIQ ontology and let µ : terms(I1NO ) !
2terms(I1

O ) be the following function:

µ(x) =

8
><

>:

{x}, if x 2 NI

{fC
RD(t) | t 2 µ(y)}, if x = fC

RD(y)

{fC
RD(y) | fC

RD(y) 2 terms(I1O )} if x = vCRD

Then:

i) for every x 2 terms(I1NO ): µ(x) 6= ;.
ii) A(x) 2 I1NO implies A(t) 2 I1O , for every t 2 µ(x) and unary predicate

A 2 NC,
iii) R(x, y) 2 I1NO , where R is a backward-sound role implies: for every t1 2

µ(x), there exists a t2 2 µ(y) s.t. R(t1, t2) 2 I1O ,
iv) R(x, y) 2 I1NO , where R is forward-sound role implies: for every t2 2 µ(y),

there exists a t1 2 µ(x) s.t. R(t1, t2) 2 I1O ,
v) R(x, y) 2 I1NO , where R is a simple role implies: for every t1 2 µ(x), there

exists a t2 2 µ(y) s.t. R(t1, t2) 2 I1O , and for every t2 2 µ(y), there exists a
t1 2 µ(x) s.t. R(t1, t2) 2 I1O ,

vi) x ⇡ y 2 I1NO implies: for every t1 2 µ(x), there exists a t2 2 µ(y) s.t. t1 ⇡
t2 2 I1O , and for every t2 2 µ(y), there exists a t1 2 µ(x) s.t. t1 ⇡ t2 2 I1O .

Proof. By induction on the derivation level of atoms and terms in I1NO .
IB: the hypothesis holds for every ABox assertion, named individual a 2 N

I

and facts of type x ⇡ x 2 I1NO .
IH: the hypothesis holds for every atom/term a with level(a, I1NO ) < k. We

show that it holds also for every atom/term a with level(a, I1NO ) = k:

i) a 2 terms(I1NO ) (other than some i 2 N
I

). Then a is either of the form:

1. vCRD: then, it has been introduced in I1NO via a rule of the form C(x) !
R(x, vCRD) ^ D(vCRD) and sk(O) contains a counterpart rule C(x) !
R(x, fC

RD(x))^D(fC
RD(x))(†). Then: level(x, I1NO ) < level(a, I1NO ). From

the IH: µ(x) 6= ; and for every y 2 µ(x): C(y) 2 I1O . Thus, there exists
a u s.t. C(u) 2 I1O and from (†) it follows that: D(fC

RD(u)) 2 I1O . Then
fC
RD(u) 2 µ(vCRD), and thus µ(vCRD) 6= ;.

2. or of the form fC
RD(y). From the IH: µ(y) 6= ; and thus, µ(fC

RD(y)) 6= ;.



ii) a is of the form A(x). Then, NO must contain a rule with head a whose body
is satisfied in I1NO :

1. C1(x) ^ . . . ^ Cn(x) ! D(x) (where a = D(x)): from the IH, for every
t 2 µ(x): C1(t), . . . , Cn(t) 2 I1O . Then, by applying the counterpart rule
in sk(O) we obtain that for every t 2 µ(x): D(t) 2 I1O .

2. C(x) ! R(x, fC
RD(x))^D(fC

RD(x)) (where a = D(fC
RD(x))): from the IH,

for every t 2 µ(x): C(t) 2 I1O . Then, for every t 2 µ(x):D(fC
RD(t)) 2 I1O ,

or for every t 2 µ(fC
RD(x)): D(t) 2 I1O .

3. C(x) ! R(x, vCRD) ^D(vCRD) (where a = D(vCRD)). Then, there exists a
GCI of type: C v 9R.D in O and sk(O) contains a rule of type C(x) !
D(fC

RD(x)). Note that this is the only rule which introduces functional
terms of type fC

RD(. . .). Thus, for every such term t = fC
RD(y) occurring

in terms(I1O ) it holds that D(t) 2 I1O .But µ(vCRD) is exactly the set of
all such terms.

4. R(x, y)^C(y) ! D(x) (where a = D(x)). Then, R must be a backward-
sound role (from the definition of safe roles). From the IH: for every
t 2 µ(x), C(t) 2 I1O and there exists a t0 2 µ(y) s.t. R(t, t0) 2 I1O . Then,
by applying the counterpart rule in sk(O) for every t 2 µ(x) we obtain
D(t) 2 I1O .

5. C(x) ^ x ⇡ y ! C(y). From the IH: for every t 2 µ(x), C(t) 2 I1O and
for every t2 2 µ(y) there exists a t1 2 µ(x) s.t. t1 ⇡ t2. Then, C(t1) 2 I1O
for every such t1, and by applying the counterpart rule in sk(⇡(O)) we
obtain C(t2) 2 I1O , for every t2 2 µ(y).

iii) a = R(x, y), where R is a backward-sound role. Then, there must be a
ground rule with head R(x, y) whose body is satisfied in ground(NO):

1. U(x, y) ! R(x, y). AsR is a backward-sound role, U is a backward-sound
role as well. From the IH: for every t1 2 µ(x), there exists t2 2 µ(y) s.t.
U(t1, t2) 2 I1O , and thus, by applying the counterpart rule in sk(⇡(O)):
for every t1 2 µ(x), there exists t2 2 µ(y) s.t. R(t1, t2) 2 I1O .

2. U(y, x) ! R(x, y). Then, U� v⇤
R R, and U must be a forward-sound

role (otherwise R would not be a backward-sound role). Then from the
IH: for every t2 2 µ(x), there exists t1 2 µ(y) s.t. U(t1, t2) 2 I1O , and
thus by applying the counterpart rule in sk(⇡(O)): for every t2 2 µ(x),
there exists t1 2 µ(y) s.t. R(t2, t1) 2 I1O .

3. C(x) ! R(x, fC
RD(x))^D(fC

RD(x)). Similar to case ii) 2) above: for every
t 2 µ(x): R(t, f(t)) 2 I1O .

4. C(x) ! R(x, vCRD) ^ D(vCRD). Then, there exists a GCI of type: C v
9R.D in O and sk(⇡(O)) contains a rule of type C(x) ! D(fC

RD(x)) (†).
From the IH: for every t 2 µ(x): C(t) 2 I1O . Then, by applying (†) we
obtain R(t, fC

RD(t)) 2 I1O , for every t 2 µ(x)).
5. R(x, s) ^ R(s, y) ! R(x, y). From the IH it follows that: for every t1 2

µ(x), there exists t2 2 µ(s) s.t. R(t1, t2) 2 I1O and for every t2 2 µ(s),
there exists t3 2 µ(y) s.t. R(t2, t3) 2 I1O . By applying the counterpart
rule in sk(⇡(O)), we obtain that for every z 2 µ(x) there exists u 2 µ(y)
s.t. R(z, u) 2 I1O .



6. R(x, y) ^ x ⇡ z ! R(z, y). From the IH: for every t1 2 µ(x), there
exists t2 2 µ(y) s.t. R(t1, t2) 2 I1O , and for every t3 2 µ(z), there
exists t1 2 µ(x) s.t. t1 ⇡ t3. Then, by applying the counterpart rule in
sk(⇡(O)), we obtain that for every t3 2 µ(z) there exists t2 2 µ(y) s.t.
R(t3, t2) 2 I1O .

7. R(x, y) ^ y ⇡ z ! R(x, y). From the IH: for every t1 2 µ(x), there
exists t2 2 µ(y) s.t. R(t1, t2) 2 I1O , and for every t2 2 µ(y), there
exists t3 2 µ(z) s.t. t2 ⇡ t3. Then, by applying the counterpart rule in
sk(⇡(O)), we obtain that for every t1 2 µ(x) there exists t3 2 µ(y) s.t.
R(t1, t3) 2 I1O .

iv) a = R(x, y), where R is a forward-sound role. Then, there must be a ground
rule with head R(x, y) whose body is satisfied in ground(NO):

1. U(x, y) ! R(x, y). Similar to case iii) 1) above.
2. U(y, x) ! R(x, y). Then, U� v⇤

R R and thus, U is a backward-sound
role. From the IH: for every t1 2 µ(y), there exists t2 2 µ(x) s.t.
U(t1, t2) 2 I1O , and thus by applying the counterpart rule, for every
t1 2 µ(y), there exists t2 2 µ(x) s.t. R(t2, t1) 2 I1O .

3. C(x) ! R(x, fC
RD(x)) ^D(fC

RD(x)). Similar to case iii) 2) above.
4. C(x) ! R(x, vCRD) ^D(vCRD): then R must be safe. Contradiction with

R being a forward-sound role.
5. R(x, s) ^ R(s, y) ! R(x, y). From the IH it follows that: for every

t3 2 µ(y), there exists t2 2 µ(s) s.t. R(t2, t3) 2 I1O and for every
t2 2 µ(s), there exists t1 2 µ(x) s.t. R(t1, t2) 2 I1O . By applying the
counterpart rule, we obtain that for every t3 2 µ(y) there exists t1 2 µ(x)
s.t. R(t1, t3) 2 I1O .

6. R(x, y) ^ x ⇡ z ! R(z, y). From the IH: for every t2 2 µ(y), there
exists t1 2 µ(x) s.t. R(t1, t2) 2 I1O , and for every t1 2 µ(x), there
exists t3 2 µ(z) s.t. t1 ⇡ t3. Then, by applying the counterpart rule in
sk(⇡(O)), we obtain that for every t2 2 µ(y) there exists t3 2 µ(z) s.t.
R(t3, t2) 2 I1O .

7. Similar to case iii) 7) above.

v) a = R(x, y), with R being a simple role. Then, there must be a ground rule
with head R(x, y) whose body is satisfied in ground(PO " !):
1. U(x, y) ! R(x, y): U is a simple role as well, follows directly from the

IH.
2. U(y, x) ! R(x, y): U� is a simple role as well, follows from the symmetry

of the IH.
3. C(x) ! D(vCRD) ^ R(x, vCRD): then R must be safe and there exists

a GCI of type: C v 9R.D in O and sk(O) contains a rule of type
C(x) ! D(fC

RD(x))^R(x, fC
RD(x)). Note that this is the only rule which

introduces functional terms of type fC
RD(. . .). Thus, for every such term

t = fC
RD(y) occurring in terms(I1O ) it holds that R(y, fC

RD(y)) 2 I1O .But
µ(vCRD) is exactly the set of all such terms. Also, from the IH for every
t 2 µ(x): C(t) 2 I1O . Then, for every t 2 µ(x): R(t, fC

RD(t)) 2 I1O .



4. C(x) ! D(fC
RD(y) ^ R(x, fC

RD(y): from the IH, for every t 2 µ(x):
C(t) 2 I1O . Then, for every t 2 µ(x): R(t, fC

RD(t)) 2 I1O , or for every
t 2 µ(fC

RD(x)): D(t) 2 I1O .
5. R(x, y) ^ x ⇡ z ! R(z, y). Similar to cases iii) 6) (in one direction) and

iv) 6) (in the other direction) above.
6. R(x, y) ^ y ⇡ z ! R(x, z). Similar to cases iii) 7) (in one direction) and

iv) 7) (in the other direction) above.

vi) a is an equality atom: a = x ⇡ y. Then, there must be a ground rule whose
body is satisfied in ground(PO " !):
1. C(s)^R(s, x)^D(x)^R(s, y)^D(y) ! x ⇡ y: Then, R is a simple role

and from the IH:
– for every t1 2 µ(x), D(t1) 2 I1O and there exists t2 2 µ(s) s.t.

R(t2, t1) 2 I1O and for every t2 2 µ(s) there exists t3 2 µ(y) s.t.
R(t2, t3) 2 I1O . Also, for every t2 2 µ(s), C(t2) 2 I1O , and for every
t3 2 µ(y), D(t3) 2 I1O . Thus, by applying the counterpart equality
rule in sk(⇡(O)), we obtain that for every t1 2 µ(x), there exists
t3 2 µ(y) s.t. t1 ⇡ t3;

– similarly as above one can show that for every t3 2 µ(y), there exists
t1 2 µ(x) s.t. t1 ⇡ t3;

2. C(x) ! x ⇡ a. From the IH: for every t 2 µ(x), C(t) 2 I1O and thus for
every t 2 µ(x): t ⇡ a 2 I1O . As µ(x) 6= ; (also from the IH), it follows
that for every t2 2 µ(a) = {a}, there exists t1 2 µ(x) s.t. t1 ⇡ t2.

3. x ⇡ y ! y ⇡ x: follows from the symmetry of the IH.
4. x ⇡ y ^ y ⇡ z ! x ⇡ z: follows from the IH, similar to case iv) 5), but

bidirectional.

Claims a) and b) follow directly from Lemma 1 point ii).

Proposition 1. Let O be an ontology with signature ⌃. Furthermore, let R 2 ⌃
be a role name satisfying at least one of the following properties: (i) R is simple,
(ii) for every axiom of type A v 9S.B in O, with S being a safe role S 6v⇤

R R, or
(iii) for every axiom of type A v 9S.B in O, with S being a safe role S 6v⇤

R R�.
Then, O |= R(a, b) i↵ NO |= R(a, b) i↵ R(a, b) 2 I1NO .

Proof. The statement in the proposition follows by simple inspection of claims
iii), iv), and v) in Lemma 1.

We next show Theorem 3. For this, we prove first the following auxiliary lemma.

Lemma 2. Let O be a Horn-SHOIQ ontology. If fC
RD(fA

SB(t)) 2 terms(I1NO ),
then E(vCRD, vASB) 2 I1PO .

Proof. Let VNO = {vCRD | vCRD 2 terms(I1NO )} and let µ : terms(I1NO ) !
terms(I1PO ) be defined as follows:

µ(x) =

(
x, if x 2 N

I

[ VNO

vCRD, if x = fC
RD(y)



Then, it can be shown by straightforward induction that: C(x) 2 I1NO im-
plies C(x) 2 I1PO (all rules in NO are also in PO except for rules of type
C(x) ! R(x, fC

RD(x))^D(fC
RD(x)) which are replaced with rules of type C(x) !

R(x, vCRD) ^D(vCRD) ^ PE(x, vCRD)).
Assume fC

RD(fA
SB(t)) 2 terms(I1NO ). Then, ground(NO) must contain the

following two rules:

– A(t) ! S(t, fA
SB(t)) ^B(fA

SB(t)), and
– C(fA

SB(t)) ! R(fA
SB(t), f

C
RD(fA

SB(t))) ^D(fC
RD(fA

SB(t))),

and it must also be the case that: A(t) 2 I1NO and C(fA
SB(t)) 2 I1NO . Then,

A(µ(t)) 2 I1PO , C(µ(fA
SB(t))) 2 I1PO , and ground(PO) contains the following

rules:

– A(µ(t)) ! S(µ(t), vCRD) ^B(vCRD) ^ PE(µ(t), vCRD),
– C(vCRD) ! R(vCRD, vASB) ^D(vASB) ^ PE(vCRD, vASB),
– U(vCRD) ^ PE(vCRD, vASB) ^ U(vASB) ! E(vCRD, vASB), and
– facts: U(vCRD) and U(vASB).

From the above it follows that: PO |= E(vCRD, vASB), and thus: E(vCRD, vASB) 2
I1PO . ut

Theorem 3. Let O be an RSA ontology with signature ⌃. Then, the Skolem
chase of NO terminates with a Herbrand model of polynomial size. Furthermore,
if O is WRSA, then the Skolem chase of NO terminates with a Herbrand model
of size at most exponential.

Proof. Let t 2 terms(I1NO ). Then, t is of the form gn(. . . (g1(u)) . . .), where each

gi is of the form fCi
Ri,Di

and u 2 N
I

or u is of the form vCRD. From Lemma 2 it

follows that E(vi, vi+1) 2 I1PO , where vi = fCi
Ri,Di

, for every 1  i < n.
If GO is a polytree, for every two nodes v1 and vn there is at most one path in

GO: (v1, . . . , vn) which connects them. Thus for given gn, g1, and u, I1NO contains
at most one term t as above. As both the number of function symbols and of
terms of form vCRD in NO is polynomial in the size of the O and the number of
unary and binary atoms which occur in NO is also polynomial, it follows that
the size of I1NO if also polynomial in the size of O.

If GO is acyclic, every path of the form (v1, . . . , vn) in GO must not contain
the same node twice. Then, the number of terms t of form gn(. . . (g1(u)) . . .) is
bounded by ckn, where c is the number of named individuals and terms of form
form vCRD occurring in NO and k is the number of function symbols occurring in
NO. Thus, the total number of terms occurring in NO is finite and bounded by
c⌃0ikk

i, which is exponential in the size of O. Consequently, the size of I1NO
is also bounded by an exponential in the size of O. ut

Theorem 5. Unary fact entailment is Pspace-hard for WRSA ontologies.



Proof. In [10] [Lemma 63] validity checking for QBF formulas which is a standard
Pspace-complete problem is reduced to fact entailment w.r.t. weakly-acyclic
Horn-SHI ontologies. While weak-acyclicity and WRSA are two distinct con-
ditions, the particular reduction provided as proof of that lemma produces a
set of existential rules which can be translated into a WRSA Horn-SHI on-
tology. As such, the reduction shows as well that fact entailment w.r.t. WRSA
Horn-SHOIQ ontologies is Pspace-hard.

Proposition 3. An ontology O is universally RSA i↵ O [AO
⇤ is RSA.

Proof. Assume O is universally RSA. Then, it is RSA also for O[AO
⇤ . It remains

to be shown that ifO[AO
⇤ is RSA,O[A is RSA for every ABoxA. LetOA be the

extension of O with an arbitrary such ABox A and let O⇤ = O[AO
⇤ . Also let N

I

⇤

and N
I

A be the set of named individuals occurring in O⇤ and OA respectively.
Then we define a mapping µ : terms(POA) ! terms(PO⇤) as follows:

µ(x) =

(
x, if x 2 terms(PO⇤)

⇤, otherwise

It can be shown by induction on the level of atoms in I1POA that:

– for every A(x) 2 I1POA : A(µ(x)) 2 I1PO⇤ ,
– for every R(x, y) 2 I1POA : R(µ(x), µ(y)) 2 I1PO⇤ , and
– for every x ⇡ y 2 I1POA : µ(x) ⇡ µ(y) 2 I1PO⇤ .

Thus, the graph GPOA is a subgraph of GPO⇤ and acyclicity of PO⇤ implies
acyclicity of POA . ut

B Singularisation

In Section 6 we provided an example which shows how every ontology O which
contains a functional restriction is not universally acyclic: the role involved in
the functional restriction makes the Skolem chase for O [ AO

⇤ not terminate.
Furthermore, as every such role is an unsafe role (by definition of safety), the
Skolem chase for the program PO[A⇤(O) will not terminate as well.

As mentioned there, the standard approach to circumvent the issue of Skolem
chase non-termination due to equality is to exploit the so-called singularisation
technique [22]. In the following we provide an overview to singularisation and
the way we applied the technique to our problem. The overview can be seen as
a simplified account of the treatment of singularisation in [10].

Roughly speaking, a first order theory � with signature ⌃ consisting in a set
of facts and a set of existential rules of the form 8x, z.�(x, z) ! 9y. (z,y) (†)
can be singularised by applying the following steps:

– all equality atoms of type u ⇡ t are replaced with Eq(u, t), where Eq is a
fresh predicate which is axiomatised as an equivalence relation over ⌃ (like
⇡), but not as a congruence relation over ⌃ (unlike ⇡). Thus equality is
weakened by dropping replacement axioms like C(x) ^ x ⇡ y ! C(y).



Horn-SHOIQ ax. Singularised Rules
R1 v R2 R1(x, y) ! R2(x, y)
R1 v R

�
2 R1(x, y) ! R2(y, x)

Tra(R) R(x, y) ^R(y0
, z) ^ Eq(y, y0) ! R(x, z)

A1 u . . . uAn v B A1(x) ^ . . . ^An(xn) ^ Eq(x, x2) ^ . . .Eq(x, xn) ! B(x)
A v {a} A(x) ! Eq(x, a)
9R.A v B R(x, y) ^A(y0) ^ Eq(y, y0) ! B(x)
A v 1S.B A(x) ^ S(x0

, y) ^ Eq(x, x0) ^ S(x00
, z) ^ Eq(x, x00) ^B(z) ! Eq(y, z)

A v 9R.B A(x) ! 9y.(R(x, y) ^B(y))
Ran(R) = A R(x, y) ! A(y)
A v 9R.{a} A(x) ! R(x, a)

A(a) A(a)
R(a, b) R(a, b)

Fig. 6. Horn-SHOIQ axioms and their translation into singularised rules.

– for each rule of type (†) and each variable x in x [ z which occurs at least
twice in �(x, z), all but one occurrences of the variable are renamed using
fresh variable names (e.g. x0, x00, etc.); furthermore, atoms of form Eq(x, x0),
Eq(x, x00), etc., are added to �(x, z) to compensate for the lack of replace-
ment axioms in the axiomatisation of Eq.

Note that the first step of the above-mentioned transformation is non-determi-
nistic. In the following we will refer to the (non-deterministic) result of applying
this transformation as a singularization of �. By abuse of notation we also talk
about singularisations of a Horn-SHOIQ ontology O as being singularisations
of the translation of O to a first order theory ⇡(O).

Before describing how singularization preserves reasoning outcomes we also
introduce the transformation rev which can be applied on a set of first order
atoms S possibly containing the predicate Eq and which replaces every occur-
rence of Eq in some atom in S with ⇡. Intuitively, rev reverses the weakened
equality to full equality.

Proposition 4. Let � be a first order theory with signature ⌃ consisting in a
set of facts and existential rules of form (†). Also let �0 be a singularisation of
� and let a be a fact. Then:

� |= a i↵ rev(I1�0 ) |= a i↵ rev(I1�0 ) [ F⇡
⌃ |=⇡ a.

Thus, it is possible to check fact entailment w.r.t. a theory � by analysing
the chase of sg(�) (for any given singularisation singularisation sg(�)). However,
unlike in the standard case, here it is not enough to check whether the given
atom is part of the chase. First, full equality is restored w.r.t. the chase (by
replacing the Eq predicate with ⇡), and then it is checked whether the new set
of atoms classically entails the given fact. This amounts to e↵ectively applying
the equality replacement rules on rev(I1

sg(�)).
As previously mentioned, the advantage of reasoning w.r.t. a singularised

ontology is that the chase is much more likely to terminate on any given singu-



larisation than on the original ontology. Indeed as our tests in Section 8 show,
many ontologies become universally acyclic as a result of the singularisation.
In our tests we used a particular heuristic for singularising ontologies which
is depicted in Figure 6: for every rule in ⇡(O) which contains more than one
occurrence of a given variable, the first occurrence is kept unchanged and all
subsequent occurrences lead to freshly named variables. If we denote with s(O)
the result of applying our particular singularization strategy on a Horn-SHOIQ
ontology O, Theorem 2 can be rephrased as follows:

Theorem 6. The following properties hold for each ontology O, concept names
A,B and constants a and b, where ⌃ is the signature of O and c is a fresh
constant not in ⌃:

1. O is satisfiable i↵ PO is satisfiable i↵ rev(I1
s(O)) |= 9y.?(y).

2. O |= A(a) i↵ NO |= A(a) i↵ rev(I1
s(O)) |= A(a);

3. O |= A v B i↵ NO [ {A(c)} |= B(c) i↵ rev(I1
s(O[{A(c)})) |= B(c).

Proof. Follows from Theorem 6 and the fact that P
s(O) is the same as s(PO)

(and thus, Proposition 4 can be applied w.r.t. PO).
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