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Abstract

Recently attempts have been made to extend the Dolev-Yao security model by
allowing an intruder to learn weak secrets, such as poorly-chosen passwords, by off-
line guessing. In such an attack, the intruder is able to verify a guessed value g
if he can use it to produce a value called a wverifier. In such a case we say that
g is verifier-producing. The definition was formed by inspection of known guessing
attacks.

A more intuitive definition might be formed as follows: a value is verifiable if
there exists some computational process that can somehow recognise a correct guess
over any other value.

We formalise this intuitive definition, and use it to justify the soundness and com-
pleteness of the existing definition. Specifically we show that a value is recognisable if
and only if the value is either already Dolev-Yao deducible or it is verifier-producing.
In order to do this it was necessary to clarify the definition of verifier production
slightly, revealing an ambiguity in the original definition.

1 Introduction

Problem Statement. Some security protocols are vulnerable to guessing attacks,
where an intruder can guess a value not otherwise known to him, and verify the cor-
rectness of this guess using messages he has learned. This is a problem particularly for
protocols that use user-chosen passwords.

For example, consider the following simple protocol, which aims to authenticate a
user a to a server s using a symmetric key p formed from a shared password:

Message 1. s —a : ng
Message 2. a —s : {|nglp.

The server s sends a fresh nonce n; to a, who replies by encrypting this nonce with the
shared password p.

An intruder overhearing this exchange would be able to guess a value for p, and
use it to decrypt the ciphertext from Message 2. If the result is equal to the plaintext
from Message 1, the intruder may deduce (with high probability) that he has guessed
p correctly. Of course, this ‘guessing’ may be automated, by iterating through some
suitable dictionary, using each value in turn.

Some assumptions are made:

e We assume that values have no entropy: for example, an intruder is not able to test
whether a sequence of bits he encounters represents a nonce or a key, and he can
never immediately detect if he decrypts a piece of ciphertext with the wrong key.

e We will be assuming that certain values used in protocols have a non-negligible
probability of being guessed using a feasible amount of resources, for example, if
they appear in a dictionary.

e We consider only off-line guessing attacks where the intruder does not require inter-
action with the protocol in order to check correctness of a guess; on-line attacks can



be detected and prevented using other means, such as blocking multiple incorrect
guesses.

These attacks are not captured by the standard Dolev-Yao model [DY83] where an

intruder’s knowledge at any moment is defined as the closure of directly observed messages
under a set of production steps.
Previous work. Lowe [Low02, Low04] has extended the Dolev-Yao model to allow the
intruder to perform guessing attacks as follows. At any point in the protocol the intruder
can guess a value and then attempt to verify that guess; if the verification is successful
he may add the guess to his knowledge and continue.

By Lowe’s definition, an intruder verifies a value g if he can use it to produce a verifier
v satisfying any of:

e v can be produced in two different ways,
e v is a value the intruder already knew, or
e v is an asymmetric key, and the intruder knows its inverse.

These conditions were formed by inspection of known guessing attacks, and appears
slightly ad-hoc: it is stated in [Low04] that ‘it is hard to be sure that there are no others.’
Also, the formalisation of this definition is quite lengthy and contains some unnatural
subtleties.

There are other extensions of the Dolev-Yao model that capture guessing attacks
[Coh02, DJ04, CMAFE03, Cho04]. However, these are all reformalisations of Lowe’s origi-
nal definition in different frameworks, and we expect that results about Lowe’s framework
can be easily adapted for these other extensions.

This paper. We propose a more intuitive, computational definition that captures the
essence of guess verification:

An intruder can verify a guess of g if there exists a program that behaves in
an observably different way on input g than on any other input.

We formalise our definition and show how it applies to some example protocols. We will
refer to guess verification in this form by saying that the value is recognisable.

Despite being simpler and more natural, there is a major disadvantage of this def-
inition: it involves a quantification over all programs, making it difficult to automate
directly. On the other hand, [Low04] uses verifier production in a decision procedure
for the automatic verification of protocols, which is shown to be effective on real-world
examples.

We relate these two definitions by proving that a guess is recognisable if and only if
it is either already deducible within the Dolev-Yao model or it is verifier-producing. This
is a non-trivial result because the arbitrary recognising program may:

e Make use of programming control structures, e.g. conditionals and loops.

e Possess redundancy (i.e. contain behaviour not optimal or necessary for the guessing
attack to succeed), which is not permitted in a verifier-production attack trace.



e Create malformed terms, e.g. by decrypting a ciphertext with the wrong key; this
might be useful in a guessing attack, but a verifier-production trace does not allow
it.

Contributions. We present a simple and intuitive computational definition of guess
verification. This is in contrast to previous formalisations which were defined by capturing
the characteristic behaviours of known attacks.

We relate these definitions by proving their equivalence; in doing so, we require a
slight strengthening of the definition of verifier production. The contribution of our work
can be seen as follows:

e [t gives a justification for the definition of verifier production: technically, it shows
that Lowe’s algorithm is sound and complete with respect to our more computa-
tional model.

e It provides a decision procedure (i.e. that given in [Low04]) for finding guessing
attacks for our more natural definition of guess verification.

e [t exposes an ambiguity in the verifier-production definition.

As far as we are aware there have been no attempts to computationally justify such
verifier-production techniques for analysing guessing attacks.
Organisation. In Section 2, we give the existing definition of guess verification from
[Low04]. We motivate and describe our new definition in Section 3, and formalise it
in Section 4. We prove the completeness and soundness of the original definition with
respect to our new definition in Sections 5 and 6 respectively. Conclusions and future
work are given in Section 7.

2 Existing definition: verifier production

In this section, we give the definition of guess verification from [Low04]; for more expla-
nation and motivation, consult that paper.

First, we describe the standard Dolev-Yao deduction rules. These describe how an
intruder may use learned and initially-known facts to deduce new facts:

{f7 fl} l_pair (f7 fl)a
{(fafl)} st f’
{(/, /) Fea [,

{fa k} Fenc {|f|}ka
{{|f|}]€7k_1} Fdec [

A series of deductions IK = IK' is defined by the following rules:

IK |z IK,
SCIKANSH fAIKU{f} By IK' = IK Ege - 1K'



We refer to tr as a D-Y trace, and say that IK' (or a value in IK') is D-Y deducible from
IK.

We now give the verifier-production definition of guess verification. An intruder ver-
ifies a guess g using verifier v from knowledge IK if there exist IK', S, S’,1,I' such that
either Conditions (1)—(5) hold, or Condition (6) holds.

Firstly, the intruder uses the initial knowledge and the guess to perform a sequence
of deductions:

IK U{g} Eu IK'. (1)
One of these deductions must produce the verifier v:
Skiv in tr. (2)

It must be impossible to obtain the information necessary for the deduction without
knowing g:

AIK" - (IK = IK" D S). (3)

The verifier must satisfy one of the following properties: (a) it can be produced in a
second, different way; (b) the intruder already knew the value; or (c) it is an asymmetric
key, and the intruder knows its inverse.

S" by vintr A(S,1) # (S, 1) (a)
V

v € IK U{g} (b) (4)
Vv

v € ASYMMETRIC _KEYS Av ! € IK'. (c)

Finally, deductions that simply undo previous deductions are prohibited. Without this
condition, certain false attacks are detected:

V(S" o) intr - (S ;v undoes S” Fp v”) A (5)
=(S" -y v undoes S” i "),

where,

{fa f,} l_Paif (fa fl) undoes {(fa f,)} I_fst f’
{fa f,} l_pair (f7 fl) undoes {(fa f,)} l_Snd fla
{(fa f,)} l_fst f undoes {f’ fl} l_pair (fa f,)a
{(fa fl)} |_snd f, undoes {f’ fl} l_pair (fa f,)a
{f k} Fenc {fte undoes  {{{f[r, &7} Faec f,
{{0/0k: K"} Faec £ undoes  {f,k} Fenc {/]t-

There is an additional way that an intruder can verify a guess which is not covered
by the above five conditions:

g € ASYMMETRIC_KEYS Ag ' € IK. (6)



We will say that a value g is verifier-producing from knowledge IK if it is verifiable
according to the above definition. For convenience, we will overload this definition by
allowing the initial knowledge IK to be a sequence.

This definition is quite lengthy and contains some subtleties. It is not unreasonable
to have doubts about its correctness. In particular, one might ask whether the three
sub-conditions of Condition (4) cover all possible ways of verifying a guess.

3 A new definition: recognisability

In this section we show how guessing can be defined more intuitively. We imagine that
any intruder performing an off-line guess verification must have to invoke a procedure
that informs him whether his guess is correct or not; such a procedure would need to
somehow tell the difference between correct and incorrect guesses. This procedure may
utilise values that the intruder has been sent, has overheard, or initially knew.

To formalise this, we say that a guess of g is recognisable from a sequence of knowl-
edge K if there exists a program P that behaves in some observably different way when
provided with input K~ (g) than when provided with K™ (g') for any value ¢’ # g. To
put this in mathematical notation:

AP -Vg' # g- P(K™(g)) # P(K™(g)),

where >~ is observable equivalence on programs. Without loss of generality, we may assume
that K contains no repetitions, i.e. it corresponds naturally to a knowledge set, as for
verifier production. While we discuss and motivate this definition, we hold off formally
defining a syntax and semantics for programs until Section 4.

We restrict the intruder so he can only guess atomic data values (i.e. he cannot guess a
term built up using encryption or pairing). We also only consider well-formed knowledge
sequences K. Such restrictions are also imposed by the verifier-production framework to
which we will be relating our definition.

Our definition might be considered too general because although it guarantees that
g produces a uniquely recognisable output, we may not o priori know what that output
is. For example, consider a program P that takes a guess g and outputs it in some
numeric form. P will produce a unique output for every guess g, but it is certainly
not verifying anything. An alternative definition might say that the program P must
produce output (0) for a wrong guess ¢’ and (1) for a correct guess g. We show that,
within our framework, these two definitions are equivalent (Theorem 5.20). Examples
like the one above are not possible because we prevent programs from inspecting values
in this way. We have already made the assumption that values have no entropy so there
can be nothing to gain from inspecting values at the bit level.

We finish this section with a simple example. Consider the knowledge sequence K =
(v,{jv[}4) where g is a symmetric key, and suppose we want to know whether an intruder
could verify a guess of g in the recognisability framework. To show that this is possible,
we need to find a program P that produces a different output when provided with input



K™ {g) than when provided with K™ (g’) for any ¢’ # g. A program that would do this
would

e accept the input guess in a formal parameter z;

e decrypt {|v[}y with z;

e compare the result with v;

e outputs 1 or 0 if the test is true or false respectively.

This performs the verification because it outputs a 1 for input g and a 0 for all other
inputs. (Alternatively, the program could have encrypted v with z to form {|v[},, and
compared this value with {jvl},.)

4 A language for programs

In this section we present a formal language for the program P in the previous section.
We begin by introducing terms and programs, and finish with an example program that
recognises a particular value.

4.1 Terms

We assume a set of atomic data. A subset of data is keys, which is partitioned into
symmetric keys and asymmetric keys. A symmetric function -~!
associates k with its inverse key k1.

Our programs will store terms in their registers, which are values from an abstract
datatype representing concrete bit sequences. An abstraction here is useful because it al-
lows us to cleanly model the algebraic properties of these terms in the program semantics.
It also allows us to abstract away from the precise implementation of program operations
such as sequencing and encryption.

The set of terms is generated by the following grammar:

on asymmetric keys

t D

| pair(ty,t2)

| fst(¢)

| snd(t)

| enc (t1 s tg)

| dec (tl y tg)

| enca(ty,t2)
| deca(t,ts),

where terminals D are drawn from the set of atomic data. These terms represent:
the pairing of data together; the two ways of unpairing data; symmetric key encryp-
tion/decryption; and asymmetric key encryption/decryption.



We will deal only with terms that have been fully reduced, according to the following
rewrite rules.

fst(pair(ti,t2)) ~
snd(pair(t1,t2)) ~ to
pair(fst(¢1),snd(t1)) ~
dec(enc(tl, tg), tg) ~ 1
enc(dec(tl,tg),t ) ~
deca(enca(ty, tg), D~ oy
enca(deca(ty,t,™1),ty) ~ ti.

The reader may recall that the verifier-production setting does not differentiate be-
tween symmetric and asymmetric encryption schemes. There, the intended encryption
scheme can be inferred from the values themselves (i.e. whether or not the key is a mem-
ber of ASYMMETRIC_KEYS). In our framework we are dealing with programs that can
accept a class of inputs. It is not known at the program level which scheme of encryption
should be used and it becomes necessary to make it explicit.

We also use a different notation for terms/facts than that used in verifier production.
We take (f, f) as syntactic sugar for pair(f, f'), and {|f [} as syntactic sugar for enc(f, k)
or enca(f, k), depending on whether k is symmetric or assymmetric.

Note that while every term in the verifier-production framework has a counterpart
in our framework, the converse is not true: there are terms that cannot be mapped
backwards in the above translation, such as fst(f) where f is not a pair. We call these
terms malformed (as opposed to well-formed). We observe that malformed terms are
precisely those that contain one of the following:

e fst, snd, dec or deca,
e enc(...,t), where t is not a symmetric key, or
e enca(...,t), where ¢ is not an asymmetric key.

Recall that the inverse-key function -—! is defined over atomic values; therefore it can
never be applied to malformed terms.

We need malformed terms in order to model such arbitrary behaviour as decrypting
a ciphertext with the wrong key (for example, the wrong guess) or encryption scheme, or
decomposing a non-composite term.



4.2 Programs

A program P is a sequence of instructions, where an instruction is one of:

i, = pair(r;, r;)
ry := fst(r;)

r := snd(r;)

T = enc(ri,rj)

i, := dec(r;, rj)

T = enca(ri, ’f'j)
i, := deca(r;, ;)
goto k

if r; =7, goto k
output k&

where 1, 7,k are natural numbers. The assignment instructions mimic terms as they
apply the appropriate operations. We also have unconditional and conditional jumps,
and outputs.

A program P takes an input, which is a finite sequence of well-formed terms. The input
is copied into registers rg,...,r,—1, where n is the length of the input. (Remember: the
registers store terms.) All other registers are undefined, except a special integer register
called the program counter (PC) which starts at 0. We then enter a fetch/execute loop
as follows.

If there is no instruction at location PC in the program, then the program will halt.
Such programs are ill-written, but we must say how they behave nonetheless.

If there is an assignment instruction r, := ¢t at PC, then it is executed by updating
the register r; to the term ¢ which is formed from ¢ by substituting names of registers
with their values. For example, if registers ro and r3 hold terms enc(v, k) and v’ respec-
tively, then execution of the instruction r; := pair(ry, r3) causes r1 to subsequently hold
pair(enc(v, k),v'). Immediately after this, a top-level reduction may take place in ryg,
according to the ~» relation, to ensure the term is in its fully reduced form. If an unini-
tialised register is encountered on the right-hand side of an assignment, then we consider
the program to be ill-written and it halts. Finally, the PC is increased by one.

Unconditional jumps goto n update the PC to n. Conditional jumps if r; = r; goto n
are executed as follows: if the terms in the registers r; and r; are syntactically identical,
then the PC is changed to n; otherwise the PC is increased by one. Note that uncondi-
tional jumps are instances of jumps with conditional rog = r¢, and will therefore not be
mentioned in proofs.

An output command output k sends the number k to the program’s output stream,
and increases PC by one.

The observable behaviour of a program P with an input K is the (possibly infinite)
sequence of numbers that appears on the output steam during execution. We write
P(K) ~ P'(K') to mean that the output of P with input K is identical to that of P’
with input K.



4.3 An example

We present a program P that performs the verification described by the example in
Section 3. Recall that the intruder is attempting to guess a symmetric key g with initial
knowledge

K = (v, enc(v, g)).

Therefore the program should expect input of the following form, where z is a guess
of g:

Kz' = Kﬁ<x> = (Ua enc(v,g), (II>,
and here is P itself:

0. r3:=dec(ry,m9)
if rp =r3 goto 4
output 0

goto 5

output 1

Ol W

If we run this program with input K, it assigns the term v to r3, and outputs a 1
before terminating. With input K for any g’ # g the decryption does not reduce and r3
instead holds the term dec(enc(v,g),g’); the test in line 1 will be false and the program
will output a 0.

In contrast, g is not recognisable with the following knowledge:

K' = (enc(v, g)).

Even though a program could attempt to decrypt the term with the guess, as in P above,
it subsequently has no way of telling whether the decryption succeeded or failed.

5 Completeness

In this section we demonstrate the completeness of verifier production with respect to
recognisability by proving the following theorem.

Theorem 5.1. If g is recognisable from knowledge sequence K, then g is either deducible
or verifier-producing from knowledge sequence' K.

If g is already deducible from K, the theorem is trivially satisfied. We therefore
assume that ¢ is not deducible from K throughout the proof. In particular, this means
that ¢ is not a member of K, and hence K~ (g) contains no repetitions. Here is an outline
of the remainder of the proof.

!Strictly speaking, the definition of verifier-producing uses a knowledge set, as opposed to a sequence;
we blur the distinction.



e First we reduce the problem of recognisability to a ‘distinguishability’ problem:
here, we have a program P which distinguishes g from a single, fresh ¢'.

e We then present a series of transformation on P, with the aim of simplifying later
parts of the proof, and prove some useful lemmas about the transformed P.

e We show that the steps made by P when run on the correct guess g produce
terms that are well-formed; this allows us to write down a corresponding Dolev-Yao
deduction trace.

¢ Finally, we show that this trace satisfies the conditions of verifier production given
in Section 2.

5.1 Distinguishability

We now show how an instance of the recognisability problem can be reduced to a slightly
simpler problem which we call distinguishability. Let’s suppose that a guess g is recog-
nisable by the program P with initial knowledge K. That means that for all ¢’ # g, we
have P(K™(g)) # P(K™(g')).

It suffices to consider just one such ¢’ which has the following property: ¢’ does not
appear as a subterm in K and is not the inverse of any key appearing as a subterm in K.
We say that ¢’ is fresh from K. We assume that the type of g is sufficiently large for such
a ¢’ to exist. For intuition, freshness is required to ensure that P is actually recognising
g as opposed to recognising ¢'.

We say that K™ (g) and K (¢') (for ¢’ fresh) are distinguishable when there exists
a program P such that P(K ™ (g)) # P(K " (g')). The following proposition summarises
the above discussion.

Proposition 5.2. If a value g is recognisable with knowledge sequence K, then for some
g fresh from K, the knowledge sequences K™ (g) and K™ (g') are distinguishable.

As an aside, note that our definition of distinguishability should not be confused
with some stronger definitions in the literature, where the program has access to both
inputs at once. For example, for our purposes the knowledge sequence K = (ni) is
not distinguishable from K' = (ng) (where ny # ng). All any program would see is an
arbitrary bit sequence in both cases, and it cannot make any deductions based on that.

5.2 Normalising distinguishing programs

In this section we present a series of program transformations, which convert a program
into a normal form from where it is easier to relate its behaviour to a verifier-production
guessing attack trace.

The transformations: simplify the output of programs to just a binary signal; unravel
programs so they contain no control structures; add extra registers so each register is
assigned to at most once; and ensure that a certain form of undoing step cannot occur.

10



We define our normal form as the smallest such program, in an effort to comply with
Condition (5) of verifier production.

We are considering the distinguishability of the two knowledge sequences K~ (g) and
K~ (¢'). However, for conciseness and generality, we consider distinguishability of two
arbitrary non-empty knowledge sequences of equal length, without repetitions, which we
call K and K'.

5.2.1 Adding signal
Consider the following new instructions:
signal r; = r; and signal r; hasinv r;.

Their semantics dictate that the program outputs a 1 if the test is true, and a 0 otherwise.
The hasinv test is true exactly when the value of r; is an asymmetric key k£ and the value
of r; is k1. Afterwards, execution of the program terminates.

We now show that allowing this instruction in our programs adds no expressive power.
We can henceforth equivalently consider such programs.

Proposition 5.3. K and K’ are distinguishable iff they are distinguishable by a program
P which may use the signal instruction.

Proof. = Instantly true.
< Replace a signal r; = r; with

if r; = r; goto |

output 0

goto [

output 1 (This is line 1)
goto /.

As this sequence of instructions is longer than the single instruction it replaces, we may

also require a renumbering of references to line numbers in the program in the obvious

way. The value /o, is any line number beyond the last used line in the resultant program.
Replace a signal r; hasinv r; instruction at line n with

r; := enca(r;,r;)

r; = deca(m, ’f'j)

if r; = r; goto |

output 0

goto [

output 1 (This is line 1)
goto /.

This piece of code tests whether encrypting a value  with r; and subsequently decrypting
with r; creates « again. (In fact, it uses the value in r; as x just because we know that
register exists, but any value would do.) If so, r; must be the inverse key of r;. Again,
line reference renumbering may be required. O

11



5.2.2 Unravelling

In this section we show that we can remove all control structures. We define an unravelled
program to be a program that has no if, goto or signal instructions, except that it has
a signal instruction at the end.

Proposition 5.4. K and K' are distinguishable in the sense of Section 5.1 (i.e. by a
program with no signal instructions) iff they are distinguishable by an unravelled program.
Furthermore, the unravelled program will eventually execute this final signal instruction,
i.e. it doesn’t prematurely halt due to undefined program lines or uninitialised registers.

Proof. <= Proposition 5.3.
= Suppose K and K’ are distinguishable by the program P. Consider the sequences
of line numbers that the PC goes through with inputs K and K’ on P: they must be
different, otherwise the same output sequences would be produced. Therefore, there
exists a finite sequence [ that is the longest initial subsequence of both PC-sequences.
We can show that the last element of [ is the line number of an if instruction in P.
We argue by contradiction.

e [f the program contains no instruction at this point, then the program will terminate
here for both inputs K and K’. Therefore [ is the entire PC-sequence for P with
both inputs K and K’, which contradicts them having different PC-sequences.

e Suppose the executing program encounters an assignment using uninitialised regis-
ters for the input K. The program execution on input K’ has so far visited all the
same lines in the program, so must also encounter an uninitialised register. Both
programs terminate at this point. (And vice versa.)

e In all other cases (except if), after executing this instruction both program execu-
tions will fetch the following line in the program.

Now form the unravelled program P’ by selecting the instructions from P at the line
numbers in [, but ignoring all if and goto instructions. Add a final instruction signal c,
where c is the condition in the final if mentioned above.

Now, execution of P’ with either K or K’ will encounter all the same assignment
instructions as P up to the final instruction. When executed in P the value of the
conditional in the above if instruction was different for the two inputs, so the signal
instruction in P’ will output 0 for one input and 1 for the other input. Hence the
program P’ will distinguish K and K'. O

We write P(K) for the mapping from registers to terms when the execution of program
P with input K reaches the final instruction. We now say that an unravelled program P
distinguishes K from K' if it is P(K) that has the signal condition true (and so outputs

1).

12



5.2.3 Unique register assignments

The following proposition eases our proofs by allowing us to unambiguously refer to the
unique value assigned to a register during the execution of a program, and the instruction
that assigned to that register in the program. We define an unravelled program to have the
unique-reg property if a previously undefined register is assigned to at every assignment
instruction.

Proposition 5.5. Two knowledge sequences K and K' are distinguishable iff they are
distinguishable by an unravelled program which also has the unique-reg property.

Proof. < Proposition 5.3.

= First apply Proposition 5.4 to get an unravelled program. Then, starting at line 0
in the program, if that line assigns to an input register or to a register already assigned
to, then rename it and all forward occurrences to a fresh register. Repeat for every line
in order. U

5.2.4 No-tail-undo

Here we present a program transformation that will later ensure Condition (5) of verifier
production is met. The following example should illustrate why it is necessary.

Suppose we are studying the distinguishability of the following two sequences of knowl-
edge:

(ro) (r1)
K = ( enc(m,k), pair(k,m) )
K' = ( enc(m' k), pair(k,m) ).

A program that will distinguish these sequences performs the following operations: ex-
tract the key k from 71, decrypt ro with this key, and compare the plaintext with the
result of extracting m from r;:

ro 1= fst(ry)

r3 = dec(ro,rg)

ry :=snd(ry)

signal r3 = ry.
An alternative version alters the final assignment as follows. Instead of extracting m from
r1, we pair up k with the value in r3 and see if this is equal to r1:

ro := fst(ry)

rs := dec(rg, r2)
r4 1= pair(re,r3)
signal r| = ry.

Both of these programs are optimal in terms of program length. However the second
program will eventually yield a sequence of deductions that does not satisfy Condition (5).
Notice how that last deduction undoes the first:

( pair(k,m) b b, {Imltr, k Fdec m,  k,m Fpair pair(k,m) ).

13



We conclude that choosing the smallest normalised program is not always enough.
What is required is a transformation to turn programs like the second one above into
programs like the first. We begin by defining the programs of interest.

An unravelled unique-reg program that distinguishes K from K’ satisfies the tail-undo
property if it has one of the following shapes (for some i, j, k, q):

r; = fst(rg) rj = snd(ry)

or :
rq := pair(r;, ;) rq = pair(r;, ;)
signal r, = r, signal r, =7,

and also P(K) has r; = t;, rj = t; and r, = ry = pair(¢;,t;) for some ¢;, ¢;. For example,
the second program above has this property. An unravelled unique-reg program satisfies
the no-tail-undo property if it doesn’t satisfy the tail-undo property.

Proposition 5.6. If two knowledge sequences K and K' are distinguishable, then they are
distinguishable by an unravelled, unique-reg program which also satisfies the no-tail-undo

property.

Proof. < Proposition 5.3.

= Proposition 5.5 gives us the unravelled, unique-reg program that, without loss of
generality, distinguishes K from K'. If the program satisfies the no-tail-undo property
then we're done, so we suppose it satisfies the tail-undo property. We do only the case
for fst as the case for snd runs symmetrically.

Form the program P’ from P by replacing the last two instructions with:

ry = snd(ry)

signal r; =1

q

where r; is a fresh register. (We keep the assignment to r;, because other commands

in the program might use the result.) This program satisfies no-tail-undo, whilst still
satisfying the unravelled and unique-reg properties.

In P'(K), we know that ry = r; = t;, so the program P'(K) has its signal condition
true. It remains to show that P'(K') has its signal condition false. Note that the values
of the registers r;, r; and 7, are the same in P(K') and P'(K'). We case split on ¢, the
value of ry,.

e Suppose tj is not of the form pair(-,-). If the signal condition in P'(K') were to
be true, we would need r; = r; = snd(t;). This means that r; = snd(t;) in P(K')
too. This is a contradiction, because P(K') also has r; = fst(¢x), so the condition
ry = rq would be true.

e Suppose t is of the form pair(sy,s2). If the signal condition in P'(K') were to
be true, we would need r; = sp. The means that r; = sy in P(K') too. This is a
contradiction, because P(K') also has r; = s1, so the condition r, = r, would be
true. O
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5.2.5 Smallest Normalised Programs (SNP’s)

We define a smallest normalised program (SNP) that distinguishes K from K’ as a pro-
gram with minimal instructions with the following properties:

e it distinguishes K from K’ (so the signal condition is true for K);

e it is unravelled, i.e. contains no if or goto instructions, and a signal instruction
only at the end;

e it assigns to a fresh register at each assignment (the unique-reg property);
e it satisfies the no-tail-undo property.
The following theorem follows immediately from Proposition 5.6.

Theorem 5.7. If K and K' are distinguishable then they are distinguishable by a Smallest
Normalised Program (SNP).

5.3 Lemmas about SNPs

Here we prove some lemmas about SNPs that will be useful later when comparing recog-
nisability and verifier production. We assume the existence of an SNP P that distinguishes
the knowledge sequence K from K'.

Lemma 5.8. In P(K), all registers have distinct values except (possibly) the register
assigned to in the last assignment.

Proof. By assumption, the input registers of P(K) are distinct. Let r; and r; be registers
with the same values in P(K), such that (without loss of generality) r; is assigned to
after r; receives its value (so r; is either an input register, or is assigned a value before r;
is assigned a value) and r; is not the register of the last assignment. If they have equal
values in P(K') too, we can remove the production of r; and rename all occurrences of
r; to rj; this creates a smaller SNP. So they must have different values in P(K'). By
assumption, r; is not produced in the last assignment, so we can create a smaller SNP
by replacing the last assignment with signal r; = r;, and removing the previous signal
instruction. U

Lemma 5.9. We can’t have two instructions in an SNP with identical right-hand sides.

Proof. Suppose we do. Then we create the same value in the two registers r; and r;, in
both P(K) and in P(K'); we can therefore remove the later assignment, to r; say, and
replace references to r; with r;. This gives a smaller SNP. U

Lemma 5.10. The program P does not perform any ‘undoing.’ Specifically, it does not
contain all of the instructions in any of the following sets (with any instantiation of the
register names).

o 7} 1= pair(r;,r;), r; := fst(ry).
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o 1y 1= pair(rj,r;), r; := snd(ry).

o 7 :=fst(r;), 7 := snd(r;), r; := pair(r;, ).
e r;:=enc(r;,rg), 1 := dec(r;, ry).

o r;:=dec(r;,ry), 7 1= enc(r;,ry).

e rj := enca(r;,ry,), r := deca(rj, ), where P(K) has r, = k and rp,, = k' for
some asymmetric key k.

e rj := deca(r;, ), 1 := enca(rj,r,), where P(K) has r, =k and rp,, = k' for
some asymmetric key k.

Proof. For all cases except the last two, it is clear from the semantics of instructions
that 7, = r; in both P(K) and P(K'). Remove the assignment to r;, and replace any
references to r; with r;. The program still distinguishes K and K’ and is shorter than P,
contradicting the minimality of P.

For the last two cases, suppose P(K') does not have r,, as the inverse key of 7.
Then, end the program at the r; assignment with the instruction signal r; hasinv r,,
to create a smaller SNP — a contradiction. Otherwise, we conclude that the encryption
and decryption cancel out in both P(K) and P(K'), and proceed as before. O

5.4 Well-formedness of deductions in SNPs

We show that a program P that distinguishes knowledge sequence K from K’ never
produces any malformed terms in its registers on the input K. This will allow us to take
the execution of P(K) and write down a well-formed Dolev-Yao trace.

Recall, from Section 4.1 that a term is malformed if it contains fst, snd, dec or deca,
or enc(...,t) or enca(...,t) where ¢ is not an appropriate key.

We say that a term is unreduced as follows: if the term has shape pair(...) then it
was created with an instruction of the form r; := pair(...) with no reduction applying;
and similarly for the other term constructors fst, snd, enc, dec, enca, deca. Note that
non-reduced terms cannot be atoms.

Proposition 5.11. If a malformed term appears in a register r; in P(K), then it is
unreduced.

Proof. In this proof, all values of registers referred to are values in P(K).

We prove the proposition by induction over the number of registers used in initial
segments of the program. For the empty initial segment of P, we only need to consider
input registers. These are not malformed so there is nothing to prove.

We now suppose the induction hypothesis for all registers appearing in some initial
segment of the program: registers that are malformed are unreduced. We encounter the
next instruction in the program that produces a malformed term in a register r;. To re-
establish the induction hypothesis we need to show that no reduction occurs in r; for that
assignment. For each instruction we assume that a reduction does apply and establish a
contradiction.
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r; := pair(r;,r;). For a reduction to apply, we must have r; = fst(¢) and r, =
snd(t) for some ¢. These are malformed, so by induction are unreduced and must
have been created by instructions r; := fst(r,) and rj := snd(r,), where r, and r;
both have value . By Lemma 5.8, registers cannot have the same value like this,
so p = q. We now have a pattern of instructions

rj=fst(r,) ... rp:=snd(r,) ... r;:=pair(r;,rg).

in the program P. This contradicts the ‘no undoing’ property proved in
Lemma 5.10.

ri := fst(r;). If a reduction were to apply, we would have r; = pair(¢,¢'). Recall
that we are assuming that r; is malformed, in which case ¢ must be malformed.
Therefore r; is malformed and therefore unreduced, so there must be an instruction
rj := pair(rp,ry). This constitutes ‘undoing’ as prohibited by Lemma 5.10.

r; :=snd(r;). Analogous to above.

ri := dec(rj, 7). If a reduction is to take place, we must have r; = enc(t1,t2) and
ry, = to. We conclude that r; = ¢;. Recall again our assumption that r; is mal-
formed, so t1 is malformed. As r; contains ¢; as a subterm, it is also malformed. The
induction hypothesis implies the existence of an instruction r; := enc(ry,r,) with
rp = t1 and 4y = 3. By Lemma 5.8 we have ¢ = k which contradicts Lemma 5.10.

ri := enc(rj,7;). As above, swapping dec and enc.

r; := deca(rj,r;). We are supposing that a reduction takes place, so must have
r; = enca(ti,t2) and r = tos~ 1. Hence r; = t;. Remember that r; is malformed
by assumption, so r; is malformed. By induction, we have an instruction r; :=

enca(rp,ry) with ry = to. This is not allowed by Lemma 5.10.

r; := enca(r;, ;). As above, swapping deca and enca, and also ¢ and to L. O

Proposition 5.12. In P(K), malformedness is hereditary in the following sense: a
register assigned to by an instruction using a malformed register is itself malformed.

Proof. Consider an assignment instruction r; := ... where one of the registers used on
the right-hand side is malformed. If a reduction doesn’t occur on r;, then the proposition
is trivially true as the new term will contain the malformed one as a substring. So, for
each instruction we assume a reduction does apply and reach a contradiction.

ri := pair(rj, ). If a reduction occurs, then r; = fst(t) and r;, = snd(¢) for some
t. By Proposition 5.11 we know these register are unreduced, so there must be
previous instructions r; := fst(ry) and r; := snd(ry) where r, = ¢ and r; = t.
Apply Lemma 5.8 to find that p = ¢, but this means the program is performs an
‘undoing’ operation, which contradicts Lemma 5.10.
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o r;:=fst(r;). As a reduction occurs, we must have r; = pair(¢,t'). By assumption,
rj is malformed. Proposition 5.11 tell us r; was created by an instruction r; :=
pair(r,,r,), contravening Lemma 5.10.

e r; :=snd(rj). As above.

e r; :=dec(r;,r;). As areduction occurs, we must have r; = enc(t1,t2) and r, = t».
By semantics of dec, the value of r; will be ¢;. By assumption at least one of r;
and rj is malformed: this must be because at least one of ¢; and t5 is malformed.
Therefore, in either case, r; is malformed. By Proposition 5.11, 7; is unreduced
and there is some instruction r; := enc(rp,r,) where r, = t; and r, = t5. By
Lemma 5.8 we have k = ¢, contradicting Lemma, 5.10.

e r; :=enc(r;j,r;). Analogous to the case above.

e r; := deca(rj,r;). If a reduction occurs, we must have r; = enca(t;,t;) and
rp =ty !. We know that at least one of rj and 7y is malformed, but r; is just a
key to7', so rj must be malformed. But %> is just a key, so t; must be malformed.
By semantics of deca, r; = t1, and so r; is malformed.

e r; :=enca(r;, ;). Analogous to the case above. O
Theorem 5.13. P(K) does not contain any malformed terms.

Proof. Once again, values of registers referred to in the proof are their values in P(K).

Suppose there is a malformed term in a register. As the input is well-formed, this must
be a register created in an assignment. All assignment instructions must ‘contribute’ to
the condition in the signal instruction, else they are redundant and can be removed. We
can then apply the ‘hereditary of malformedness’ property (Proposition 5.12) to deduce
that one of the two registers used in the signal instruction must be malformed.

Now consider the final signal instruction itself. A r; hasinv r; condition could never
be true if one of r; and r; is malformed, so the condition must be of the form r; = r;.
By Proposition 5.11, we know that r; and r; were created in the same way. For example,
if they are both pairs then they were created with instructions r; := pair(ry,r,) and
r;j := pair(ry,r,), such that no reduction applies for these instructions in P(K). So, in
order that r; = r;, we must have had r, = ry and r; = ry. By Lemma 5.8, we must
have p = p’ and ¢ = ¢/, which contradicts Lemma 5.9. Cases for other instructions run
similarly. U

5.5 Forming Dolev-Yao deduction traces from SNPs

The above theorem tells us that we can form a corresponding D-Y trace from P(K),
where P is an SNP which distinguishes the knowledge sequence K from K.

For each instruction we form a deduction in the natural way. For example, from
i, := pair(ry, rj) we get f, f' Fpair (f, '), where registers r;, r; and rj, have the values f, f’
and pair(f, f') respectively. Deductions for other instructions are produced analogously.
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Theorem 5.13 guarantees well-formed Dolev-Yao deductions in each case, resulting in a
valid D-Y trace.
Now that this translation is well defined, we will use it implicitly in proofs.

5.6 SNP deductions respect undoes

Carrying on from the last section, let ¢r be the corresponding D-Y trace of P(K). We
now show that no deduction in ¢r undoes any other deduction. First we prove a small
lemma.

Lemma 5.14. For any i, j, k, q, if P(K) has ri =t, r; = t', and rq = r, = pair(¢,t')
then we cannot have both r; := fst(ry) and ry := pair(r;,r;) in P; neither can we have
both r; := snd(ry) and ry := pair(r;,r;) in P.

Proof. We do only the case for fst, as the case for snd runs symmetrically. Suppose we
have r; := fst(r;) and r, := pair(r;,r;), where registers have values as given in the lemma
statement. Lemma 5.8 then tells us that the assignment to r, is the final assignment.
The signal condition must use rg, or else this final assignment is redundant and could
be removed. Proposition 5.6 then tells us that the signal condition is not of the form
Ty = Tg, so it must be of the form r, = ry, for some other register r, equal to both 7}
and r4. But now we have two registers, neither assigned to in the final assignment, with
equal values, contradicting Lemma 5.8. U

Theorem 5.15. For all pairs of deduction S t=; v and S’ =y v’ in tr, we do not have
S ;v undoes S’ 0.

Proof. We suppose, for a contradiction, S ; v undoes S’ -y v', for each case of undoes in
turn. All register values are in P(K).

e Suppose {f, f'} Fpair (f,f') and {(f, f')} Ft f both in ¢r. This means we have
rp := pair(r;, rj) and rq := fst(ry) in P, with r, = r, = pair(f, f'), ri =ry = f,
and r; = f'. We now case split depending on which instruction appears first:

— Suppose the assignment to r, appears before that to r, in P. Then Lemma 5.8
demands that p = k. So we have r, := pair(r;,r;) and ry := fst(ry) in P.
This contradicts Lemma, 5.10.

— If the assignment to r, appears first, then ¢ = ¢. We have r; := fst(r;) and
rp := pair(r;,rj) in P. This contradicts Lemma 5.14.

e Case for pair/snd runs analogously.

e Suppose {f,k} Fenc {f}x and {{f[}x, %k '} Faec f both in tr, where k is a symmetric
key. This means we have r, := enc(r;,r;) and r, := dec(ry,,r,) in P, with r, =
rm = enc(f,k), r; = ry = f, and r; = r, = k. If the assignment to r, appears
first, then Lemma 5.8 means p = m and j = n, so we contradict Lemma 5.10. If
the assignment to r, appears first, then Lemma 5.8 means ¢ = ¢ and j = n, also
contradicting Lemma 5.10.
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e Suppose {f,k} Fenc {f[x and {{f[}x, %k '} Faec f both in tr, where k is an asym-
metric key. This case is analogous to the previous. O

5.7 SNP deductions recognise the correct guess

Suppose value ¢ is recognisable from knowledge K. Recall from Proposition 5.2 that this
means there is some fresh ¢’ such that K, = K™ (g) and Ky = K~ (g¢’) are distinguish-
able. By Theorem 5.7, we can deduce that they are distinguished by an SNP P. In
this section we show that P distinguishes g from ¢’, as opposed to vice-versa: the signal
condition is true for input K, and false for K.

In this section we assume, for a contradiction, that the signal condition is true
for P(Ky). Under this assumption, the lemmas of Section 5.3 become applicable to
Ky, and this allows us to reuse the proofs from Section 5.4. Where values of registers
are mentioned we mean their values in P(K ) unless stated otherwise.

Proposition 5.16. Under the assumption that the signal condition in P(Ky) is true, if
an assignment causes a register to contain g’ as a subterm, then that register is unreduced.
Recall that unreduced means it was created using the assignment instruction corresponding
to the term’s outer constructor with no reduction applying. In particular, this implies
that ¢’ is a strict subterm of the register.

Proof. The proof runs very much like that of Proposition 5.11. For example, consider the
case r; := fst(r;). If a reduction were to apply, we would have r; = pair(t,t'). Recall
that we are assuming that r; contains ¢’, in which case ¢ must contain g’. Therefore r;
contains ¢’, and is therefore unreduced, so there must be an instruction r; := pair(ry, ry).
This constitutes ‘undoing’ as prohibited by Lemma 5.10. U

Proposition 5.17. Under the assumption that the signal condition in P(Kgy) is true,
each register with g' as a subterm is such that:

1. the register has value ¢’ and it is the last input register; or
2. the register contains ¢’ as a strict subterm and it is unreduced.

Proof. The base case follows from the fact that we are considering P(K,), and ¢’ is fresh
from K (Proposition 5.2). This result then follows easily from the previous proposition.
O

Proposition 5.18. Under the assumption that the signal condition in P(Ky) is true,
the property of containing ¢' as a subterm is hereditary in the following sense: a register
assigned to by an instruction using a register with ¢' as a subterm will also contain ¢’ as
a subterm.

Proof. The proof is very similar to that of Proposition 5.12. U

The following proposition essentially tells us that P is actually recognising g rather
than ¢'.
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Proposition 5.19. The program P distinguishes K, from K : the signal condition in
P is true for input K, and false for input K.

Proof. We suppose for a contradiction that the signal condition is true for K. This
makes the above propositions applicable.

The register holding ¢’ must ‘contribute’ to the condition in the signal instruction,
otherwise P could not distinguish Ky and K, . Hence, applying Proposition 5.18, we see
that g’ must be a subterm of one of the registers used in the signal instruction in P(K ).

This signal condition can’t be r; hasinv r;. We know one of these registers must
contain ¢’, and to be a key it would therefore have to actually be ¢’. In order that this
hasinv condition is true, the other register must be ¢’ _1; this is impossible because ¢’ is
fresh in K, so ¢ 1 doesn’t appear anywhere in the input K.

Hence the signal condition must be of the form r; = r;. It might be the case that these
registers both have the value ¢'; if so, Proposition 5.17 says we must have ¢ = j and P(K})
could never be false. Otherwise, we know that both r; and r; are unreduced, and we end
up with the same argument as in the last paragraph of the proof of Theorem 5.13. U

As an aside, we note that this proposition validates our comment about the generality
of our definition of recognisability made back in Section 3. We state this as a theorem.

Theorem 5.20. A value g is recognisable with knowledge K if and only if it is recognisable
by a program that outputs (1) for g, and (0) for any ¢’ # g (i.e. any wrong guess).

5.8 SNP deductions are verifier producing

We are finally ready to prove that recognisability implies verifier production. We repeat
our assumptions from the start of Section 5:

1. Some value g is recognisable from knowledge K.
2. The value g is not D-Y deducible from K, i.e. there’s no K’ such that K = K' 5 g.

It remains to show that g is verifier producing in order to prove Theorem 5.1.

Recall from Proposition 5.19 that this means that there is an SNP P and some
fresh ¢’ such that the signal condition in P gives true for K, = K™ (g), and false for
Ky = K™(¢'). So by Theorem 5.13 we can get the corresponding D-Y trace of P(K,),
which we denote T',

Ideally we would use T directly as the guess attack trace tr in the definition of verifier
producing, but unfortunately this doesn’t always work due to the exact statement of
Condition (3). To ease discussion, we reproduce some of that definition here:

Stiv € tr (2)
AIK" - (IK = IK" D S). (3)

Condition (3) states that S, the set of facts from which v is deduced, is not itself deducible
without g. However, consider the following initial knowledge IK

(v, v, zlg, (((v,2),9),2) ),
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and suppose we wish to show that the symmetric key g is guessable. The trace T" produced
by an SNP will be:

< {{|v’x|}g’g} Fdec (Q),ZE),
{(v,2)} Fee 0 )-

In this trace, v acts as the verifier because it is also contained in the initial knowledge
(i.e. Condition (4b) applies). However, we are forced to set S = {(v,z)}, which does not
satisfy Condition (3).

In such a case we need to extract the initial portion of 7" that produces the first
already-known term, and make this the verifier. We can then deduce this verifier in a
way that doesn’t require the guess ¢g. In our example we end up with a trace like this:

( Hv,zltg, 9t Fdec (v,2),
{(((vax)vy)az)} st ((v,x),y),
{((’U,I),y)} l_fst (U,IE) >

In this instance, verifier production is satisfied when (v, x) acts as the verifier, and S =
{{lv,z[}4,9}. Note that a normalised distinguishing program could produce this trace,
but we deliberately chose a smallest normalised program in order to satisfy Condition
(5). This example shows that attacks produced by verifier production are not necessarily
optimal.

In the rest of this section we formalise this procedure and show that the resulting
trace is a suitable witness for g being verifier producing.

Define a relation f ~» f’ iff there exists a deduction S F; f/ in T with f € S.

Lemma 5.21. There exists a sequence

for~ fi~ faro oo f,

for some n >0, such that fo = g and f, is the value of one of the registers in the signal
instruction of P.

Proof. Apart from the final input register, all the input registers are the same in K, and
K. If the program P exhibits different behaviours on these inputs then it must use this
register at some point. Now we can take a maximal chain g ~ f; ~ .- f, for some
n > 0, and suppose f, is stored in register r;.

As this chain is maximal, we know that r; does not appear in any subsequent assign-
ment. If it doesn’t appear in the signal instruction either, then r; is never used at all,
and its production can be removed from the program without affecting the program’s
behaviour, thus creating a smaller SNP. O

Proposition 5.22. The guess g is verifier-producing from initial knowledge sequence K.

Proof. Let IK be K converted from a sequence to a set. Take a chain of facts from
Lemma 5.21, choosing one with length greater than 1 if possible. We perform a case
analysis.
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Case 1: There is some f; that is D-Y deducible from IK, i.e. for some trq and IK 1, we
have IK |=, IK; and f; € IK;.

Pick the lowest such ¢, and let v = f;. We know ¢ > 0 as by assumption g is not D-Y
deducible, so f; 1 is not D-Y deducible. We conclude that there is a deduction S F; v in
T such that:

o BIK"-(IK £ IK" D S),
e IKU{g} =1 IK9 with St v in T (for some IK>).

By the above construction, we have satisfied conditions (1), (2), and (3) in the definition
of verifier production with ¢tr = tri ™7 and IK' = IK U IK 5.
We show that Condition (4) is true. If v € IK U {g} then (4b) holds. So suppose
v & IK U{g}, and take S’ by v to be the deduction in ¢r; that produces v. We have
(S,1) # (S',1") because S is not D-Y deducible from IK whereas S’ is. Hence (4a) holds.
We are left with Condition (5).

e By assumption, tr; stops at the first production of v. This means that v never
appears on the left-hand side of a deduction rule in ¢r;. Therefore there’s no
deduction in try that undoes S ;v or S’y v.

e There cannot be a deduction in 7" that undoes S F; v by Theorem 5.15.

e Finally, suppose there is a deduction in T' that undoes S’ ; v. This deduction must
produce something s in S’. This deduction can therefore be removed as s is already
deduced earlier in the trace. It is important to realise that removing this deduction
doesn’t invalidate anything we’ve already shown: in particular, this deduction can
not be S ; v because s is used to deduce v so can’t be v.

Case 2: There is a chain from Lemma 5.21 of length greater than 1, but none of the f;
is D-Y deducible from IK.

Let v = f,, tr = T, and let IK' be such that IK U {g} =7 IK'. Then there is a
deduction in ¢r that produced v of the form S ; v. Note that this fulfils conditions (1),
(2), and (3). Now case split on the final instruction in P:

e Case signal r; = r;. From Lemma 5.21 we know that one of these registers,
say rj, has value v in P(K,); therefore so does r;j. If r; is an input register, then
v € IK U {g}, and we have fulfilled Condition (4b). If r; is not an input register
then r; is produced in a D-Y deduction S’ Fp v in ¢r. To satisfy (4a) we now
show (S,1) # (S',I') by supposing for a contradiction that [ = [’ = pair (other
cases run analogously). Then P must contain instructions r; := pair(ry,r,) and
rj := pair(ry,ry ), where the values of r, and r,, are identical, similarly 7, and 7.
By Lemma 5.8, we must have p = p’ and ¢ = ¢/. But this contradicts Lemma 5.9.

e Case signal r; hasinv ;. Register r;, which has value v in P(K), must be a key,
and r; must hold the inverse v~ L. Also, v is an asymmetric key from the semantics
of hasinv, thus satisfying Condition (4c).

Finally we need to satisfy Condition (5). This follows immediately from Theorem 5.15.
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Case 3: There is no chain of facts from Lemma 5.21 with length greater than 1. This
means that the input register holding g or ¢’ is used directly in the signal instruction.
Call this register r;, and the other register ;. Note that r; is not used in the production
of r; without breaking the assumption about chain length. So we have IK = IK' > r;
for some IK'. We now split cases depending on the type of signal instruction in P.

e Case signal r; = r;. In P(K,), for this condition to be true we must have r; = g
also. This would mean that IK = g, breaking one of the main assumptions of this
section: that g is not already D-Y deducible from IK.

e Case signal r; hasinv r;. This means that IK | IK' > g ! and g €
ASYMMETRIC_KEYS. This does not quite satisfy Condition (6) of verifier pro-
duction which asks only that ¢—' € IK. We assume the stronger version of Condi-
tion (6) stated below. O

The very last part of this proof reveals a deficiency in the definition of verifier pro-
duction given in [Low04]. Condition (6) was designed to capture the possibility that
an intruder could use g as the verifier without performing any deductions because he
already knows ¢~'. However, it doesn’t allow for the fact that he may not directly know
g~ ! because it is deducible from the initial knowledge without requiring g.

For example, consider an initial knowledge set {{|g~![}x, k} where k is a symmetric key,
and suppose that the intruder has guessed g correctly and wishes to verify it. Intuitively,
he can extract g~! from the initial knowledge using the D-Y trace:

( {llg " Fe K} Faecg™ )

This doesn’t satisfy Condition (6) because g~ is not in the initial knowledge. It doesn’t
satisfy Conditions (1)-(5) either, because the deduction that produces the verifier in
Condition (2) would have to be the one deduction in the trace, so S = {{g~![}x, k}; but
S doesn’t satisfy Condition (3), that S is not deducible without g.

A weakening of Condition (6) is required. We rewrite it as:

1

g € ASYMMETRIC_KEYS A3IK' - IK = IK' 5 g . (6)

In [Low04] an implicit assumption was made that the set IK is already closed with
respect to the deduction operators. Under this assumption, the two versions of Condition
(6) are identical. This assumption is not explicitly stated in [Low04] although it is
enforced in the FDR implementation described there.

We have chosen to fix this problem here by changing the definition rather than adding
this assumption, because it is interesting to note that dropping this quite strong assump-
tion about IK requires a relatively minor change to the definition.

6 Soundness

In this section we prove the soundness of verifier production with respect to recognisabil-
ity:
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Theorem 6.1. If g is deducible or verifier producing from knowledge sequence K, then
g 1s recognisable from K.

The proof is broken into the following two propositions.

Proposition 6.2. If g is deducible from knowledge sequence K, then g is recognisable
from K.

Proof. If K = K' 5 g then there exists a sequence of D-Y deductions that produces g
using K. We use these deductions to construct a program by converting each deduction in
turn into an instruction. Simultaneously we build up a mapping from terms to registers,
starting with the mapping F'(t) = r; for all ¢t in K, where i is t’s position in K.

For example, for a deduction {fi, fo} Fpair (fi,/f2), we add the instruction r; :=
pair(F(f1), F(f2)), where r; is a register unused so far. Now add F((f1, f2)) = r; to the
mapping F. Other types of deductions run analogously.

Eventually we have a program P such that P(K) computes g, say in register r;; if
g € K, then this program is empty and i is the position of g in K. Now add the instruction
signal r; = rj, where j is the length of K (and hence the offset of g and ¢’ in K, and
Ky respectively), and we have a program which distinguishes K, and K for all g'. We
can use Proposition 5.3 to remove the signal instruction. O

Proposition 6.3. If g is verifier producing from knowledge sequence K, then g is recog-
nisable from K.

Proof. First we deal with the case that Condition (6) of verifier production is true. We
use our updated version of this condition discussed at the end of Section 5. Construct the
(possibly empty) program P using the D-Y trace tr from K = K’ > ¢~!, in the same
way as the proof of Proposition 6.2, to calculate ¢g~' in rj. Then add on the instruction
signal r; hasinv r;, where r; contains the inputted guess. This condition will be true
when the guess is g, and false for any other value.

We now deal with Conditions (1)-(5). Take a verifier-producing trace ¢r of minimal
length; let other values be as mentioned in the definition of Conditions (1)—(5). Construct
a program P to calculate v using tr in the same way as the proof of Proposition 6.2. We
then add onto the program a signal instruction depending on which part of Condition
(4) is true. Proposition 5.3 can then be used to remove the signal instruction.

(4a) We compare the two registers which hold the different derivations of v.

(4b) Compare the register containing v with the register holding the correct piece of
initial knowledge.

(4c) Use the signal ... hasinv ... instruction to test the registers holding v and v 1.

It is clear that the program P(K,) ends up with the equality test being true. What is
less clear is that P(Ky) ends up being false for any datum ¢’ # g. The rest of this proof
focuses on this.
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Not surprisingly, this proof has parallels with that of Proposition 5.19. The main
difference is that P is not necessarily an SNP — instead it was created from the verifier-
producing trace tr. This means that we no longer have access to the Lemmas from
Section 5.3 and must recreate them for P.

Firstly, we show that all the registers in P(K) have distinct values, except perhaps
the value produced in the last assignment (cf. Lemma 5.8). From the assumption that
tr is of minimum length, it is clear that the final deduction in #r produces v, or else
that deduction is unnecessary. It is also clear that ¢r will contain at most one other
production of v: one to satisfy Condition (2) and one to satisfy Condition (4a) if it is
needed. Any extra productions would causes redundancy in ¢r. Aside from the term
v, no two deductions in fr produce the same value, or else the latter such deduction is
unnecessary. The result then follows from the construction of P.

Next, we show that P doesn’t contain two assignments with identical right-hand sides
(cf. Lemma 5.9). This would correspond to two identical deductions in the trace tr. One
of these could be easily removed without falsifying any of conditions (1)-(5).

Further, P does not contain instructions that ‘undo’ each other (cf. Lemma 5.10).
Condition (5) bans the corresponding patterns of deductions from appearing in ¢r.

We can now proceed exactly as in the proof of Proposition 5.19. U

7 Conclusions

Summary. In this paper we have presented a new, natural way of capturing off-line
guess verification. Central to our definition is the existence a computational process that
can somehow recognise the guess, thereby performing the verification. This is in contrast
to previous verifier-production definitions which detect behaviour assumed, by inspection
of known attacks, to be characteristic of a guess verification.

We show that a previous formalisation of guess verification via verifier production
[Low04] is equivalent to our recognisability definition. Aside from resolving an ambiguity
in this previous definition, the contributions of this can be seen in two ways: it gives
justification for the verifier-production definitions of guessing attacks; and it provides a
decision procedure for our more natural definition.

Future work. This paper is not complete in its comparison with Lowe’s original work.
The guessing definition in [Low04] is parameterised by a given set of Dolev-Yao style
deductions, whereas we have assumed a standard fixed set of such deductions.

While it appears easy in most cases to modify the proofs in this paper to deal with
different deduction sets, proving the more general result seems much harder: that a
value is verifier-producing with some given Dolev-Yao deductions iff it is recognisable by
programs with access to instructions corresponding to the given Dolev-Yao deductions.

Abadi and Gordon define secrecy in the Spi Calculus [AG99] as follows: a value z is
secret if a protocol run using z is testing-equivalent to a run using a different value . This
is clearly very similar in spirit to our definition of recognisability. However, Spi seems
a little too strong to test for guessing attacks: it allows the intruder to test whether an
message was encrypted with a particular key, even if the result of the decryption contains
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nothing recognisable (cf. the example at the end of Section 4.3). We would like to study
the relationship more formally.

There are still some unanswered questions about formalisations of guessing attacks.
We list a couple here.

The decision procedure in [Low04] makes the following extra assumption: that during
a guessing attack, the intruder would never need to generate a term which is not a subterm
of something in the initial knowledge or of something that could be used in the currently
executing protocol. Soundness results justifying such assumptions are frequently used in
standard analysis of security protocols. Is this assumption still safe in the presence of
guessing attacks?

The use of terms to abstract away from actual bit sequences and encryption schemes
is common in protocol analysis. Problems with this abstraction have been noted before
[CDLO5], but a novel problem arises in the context of guess verification when different
terms represent bit sequences of different lengths. We illustrate this with an example.

Suppose an intruder knows the identity of an agent A and subsequently overhears a
message {|A,nallr. Suppose also that A is a 32-bit value, whereas the symmetric key
k is 56 bits long. In our framework a guess of k£ could be verified by decrypting the
message with the guess and checking that A appears in the first 32 bits of the resulting
plaintext. While this procedure would correctly spot k, it would also mistakenly spot
incorrect guesses where the corrupted plaintext happens to have A in the first 32 bits.
There would be roughly 2(°6-32) = 224 of these, making such a verification procedure too
inaccurate to be of any use.

A solution might involve annotating abstract values with their bit lengths and devising
a function that computes the probability that a guess verification is actually accurate.
For the moment we content ourselves with the fact that these attacks are false positives
and can be dismissed manually.
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