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Abstract. We consider turn-based stochastic games whose winning con-
ditions are conjunctions of satisfaction objectives for long-run average re-
wards, and address the problem of finding a strategy that almost surely
maintains the averages above a given multi-dimensional threshold vec-
tor. We show that strategies constructed from Pareto set approximations
of expected energy objectives are e-optimal for the corresponding aver-
age rewards. We further apply our methods to compositional strategy
synthesis for multi-component stochastic games that leverages compo-
sition rules for probabilistic automata, which we extend for long-run
ratio rewards with fairness. We implement the techniques and illustrate
our methods on a case study of automated compositional synthesis of
controllers for aircraft primary electric power distribution networks that
ensure a given level of reliability.

1 Introduction

Reactive systems must continually interact with the changing environment. Since
it is assumed that they should never terminate, their desirable behaviours are
typically specified over infinite executions. Reactive systems are naturally mod-
elled using games, which distinguish between the controllable and uncontrollable
events. Stochastic games [I8], in particular, allow one to specify uncertainty of
outcomes by means of probability distributions. When such models are addition-
ally annotated by rewards that represent, e.g., energy usage and time passage,
quantitative objectives and analysis techniques are needed to ensure their cor-
rectness. Often, not just a single objective is under consideration, but several,
potentially conflicting, objectives must be satisfied, for example maximising both
throughput and latency of a network.

In our previous work [78], we formulated multi-objective expected total re-
ward properties for stochastic games with certain terminating conditions and
showed how e-optimal strategies can be approximated. Expected total rewards,
however, are unable to express long-run average (also called mean-payoff) proper-
ties of reactive systems. Another important class of properties are ratio rewards,
with which one can state, e.g., speed (distance per time unit) or fuel efficiency
(distance per unit of fuel). In this paper we consider controller synthesis for the
general class of turn-based stochastic games whose winning conditions are con-
junctions of satisfaction objectives for long-run average rewards. We represent
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the controllable and uncontrollable actions by Player ¢ and Player [J, respec-
tively, and address the problem of finding a strategy to satisfy such long-run
objectives almost surely for Player { against all choices of Player (1. These ob-
jectives can be used to specify behaviours that guarantee that the probability
density is above a threshold, in several dimensions, and the executions actually
satisfy the objective we are interested in, which is important for, e.g., reliability
and availability analysis. In contrast, expected rewards average the reward over
different probabilistic outcomes, possibly with arbitrarily high variance, and thus
it may be the case that none of the paths actually satisfy the objective.

Satisfaction Objectives. The specifications we consider are quantitative, in
the sense that they are required to maintain the rewards above a certain thresh-
old, and we are interested in almost sure satisfaction, that is, this condition on
the rewards is satisfied with probability one. The problem we study generalises
the setting of stopping games with multiple satisfaction objectives, which for LTL
specifications can be solved via reduction to expected total rewards [§], while
our methods are applicable to general turn-based stochastic games. In stopping
games, objectives defined using total rewards are appropriate, since existence
of the limits is ensured by termination; however, total rewards may diverge for
reactive systems, and hence we cannot reduce our problem to total rewards.

Strategy Synthesis. Stochastic games with multiple objectives have been stud-
ied in [12], where determinacy under long-run objectives (including ours) is
shown (but without strategy construction). However, in general, the winning
strategies are history-dependent, requiring infinite memory, which is already the
case for Markov decision processes [5]. We restrict to finite memory strategies
and utilise the stochastic memory update representation of [7]. For approximat-
ing expected total rewards in games, one can construct strategies (in particular,
their memory update representation) after finitely many iterations from the dif-
ference between achievable values of successive states [§], but long-run properties
erase all transient behaviours, and so, in general, we cannot use the achievable
values for strategy construction. Inspired by [6], we use expected energy objec-
tives to compute the strategies. These objectives are meaningful in their own
right to express that, at every step, the average over some resource requirement
does not exceed a certain budget, i.e. some sequences of operations are allowed
to violate the budget constraint, as long as they are balanced by other sequences
of operations. Consider, for example, sequences of stock market transactions: it
is desirable that the expected capital never drops below zero (or some higher
value), which can be balanced by credit for individual transactions below the
threshold. Synthesis via expected energy objectives yields strategies that not
only achieve the required target, but we also obtain a bound on the maximum
expected deviation at any step by virtue of the bounded energy. Then, given an
achievable target v for mean-payoff, the target 0 is e-achievable by an energy
objective with rewards shifted by —wv, and the same strategy achieves v — ¢ for
the mean-payoff objective under discussion.

Compositional Synthesis. In our previous work [4], we proposed a synchro-
nising parallel composition for stochastic games that enables a compositional
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approach to controller synthesis that significantly outperforms the monolithic
method. The strategy for the composition of games is derived from the strategies
synthesised for the individual components. To apply these methods for a class of
objectives (e.g. total rewards), one must (i) show that the objectives are defined
on traces, i.e. synchronisation of actions is sufficient for information sharing; (ii)
provide compositional verification rules for probabilistic automata (e.g. assume-
guarantee rules); and (iii) provide synthesis methods for single component games.
We address these points for long-run average objectives, extending [I3] for (ii),
enabling compositional synthesis for ratio rewards. A key characteristic of the
rules is the use of fairness, which requires that no component is prevented from
making progress. The methods of [4] were presented with total rewards, where
(trivial) fairness was only guaranteed through synchronised termination.

Case Study. We implement the methods and demonstrate their scalability and
usefulness via a case study that concerns the control of the electric power dis-
tribution on aircraft [I5]. In avionics, the transition to more-electric aircraft
has been brought about by advances in electronics technology, reducing take-
off weight and power consumption. We extend the (non-quantitative) game-
theoretic approach of [2T] to the stochastic games setting with multiple long-run
satisfaction objectives, where the behaviour of generators is described stochas-
tically. We demonstrate how our approach yields controllers that ensure given
reliability levels and higher uptimes than those reported in [21].

Contributions. Our main contributions are as follows.

— We show that expected energy objectives enable synthesis of e-optimal finite-
memory strategies for almost sure satisfaction of average rewards (Theo-
rem .

— We propose a semi-algorithm to construct e-optimal strategies using stochas-
tically updated memory (Theorem [1)).

— We extend compositional rules to specifications defined on traces, and hence
show how to utilise ratio rewards in compositional synthesis (Theorem [3)).

— We demonstrate compositional synthesis using long-run objectives via a case
study of an aircraft electric power distribution network.

Related Work. For Markov decision processes (MDPs), multi-dimensional long-
run objectives for satisfaction and expectation were studied in [5], and expected
ratio rewards in [20]. Satisfaction for long-run properties in stochastic games is
the subject of [12]; in particular, they present algorithms for combining a single
mean-payoff with a Biichi objective, which rely on the non-quantitative nature
of the Biichi objective, and hence cannot be straightforwardly extended to sev-
eral mean-payoff objectives that we consider. Non-stochastic games with energy
objectives have been considered, for example, in [6], where it is assumed that
Player OJ plays deterministically, in contrast to our approach that permits the
use of stochasticity. Our almost sure satisfaction objectives are related to the
concept of quantiles in [I], in that they correspond to 1-quantiles, but here we
consider mean-payoff objectives for games. An extended version of this paper,
including proofs, can be found in [3].
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2 Preliminaries

Notation. A discrete probability distribution (or distribution) over a (countable)
set @ is a function p : @ — [0, 1] such that quQ w(q) = 1; its support supp(u)
is {g € Q| pn(q) > 0}. We denote by D(Q) the set of all distributions over @ with
finite support. A distribution pu € D(Q) is Dirac if u(g) = 1 for some ¢ € @, and
if the context is clear we just write ¢ to denote such a distribution pu.

We work with the usual metric-space topology on R™. The downward closure
of a set X is defined as dwc(X) = {y|3z € X.y < x}. A set X C R" is
conver if for all 1,2 € X, and all a € [0,1], az; + (1 — @)xy € X; its
convex hull conv(X) is the smallest convex set containing X. Given a set X,
a x X denotes the set {a- x|z € X}. The Minkowski sum of sets X and Y is
X+Y E {x+y|xze X,z Y} Werefer to the sth component of a vector
v by vs and [v]s. We write € to denote the vector (e,¢,...,¢&). For a vector x
(resp. vector of sets Z) and a scalar €, define  + ¢ by [x + ¢]s = x5 + € (resp.

def

[Z 4+ €ls = Zs + ¢) for all components s of x (resp. Z), where, for a set X, let

X+e= {z +¢e|z € X}. For vectors & and y, « - y denotes their dot-product,
and x e y denotes component-wise multiplication.

Stochastic Games. We consider turn-based action-labelled stochastic two-
player games (henceforth simply called games), which distinguish two types of
nondeterminism, each controlled by a separate player. Player () represents the
controllable part for which we want to synthesise a strategy, while Player (J
represents the uncontrollable environment.

Definition 1. A game G is a tuple (S, (S¢, Sn), 0, A, —), where S is a finite
set of states partitioned into Player { states S¢ and Player [ states Sg; ¢o € S
is an initial state; A is a finite set of actions; and —C S x (AU {7}) x D(S5)
is a transition relation, such that, for all s, {(s,a,u) €—} is finite.

We write s — u for a transition (s,a,pu) €—. The action labels A on tran-
sitions model observable behaviours, whereas 7 can be seen as internal: it can-
not be used in winning conditions and is not synchronised in the composition.
We denote the set of moves (also called stochastic states) by So = {(a,u) €
AxD(S)|3s € S.s — u}, and let S = S U Sq. Let the set of successors of
s € S be succ(s) = {(a,p) € So|s 2 pyuU{t € S|p(t) >0 with s = (a, )}
A probabilistic automaton (PA, [I7]) is a game with S = 0, and a discrete-time
Markov chain (DTMC) is a PA with |succ(s)| =1 for all s € S.

A finite (infinite) path A = so(ao, po)s1(a1, 11)s2 ... is a finite (infinite) se-
quence of alternating states and moves, such that for all i > 0, s; — y; and
pi(six1) > 0. A finite path A ends in a state, denoted last(A). A finite (infi-

nite) trace is a finite (infinite) sequence of actions. Given a path, its trace is

the sequence of actions along A, with 7 projected out. Formally, trace()) £

PROJ{y(aoay ...), where, for « € AU {7}, PROJ, is the morphism defined by
PROJ4(a) = a if a & o, and € (the empty trace) otherwise.

Strategies. Nondeterminism for each player is resolved by a strategy, which
maps finite paths to distributions over moves. For PAs, we do not speak of player
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strategies, and implicitly consider strategies of Player (1. Here we use an alter-
native, equivalent formulation of strategies using stochastic memory update [5].

Definition 2. A Player { strategy m is a tuple (I, my, 7., ), where M is a
countable set of memory elements; m,: M x S — D(M) is a memory update
function; m.: S¢ x M — D(S) is a next move function s.t. m.(s,m)(t) > 0 only
if t € succ(s); and a: S — D(IM) defines for each state of G an initial memory
distribution. A Player O strategy o is defined in an analogous manner.

A strategy is finite-memory if |9 is finite. Applying a strategy pair (7, 0) to
a game G yields an induced DTMC G™° [§]; an induced DTMC contains only
reachable states and moves, but retains the entire action alphabet of G.

Probability Measures and Expectations. The cylinder set of a finite path
A (resp. finite trace w € A*) is the set of infinite paths (resp. traces) with prefix
A (resp. w). For a finite path A = sg(ag, po)s1(a1, 1) ... sp in a DTMC D we
define Prp_, (\), the measure of its cylinder set, by Prp ¢, (\) = H?:_Ol wi(Sit1),
and write Prg’; for Prgn.c 5. For a finite trace w, paths(w) denotes the set of
minimal finite paths with trace w, i.e. A € paths(w) if trace(A\) = w and there

is no path X # A with trace(\') = w and X being a prefix of A. The measure

of the cylinder set of w is Prp 4(w) = > xepaths(w) LTD,s(A), and we call Prp.s

the trace distribution of D. The measures uniquely extend to infinite paths due
to Carathéodory’s extension theorem. We denote the set of infinite paths of D
starting at s by {2p . The ezpectation of a function p : 2p, — R%_ over

infinite paths in a DTMC D is Ep 4[p] S f)\E-QD . p(N)dPrp (N).

Rewards. A reward structure (with n-dimensions) of a game is a partial function
r:S — R (r:S — R"). A reward structure r is defined on actions A, if
r(a, p) = r(a, p') for all moves (a, i), (a, ') € So such that a € A,, and r(s) =0
otherwise; and if the context is clear we consider it as a total functionr : A, — R
for A, C A. Given an n-dimensional reward structure r : S — R”, and a vector
v € R", define the reward structure r —v by [r —v], = 7(s)—wv for all s € S. For

apath A\ = sgs; ... and a reward structure r we define rew™ (r)(\) = Zf\io r(si),

for N > 0; the average reward is mp(r)(A) = lim inf y_, o0 ﬁrewN (r)(\); given
a reward structure c¢ such that, for all s € S, ¢(s) > 0 and, for all bottom
strongly connected components (BSCCs) B of D, there is a state s in B such
that ¢(s) > 0, the ratio reward is ratio(r/c)(w) = Hminf x_, o rew™ (r) (w) /(1 +
rew? (¢)(w)). If D has finite state space, the lim inf of the above rewards can be
replaced by the true limit in the expectation, as it is almost surely defined (see
Appendix. Further, the above rewards straightforwardly extend to multiple
dimensions using vectors.

Specifications and Objectives. A specification ¢ is a predicate on path distri-
butions, and we write D |= ¢ if ¢(Prp ) holds. We say that a Player ¢ strategy
7w wins for a specification ¢ in a game G, written 7 | ¢, if, for all Player O
strategies o, G™? = ¢, and say that ¢ is achievable if such a winning strategy
exists. A specification ¢ is defined on traces of A if cp(l:;rpygo) = go(lSrD/,gé) for
all DTMCs D, D’ such that Prp ., (w) = ISrD/)gé (w) for all traces w € A*.
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Fig. 1: Example games. Moves and states for Player { and Player O are shown as
o, ¢ and O resp.; two-dimensional rewards shown where non-zero.

A DTMC D satisfies an expected energy specification EE4(r) if there exists vg
such that Ep s[rew? (r)] > v for all N > 0; D satisfies EE(r) if, for every state
s of D, D satisfies EE4(r). An almost sure average (resp. ratio) reward objective
for target v is Pmp,(r)(v) = Prp s(mp(r) > v) = 1 (resp. Pratios(r)(v) =
Prp s(ratio(r/c) > v) = 1). If the rewards 7 and ¢ are understood, we omit
them and write just Pmp,(v) and Pratios(v). By using n-dimensional reward
structures, we require that a strategy achieves the conjunction of the objectives
defined on the individual dimensions. Minimisation is supported by inverting
signs of rewards. Given an objective ¢ with target vector v, denote by @[] the
objective ¢ with v substituted by x. A target v € R™ is a Pareto vector if
v — €] is achievable for all £ > 0, and p[v + €] is not achievable for any € > 0.
The downward closure of the set of all such vectors is called a Pareto set.
Example. Consider the game in Figure (left), showing a stochastic game with
a two-dimensional reward structure. Player ) can achieve Pmp,_ (3,0) if going left
at o, and Pmp (1, 1) if choosing either move to the right, since then s3 and s4
are almost surely reached. Furthermore, achieving an expected mean-payoff does
not guarantee achieving almost-sure satisfaction in general: the Player { strategy
going up right from ¢y achieves an expected mean-payoff of at least (1,1.5),
which by the above argument cannot be achieved almost surely. Also, synthesis
in MDPs [5I20] can utilise the fact that the strategy controls reachability of end-
components; e.g., if all states in the game of Figure [1] (left) are controlled by
Player ¢, (3,2) is almost surely achievable.

3 Strategy Synthesis for Average Rewards

We consider the problem of computing e-optimal strategies for almost sure
average reward objectives Pmp_ (v). Note that, for any v > 0, the objective
Pmp_ (7)(v) is equivalent to Pmp_ (r — v)(0), i.e. with the rewards shifted by
—v. Hence, from now on we assume w.l.o.g. that the objectives have target O.

3.1 Expected Energy Objectives

We show how synthesis for almost sure average reward objectives reduces to
synthesis for expected energy objectives. Applying finite-memory strategies to
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games results in finite induced DTMCs. Infinite memory may be required for
winning strategies of Player ¢ [5]; here we synthesise only finite-memory strate-
gies for Player ¢, in which case only finite memory for Player (I is sufficient:

Lemma 1. A finite-memory Player { strategy is winning for the objective EE(r)
(resp. Pmp_ (r)(v)) if it wins against all finite-memory Player O strategies.

We now state our key reduction lemma to show that almost sure average reward
objectives can be e-approximated by considering EE objectives.

Lemma 2. Given a finite-memory strateqy 7 for Player {, the following hold:

(i) if ™ satisfies EE(r), then 7 satisfies Pmp (r)(0); and
(ii) if 7 satisfies Pmp_ (r)(0), then, for all e > 0, 7 satisfies EE(r + €).

Our method described in Theorem [2 below allows us to compute EE(r + €),
and hence, by virtue of Lemma z'), derive e-optimal strategies for Pmp_ (0).
Ttem (i3) of Lemma guarantees completeness of our method, in the sense that,
for any vector v such that Pmp_ (r)(v) is achievable, we compute an e-optimal
strategy; however, if v is not achievable, our algorithm does not terminate.

3.2 Strategy Construction

We define a value iteration method that in k iterations computes the sets X%
of shortfall vectors at state s, so that for any vy € X, Player { can keep the
expected energy above vy during k steps of the game. Moreover, if successive
sets XF1 and XF satisfy X* C XF+! 4 ¢, where A C B < dwc(A) C dwe(B),

then we can construct a finite-memory strategy for EE(r + ¢) using Theorem

Value Tteration. Let Boxy, = [~M,0]". The M-downward closure of a set

X is Boxp Ndwe(X). Let PM(X) be the set of convex closed M-downward-

def

closed subsets of X. Let Ly % (PM(Boxys))!5!, endow it with the partial order
XCY eVseS. X, CY;, and add the top element T B Boxlj\il. For a fixed

def

M, define the operator Fys : Ly — L by [Far(X)], = Boxas Ndwe(Y), where

conv(UteSUCC(s) X;) ifseS,
Y, = r(s) + Miesuce(s) Xt if s € Sp

ZtEsupp(M)/’(‘(t) x Xy if s =(a,p) € So.

The operator F reflects what Player ¢ can achieve in the respective state types.
In s € Sy, Player ¢ can achieve the values in successors (union), and can ran-
domise between them (convex hull). In s € So, Player { can achieve only values
that are in all successors (intersection), since Player O can pick arbitrarily. Lastly,
in s € Sp, Player ¢ can achieve values with the prescribed distribution. Fyy is
closely related to our operator for expected total rewards in [7], but here we cut
off values above zero with Box,;, similarly to the controllable predecessor oper-
ator of [6] for computing energy in non-stochastic games. Box s ensures that the
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(a) Player O state s. (b) Player O state s. (c) Move s € So.
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Fig. 2: Value iteration and strategy construction, for state s with successors ¢y,
ta, and reward 71 (s) = 0.5, 72(s) = 0. The Pareto set under-approximation X7 is
computed from thfl and th;l. To achieve a point p € C¥, the strategy updates
its memory as follows: for s € Sp, for all ¢ € succ(s), p — 7(s) € conv(CF™1);
for s € S U So, there exist successors ¢t € succ(s) and a distribution « s.t.
p—7r(s) €Y, at) x conv(CF), where, for s = (a,pn) € S, we fix a = p. As F
is order preserving, it is sufficient to use X/ instead of X} for any [ > k.

strategy we construct in Theorem [I| below never allows the energy to diverge in
any reachable state. For example, in Figure 1| (right), for v = (3, 3), EEg, (r —v)
is achievable while, for the states s € {s1,s2}, EEs(r — v) is not. Since one of
s1 or sp must be reached, EE(r — v) is not achievable, disallowing the use of
Lemma i); and indeed, Pmp_ (v) is not achievable. Bounding with M allows
us to use a geometric argument in Lemma [3| below, replacing the finite lattice
arguments of [6], since our theory is more involved as it reflects the continuous
essence of randomisation.

We show in the following proposition that Fj; defines a monotonic fixpoint
computation and that it converges to the greatest fixpoint of F);. Its proof relies
on Scott-continuity of Fjs, and invokes the Kleene fixpoint theorem.

Proposition 1. Fyy is order-preserving, T 2 Fp(T) 2 F2,(T) D -+, and the
greatest fizpoint fix(Fyr) ewists and is equal to limy_ oo F¥(T) = N0 F%,(T).

Further, we use F); to compute the set of shortfall vectors required for Player ¢ to
win for EE,(7) via a value iteration with relative stopping criterion defined using
£, see Lemma [3{below. Denote X* = F¥,(T). The value iteration is illustrated in
Figure at iteration k, the set X* of possible shortfalls until & steps is computed
from the corresponding sets X}~ " for successors t € succ(s) of s at iteration k—1.
The values are restricted to be within Box,;, so that obtaining an empty set at
a state s in the value iteration is an indicator of divergence at s. Any state that
must be avoided by Player ¢ yields an empty set. For instance, in Figure|l| (left),
with target (1,1) the value iteration diverges at s; for any M > 0, but at ¢,
Player ¢ can go to the right to avoid accessing s;. The following proposition
ensures completeness of our method, stated in Theorem [2| below.

Proposition 2. If EE(r) is achievable then [fix(Fy)e, # O for some M > 0.
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Proof (Sketch). First, we consider the expected enrgy of finite DTMCs, where,
at every step, we cut off the positive values. This entails that the sequence of
the resulting truncated non-positive expected energies decreases and converges
toward a limit vector uw whose coordinates are finite if EE(r) is satisfied. We
show that, when EE(r) is satisfied by a strategy m, there is a global lower bound
—M on every coordinate of the limit vector u for the DTMC G™¢ induced by
any Player [J strategy 0. We show that, for this choice of M, the fixpoint of Fi,
for the game G is non-empty in every state reachable under m. We conclude that
[fix(F)]e, # 0 for some M > 0 whenever EE(r) is achievable.

Lemma 3. Given M and ¢, for every non-increasing sequence (X?) of elements
of Ly there exists k < k** = [Zn(([%] +2)2 4 2)] 151 such that X* C XF+lqe.

Proof (Sketch). We first consider a single state s, and construct a graph with

vertices from the sequence of sets (X*), and edges indicating dimensions where

the distance is at least . Interpreting each dimension as a colour, we use a
« def

Ramseyan argument to find the bound k* = n - (([2£] + 2)2 + 2) for a single
state. To find the bound k** = (2k*)I®|, which is for all states, we extract

successive subsequences of {1,2,...,k**} 2L DD I |5, where going

from I; to I;11 means that one additional state has the desired property, and
such that the invariant |I;1] > [I;]/(2k") is satisfied. At the end Ijg contains
at least one index k < k** for which all states have the desired property.

Strategy Construction. The strategies are constructed so that their memory
corresponds to the extreme points of the sets computed by Fy,(T). The strategies
stochastically update their memory, and so the expectation of their memory
elements corresponds to an expectation over such extreme points.

Let CF be the set of extreme points of dwc(XF), for all k > 0 (since X* € Ly,
the sets X* are closed). For any point p € X*, there is some ¢ > p that can
be obtained by a convex combination of points in C¥, and so the strategy we
construct uses C* as memory, randomising to attain the convex combination q.
Note that the sets C¥ are finite, yielding finite-memory strategies.

If Xfoﬂ # () and X* C XF+! 4 ¢ for some k € N and £ > 0, we can construct
a Player ¢ strategy 7 for EE(r + ¢). Denote by T C S the set of states s for
which X*+1 = (. For [ > 1, define the standard I-simplex by Al = {B €
[0,1| Y 4e5 8 = 1}. The memory M = Uyer{(s,p)|p € CF} is initialised

according to «a, defined by a(s) = [(s,q5) — 55, ...,(s,q5) — B3], where 8° €
A" and, for all 1 <i < n, qj € Cf. The update m, and next move function 7,
are defined as follows: at state s with memory (s,p), for all ¢ € succ(s), pick n

vectors gt € OF for 1 < i < n, with coefficients B¢ € A", such that

— for s € Sy, there is v € A)INTI such that 32, -3, 81-qt > p—r(s)—¢;
— for s € Sp, for all ¢ € succ(s), >, B¢ - gt > p—r(s) —e; and
— for s = (a,p) € So, we have 3=, oo #(1) - 22, B q; > p—1(s) — &
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Algorithm 1 PMP Strategy Synthesis

1: function SYNTHPMP(G, 7, v, €)
2: Set the reward structure to » — v + §; let k < 0; M < 2; X0 T,
while true do
while X* Z X**' 4 £ do
k< k+1; XF o Py (XF);
if X% 0 then
Construct 7 for
else
k+0; M« M?;

€

5 and any vo € Cfo using Theorem |1} return ©

def

and, for all t € succ(s), let m,((s,p),)(t, qt) = B for all i, and 7 (s, (s, p))(t) =
Yt if se S()

Theorem 1. If XfOH £ 0 and X* C Xk ¢ for some k € N and € > 0, then
the Player { strategy constructed above is finite-memory and wins for EE(r +¢€).

Proof (Sketch). We show the strategy is well-defined, i.e. the relevant extreme
points and coefficients exist, which is a consequence of X* T X*+1 4 ¢. We then
show that, when entering a state s, with a memory p,, the expected memory
from this state after IV steps is above p, —Ep s, [rew (r)] — Ne. As the memory
is always non-positive, this implies that Ep g, [rew™ (r +€)] > p, > —M for
every state s, with memory p,, for every N. We conclude that EE(7 + €) holds.

3.3 Strategy Synthesis Algorithm

Given a game G, a reward structure r with target vector v, and € > 0, the semi-
algorithm given in Algorithm computes a strategy winning for Pmp_ (r)(v—e).

Theorem 2. Whenever v is in the Pareto set of Pmp_ (1), then Algorithm
terminates with a finite-memory e-optimal strategy.

Proof (Sketch). Since v is in the Pareto set of the almost sure average reward
objective, by Lemma (u) the objective EE(r—wv + §) is achievable, and, by
Proposition [2| there exists an M such that fixz(Fj) is nonempty. The condition
in Line |§| is then satisfied as 0 # [fiz(Fa)]e, € X% . Further, due to the bound
M on the size of the box Boxp; in the value iteration, the inner loop terminates
after a finite number of steps, as shown in Lemma [3] Then, by Theorem [1| the
strategy constructed in Line (7] (with degradation factor § for the reward r—v+%)
satisfies EE(r—v + €), and hence, using Lemma z'), Pmp, (r)(v —€).

4 Compositional Synthesis

In order to synthesise strategies compositionally, we introduced in [4] a composi-
tion of games, and showed that assume-guarantee rules for PAs can be applied in
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synthesis for games: whenever there is a PA verification rule, the corresponding
game synthesis rule has the same form and side-conditions (Theorem 1 of []).
We present a PA assume-guarantee rule for ratio rewards. The PA rules in [I3]
only support total expected rewards, while our rule works with any specification
defined on traces, and in particular with ratio rewards (Proposition .

Ratio Rewards. Ratio rewards ratio(r/c) generalise average rewards mp(r),
since, to express the latter, we let ¢(s) = 1 for all s € S. The following proposition
states that to solve Pratiog,(r/c)(v) it suffices to solve Pmp_ (r)(v e ¢).

Proposition 3. A finite-memory Player { strategy 7 satisfies Pratioc, (r/c)(v)
if and only if it satisfies Pmp_ (r)(v e c).

Fairness. Given a composed PA M = ||;c; M, a strategy o is fair if at least
one action of each component M, is chosen infinitely often with probability 1.
We write M =7 ¢ if, for all fair strategies o, M7 = ¢.

Theorem 3. Given compatible PAs My and M, specifications ¢©' and &2
defined on traces of Ag, C A; for i € {1,2}, then the following is sound:
My % My T o
M || Mo =7 o NG

To use Theorem |3] we show that objectives using total or ratio rewards are
defined on traces over some subset of actions.

Proposition 4. If n-dimensional reward structures r and c are defined on ac-
tions A, and A, respectively, then objectives using ratio rewards ratio(r/c) are
defined on traces of A, U Ag.

Note that average rewards are not defined over traces in general, since its di-
visor counts the transitions, irrespective of whether the specification takes them
into account. In particular, when composing systems, the additional transitions
in between those originally counted skew the value of the average rewards. More-
over, T-transitions are counted, but do not appear in the traces.

5 A Case Study: Aircraft Power Distribution

We demonstrate our synthesis methods on a case study for the control of the
electrical power system of a more-electric aircraft [I5], see Figure[3[(a). Power is to
be routed from generators to buses (and loads attached to them) by controlling
the contactors (i.e. controllable switches) connecting the network nodes. Our
models are based on a game-theoretic study of the same control problem in [21],
where the control objective is to ensure the buses are powered, while avoiding
unsafe configurations. The controllers have to take into account that contactors
have delays, and the generators available in the system may be reconfigured, or
even exhibit failures. We show that, by incorporating stochasticity in the models
derived from the reliability statistics of the generators, controllers synthesised
from ratio rewards achieve better uptimes compared to those reported in [21].
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(a) Single-line diagram. (b) HVAC Left (Ge).

Fig. 3: Aircraft electric power system, adapted from a Honeywell, Inc. patent [15].
The single-line diagram of the full power system (a) shows how power from the
generators (G;) can be routed to the buses (B;) through the contactors (¢;). The
left HVAC subsystem model Gy is shown in (b), and G, is symmetric. I} and IY
is the interface status on the left and right side, resp., where x, y stand for either

“on” or “off”. One iteration of the reactive loop goes from s; to s5 and starts
again at s;, potentially with some variables changed, indicated as s} or s7.

5.1 Model

The system comprises several components, each consisting of buses and gener-
ators, and we consider the high-voltage AC (HVAC) subsystem, shown in Fig-
ure3f(a), where the dashed boxes represent the components set out in [I5]. These
components are physically separated for reliability, and hence allow limited in-
teraction and communication. Since the system is reactive, i.e. the aircraft is to
be controlled continually, we use long-run properties to specify correctness.
The game models and control objectives in [21] are specified using LTL prop-
erties. We extend their models to stochastic games with quantitative specifica-
tions, where the contactors are controlled by Player ¢ and the contactor dynamics
and the interfaces are controlled by Player [, and compose them by means of
the synchronising parallel composition of [4]. The advantage of stochasticity is
that the reliability specifications desired in [21I] can be faithfully encoded. Fur-
ther, games allow us to model truly adversarial behaviour (e.g. uncontrollable
contactor dynamics), as well as nondeterministic interleaving in the composition.

Contactors, Buses and Generators. We derive the models based on the
LTL description of [2I]: the status of the buses and generators are kept in
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Boolean variables By,...,B4 and Gy,...,G4 resp., and their truth value rep-
resents whether the bus or generator is powered; the contactor status is kept in
Boolean variables cq, ..., cg, and their truth value represents if the correspond-

ing contactor lets the current flow. For instance, if in G, the generator G is
on but (G is off, the controller needs to switch the contactors ¢; and c3 on, in
order to power both buses By and Bs. At the same time, short circuits from con-
necting generators to each other must be avoided, e.g. contactors c¢1, co and cs3
cannot be on at the same time, as this configuration connects GG; and G5. The
contactors are, for example, solid state power controllers [19], which typically
have non-negligible reaction times with respect to the times the buses should be
powered. Hence, as in [21], we model that Player { can only set the intent ci'®
of contactor 7, and only after some delay is the contactor status c¢; set to this
intent. For the purposes of this demonstration, we only model a delayed turn-off
time, as it is typically larger than the turn-on time (e.g. 40 ms, the turn-off time
reported in [9]). Whether or not a contactor is delayed is controlled by Player .

Interface. The components can deliver power to each other via the interface
1, see Figure a)7 which is bidirectional, i.e. power can flow both ways. The
original design in [I5] does not include connector cg, and so ¢4 has to ensure
that no short circuits occur over the interface: if Bs is powered, ¢4 may only
connect if By is unpowered, and vice versa; hence, ¢4 can only be on if both By
and Bj3 are unpowered. By adding cg, we break this cyclic dependence.

Actions shared between components model transmission of power. The ac-
tions I¥ and I} for z,y € {on,off} model whether power is delivered via the
interface from the right or left, respectively, or not. Hence, power flows from left
to right via cg, and from right to left via c¢4; and we ensure via the contactors
that power cannot flow in the other direction, preventing short circuits.

Reactive Loop. We model each component as an infinite loop of Player [ and
Player ¢ actions. One iteration of the loop, called time step, represents one time
unit 7', and the system steps through several stages, corresponding to the states
in G, (and G,): in s; the status of the generators is set every Nth time step; in s
the controller sets the contactors; in s3 the delay is chosen nondeterministically;
in s4 actions specify whether both buses are powered, and whether a failure
occurs; and in s5 information is transmitted over the interface. The 7-labelled
Dirac transitions precede all Player ¢ states to enable composition [4].

Generator Assumptions. We assume that the generator status remains the
same for N time steps, i.e. after 0, N, 2N, ... steps the status may change, with
the generators each powered with probability p,, independently from each other.
N and py can be obtained from the mean-time-to-failure of the generators. This
is in contrast to [2I], where, due to non-probabilistic modelling, the strongest
assumption is that generators do not fail at the same time.

5.2 Specifications and Results

The main objective is to maximise uptime of the buses, while avoiding failures
due to short circuits, as in [21I]. Hence, the controller has to react to the gener-
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Table 1: Performance statistics, for various choices of b (bus uptime), f (failure
rate), i°" (interface uptime), and model and algorithm parameters. A minus (—)
for :°™ means the interface is not used. The Pareto and Strategy columns show
the times for EE Pareto set computation and strategy construction, respectively.

Target Model Params. Algorithm Params. Runtime [s]

b foo || N del™ pg, S| € k Pareto Strategy
0.90 0.01 - 0 0 0.8 1152 | 0.001 20 25 0.29
0.85 0.01 — || 3 1 0.8 15200 | 0.001 65 1100 2.9
090 0.01 — | 3 1 0.8 15200 | 0.001 118 2100 2.1
0.90 0.01 061 O 0 0.8 2432| 0.01 15 52 0.53
0.95 0.01 061 O 0 0.8 2432| 0.01 15 49 0.46
0.90 0.01 06| 2 1 0.8 24744 | 0.01 80 4300 4.80

ator status, and cannot just leave all contactors connected. The properties are
specified as ratio rewards, since we are interested in the proportion of time the
buses are powered. To use Theorem [3] we attach all rewards to the status actions
or the synchronised actions I and IY. Moreover, every time step, the reward
structure t attaches T' to these actions to measure the progress of time.

The reward structure “buses,” (resp. “buses,”) assigns T for each time unit
both buses of Gy (resp. G,) are powered; and the reward structure “fail,” (resp.
“fail,”) assigns 1 for every time unit a short circuit occurs in Gy (resp. G,).
Since the synchronised actions I2" and Ij" are taken whenever power is de-
livered over the interface, we attach reward structures, with the same name,
assigning 7" whenever the corresponding action is taken. For each component
x € {lr}, the objectives are to keep the uptime of the buses above b, i.e.
PPus = Pratiog, (buses, /t)(b); to keep the failure rate below f, i.e. Psafe =
Pratiog, (—fail, /t)(—f), where minimisation is expressed using negation; and, if
used, to keep the interface uptime above i°%, i.e. Pt = Pratio, (1" /t)(i°*). We
hence consider the specification PP A Psafe A PInt for o € {¢,r}. Using the rule
from Theorem [3[in Theorem 1 of [4], we obtain the strategy composed of the in-
dividual strategies to control the full system, satisfying P}us/\Pfafe/\PﬁuS/\Prsafe,
i.e. both components are safe and the buses are powered.

Strategy Synthesis. We implement the algorithms of this paper as an ex-
tension of our multi-objective strategy synthesis tool of [§], using a compact
representation of the polyhedra F¥,(T). Table [1| shows, for several parameter
choices, the experimental results, which were obtained on a 2.8 GHz PC with 32
GB RAM. In [21], the uptime objective was encoded in LTL by requiring that
buses are powered at least every Kth time step, yielding an uptime for the buses
of 1/ K, which translates to an uptime of 20% (by letting K = 5). In contrast, us-
ing stochastic games we can utilise the statistics of the generator reliability, and
obtain bus uptimes of up to 95% for generator health p, = 0.8. For the models
without delay, the synthesised strategies approximate memoryless deterministic
strategies but when adding delay, randomisation is introduced in the memory
updates. The model will be included in a forthcoming release of our tool.
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6

Conclusion

We synthesise strategies for almost sure satisfaction of multi-dimensional aver-
age and ratio objectives, and demonstrate their application to assume-guarantee
controller synthesis. It would be interesting to study the complexity class of the
problem considered here. Satisfaction for arbitrary thresholds is subject to fur-
ther research. Solutions involving an oracle computing the almost-sure winning
region [I2] would need to be adapted to handle our e-approximations. Moreover,
we are interested in strategies for disjunctions of satisfaction objectives.
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A Note on Induced PAs and DTMCs

In the following proofs we use the definition from [4] for the PAs and DTMCs
induced by strategy application.

Firstly, note that a DTMC according to the definition in [4] is also a PA,
but with only one move per state, which allows us to label the transitions with
actions. Considering a state s together with its unique move (a, ) as a state
(s, a, p) in itself, allows us to view a DTMC induced according to [4] as a DTMC
according to the classical definition, which contains only distributions without
action labels. We apply this transformation implicitly in the proofs below.

Secondly, induced PAs and DTMCs according to the definition in [4] are
always infinite objects, irrespective of the memory size of the applied strategies.
When dealing with finite-memory DU strategies, however, we can fold the paths
of the induced PAs and DTMCs to obtain finite objects. This folding is not
possible in general for SU strategies, but using the construction in [8] we can
always obtain a finite induced DTMC G™? from a finite-memory SU strategy
pair (m,0).

B Energy Reduction

B.1 Proof of Lemma il

Proof. Fix a game G, and a finite-memory Player { strategy w. We show the
contrapositive: we suppose that there is an infinite-memory strategy o of Player OJ
such that G™? does not satisfy EE(r) (resp. Pmp,(7)(v)) and show that a finite-
memory strategy for Player O exists, also falsifying the property EE,(7) (resp.
P, (r)(v)).

For EE(r): By assumption (of the contrapositive argument) there exists a
state s and N > 0 such that Egr.o s[rew™ (r)] < vo. Now consider a finite-
memory strategy ¢ that agrees with ¢ on paths of length less than or equal to
N, that is 5(\) = o(\) for |A\| < N and such that s appears as a state of G™7.
Then, it holds that Egr.o s[rew™ (r)] = Egn.s  [rew™ (r)] < v, and thus we are
done, as the finite memory strategy & is such that G™% does not satisfy EE(r).

For Pmp (r)(v): If G™? [~ Pmp,(r)(v), then there exists an index i such
that Prg’g(mp(ri) > v;) < 1, which is a single mean-payoff objective for Player (J
in the induced PA G™. By Proposition 1 of [I1], mean-payoff specifications are
“submixing”, and by Theorem 1 of the same reference, for such submixing spec-
ifications finite-memory (and even memoryless) strategies suffice to win. O

B.2 Proof of Lemma [2]

We first show an intermediate result describing the asymptotic behaviour of av-
erage rewards on paths of a DTMC. We denote by ug the stationary distribution
of a BSCC B, denote by Pp s(0B) the probability to eventually reach B from

s; and define rew(r)(B) = > senT(s)us(s), where r is the reward structure on
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the DTMC (this is the mean-payoff in the BSCC B, which is the same at every
state).

Lemma 4. Given a finite-state DTMC D and a state s € Sp, and a reward
structure v, the limit limpy _ o0 ﬁrewN (r)(N\) almost surely exists for A € 2p s,
and takes values x in the finite set {rew(r)(B) | B is a BSCC of D} with prob-
ability

> Prp .(0B).

B s.t. rew(r)(B)=x

Consequently, D |= Pmp_ (r)(v) if and only if rew(r)(B) > v for every BSCC
B that is reached with positive probability.

Proof (Lemmal) Note first that for every path A, +1

and only if for every suffix X’ of A, N—_HrewN (r)(X\) converges to the same limit.
For every recurrent state t of B, we denote by W, the set of paths A such that ¢
is the first recurrent state along .

Paths A € W, have suffixes X’ distributed according to Prp ;. Due to a classi-
cal ergodic theorem for irreducible Markov chains (see e.g. Theorem 4.16 of [14]),
N—HrewN(r)(/\’) almost surely converges to >, pus(t")r(t’). Thus, with prob-
ability Prp s(0B) = >_,c5 Pp,s(Wt), the sequence N—_HrewN (r)(A\) converges to
rew(r)(B). To conclude, it suffices to recall that )z poccs Pp,s(OB) = 1 and

thus the result holds almost surely. a

~=rew? (r)(\) converges if

Proof (Lemma @) Instead of proving Vo .G™° = ¢ = Vo .G™7 = ¢, we prove
the stronger statement Vo . (G™7 =4 = G™7 = ¢). Hence, fix finite-memory
strategies m and o, and so the induced DTMC D = G™° is finite. By Lemma [4]
the limit limpy_ oo ﬁrewN(T) almost surely exists. Denote by Sp the set of
states of D.

For every N and path A, it holds that |ﬁreWN(r)(A)| < maxses, |7(s)],
where the maximum is taken componentwise, and thus, by the Lebesgue domi-
nated convergence theorem,

1 N 1 N
Ep.s [ngnoo N (r)] = A}gn Ep.s [Mrew (r)} .
By Lemma [4] this is equal to Y 5sccp Pro,s(OB)rew(B).

Proof of (i): We assume that EE(r) is satisfied, and show that Pmp_ (r)(0)

is also satisfied. There exists a finite vector vy such that for all s € Sp and all
N it holds that Ep [reWN (r)] = vo. Dividing both sides of this inequality by

N + 1, we obtain Ep 4 [ rewN(r)} > 1\;)4217 and taking the limit, we obtain

N+1
limy oo Ep s [NJrlrewN(r)] > 0, i.e. we get Ep ([limy_oo ﬁrewN(T)] >0
for all s € Sp. The left hand side equals rew(r)(B) whenever s is in a BSCC B
of D. We have rew(r)(B) > 0 for every BSCC B, which concludes (i) by virtue

of Lemma [4]
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Proof of (ii): Assume that D = Pmp_ ()(0), and hence that rew(r)(B) > 0

for every BSCC B. This implies that limy_,o0 Ep s {ﬁrewN(T)} > 0 for ev-

ery s. Fix € > 0. For every s, there exists N., € N such that for all N >

N, s it holds that Ep , [ﬁrewN(r)] > —e. Hence for all N > 0, for ev-

ery s, it holds that Ep s [ﬁrewN(r)} > —(N +1) e+ v§ with v§, =

miny<n. , Ep s [ﬁrewN(ri)} for all i. Therefore, we have that rew” (r +
g)(A) = rew?™ (r)(A\) + (N + 1)e > v§, and hence D satisfies EE(r + ¢). 0

C Strategy Synthesis

C.1 Proof of Proposition

Below we use (after recalling them) quite standard results on fixpoint theory
and refer the reader to Chapter 2 of [10].

Scott Continuity and Kleene Fixpoint Theorem. For D C L), the infi-
mum inf D is defined via [inf{X € D}], & Nxep Xs for all s € S. A linearly
ordered subset D C Lj; is a chain. For any chain D € L), it holds that
inf D € Ly, as the intersection of convex topologically-closed M-downward-
closed sets is itself convex, topologically-closed, and M-downward-closed. Hence,
Ly endowed with C is a complete partial order (cpo). A function f : Ly — Las
on a cpo (Lyr,C) is (Scott) continuous if for all (countable) nonempty chains
D C Ly we have that f(inf D) = inf f(D), cf. Definition 2.3 in [10]. We recall
that, according to the Kleene fixpoint theorem, the greatest fixpoint of a Scott
continuous function f : Ly — Ly over a cpo (L, C) exists and is equal to
the infimum of the C-descending chain T D f(T) 2 f%(T)---, c.f. Corollary 2.6
n [I0]. We note that this chain is countable.

Proof (of Proposition . The properties claimed in the proposition are conse-
quences of Scott-continuity of F; and the Kleene fixpoint theorem.

To show Scott-continuity, it is sufficient to show that for every (countable)
C-descending chain D, we have Fy;(inf D) = inf F); (D) componentwise, i.e. it is
sufficient to show that for all s € S we have that [Fy(inf D)]s = inf([Fas(D)]s).
Take any countable descending chain D = {X* € L/ |k € N} C Ly, and any
s € 5. We consider three cases:
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— Case s € S¢. The result follows from the following chain of equalities

[Far(inf(D))], = Boxa Ndwe(r(s) + conv( | J [inf D))

tesucc(s)

= Boxyy N dwe(r(s) 4 conv( U (WX’€

t€succ(s) k>0

= Boxys Ndwe(r(s) + ﬂ conv( U Xk

k>0 tEsucc(s)
= m (Box s N dwe(r(s) + conv( U X))
k>0 tEsucc(s)
=) [Far (XM
k>0

= [inf Far(D)]s,

where we prove % just below. Let Y/ = conV(Uesuce(s) XF) and define

Yoo = Ni>o Y%, We first prove that, for every k, Y* € L. The sets X[
for t € succ(s) are closed and bounded, thus compact. By a corollary of
Carathéodory’s theorem for convex sets their convex hull Y is also compact
and convex. Moreover, it is M-downward closed, so, for every k, Y* € L.

The sets Y* clearly form a descending chain, since the X* form a descending
chain, and thus (5, Y* =Y*> € L.

The equality to prove is conv(UtESUCC ) k>0 XF) = Y*°°. For the C case, take
y € conv(Utesucc 5) MNeso X ¥). Then y = Y p(t)x; for some distribution p
and some x; € ﬂkzo XF. Hence, for every k, y € Y*, and so, y € Y*°.

Now we prove the case DO. Let y>*© € Y,,. We note that, for every k£ > 0,

= 2 tesuce(s) ur(t)xk for some distribution p and some vector of points

xf € Y. As the sets of distributions and Y* are compact, one can ex-

tract a subsequence of indices 4; such that p;, and mi’“ converge toward
limits, which we respectively denote p and x; for every t € succ(s). More-
over, limg_, oo x}" = x; € Ytl for every [ > 0 as Y'! is compact. Hence,
x; € (yso Xy for every ¢t and we conclude y> = D tesuce(s) MB)TL €

conV(Utesucc(s) ﬂkZO Xf)
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— Case s € Sg. We have

[Fu(inf(D))], = Boxy Ndwe(r(s)+ (1) [inf D]y)

tEsucc(s)

d—efBoxMﬂdwc ﬂ ﬂ X
t€succ(s) k>0

= Box s N dwe(r +m ﬂ

k>0 tesucc(s)
= ﬂ(BoxMﬂdWC )+ m X/IC
k>0 tesucc(s)
= (Y Ear (X
k>0
= [inf Far(D)]s.

— Case s = (a, ) € So. The result follows from the following chain of equal-
ities

[Fun(inf(D))], = Boxy Ndwe(r(s)+ Y p(t)  [inf D)

tesupp(p)
= Boxy Ndwe(r(s) + Y ult) x () X5
tesupp(p) k>0
= Boxy N dwe(r(s) + m Z
k>0 tesupp(p)
= ﬂ (Boxpr Ndwe(r(s) + Z w(t) x X*))
k>0 tesupp (i)
=) [Fa (X9
k>0

& [Hlf F]V[ (D)}s,

where we prove * just below. We first show that ;o000 #(8) X5 XF =
ﬂkZO Ztesupp(#) w(t)x X* analogously to the case for Player . The inclusion
ZtESupp(H) wu(t) x ﬂkzo Xk C mkzo Ztaupp(“) w(t) x X* is straightforward.
For the 2 direction, take & € (V350 2 icsupp(u) H(t) x XF, and so, for all k > 0,
there exist vectors yF € X, for t € supp(u), such that = > tesupp(i) pu(t)yr.

We extract a subsequence of indices iy such that y;’“ tends to a limit y;.
This limit necessarily lies in (5o X[ (recall the case for Player ¢) and

hence = = ZtGSuPp(u) p(t)y: € Ztesupp(#) w(t) x ﬂkzo Xk,

Now, since F); is Scott-continuous, by the Kleene fixpoint theorem, the

greatest fixpoint exists and is equal to the limit fiz(Fas) = lim, oo Fiy(T) =

MnenE7(T). a
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C.2 Proof of Proposition

The proof is given by a chain of implications corresponding respectively to
Lemma [pH8] The Lemmas are based on relating fixpoints of several operators in
order to pass from EE that deals with DTMCs to the fixpoint of the operator
F); that deals with games. The proof involves instantiating the operator F; for
different kinds of games, namely, a version F ps associated with the game G
and a version Fq as associated with the PA M (which is a particular game).

Write Sp for the state space of a DTMC D, and write succp(s) for the
successors of s € Sp. Write Spq for the set of states and moves of a PA M,
and write succaq(s) for the successors of s € Saq. For two vectors a,b € (RU
—00)", we denote by min(a,b) the vector ¢ such that ¢; = min(a;, b;), i.e. the
componentwise minimum.

Given a PA M, we consider the set ([—oo,0]")*M| with the partial order
u < ', which is defined to hold if and only if u,; < u/ ; for every s € Sy and

every i € [1,n]. We define an operator Faq on ([—o00,0]")SM! as follows:

n min(Ov T(S) + mintESUCCM(s) ut) if s € 5g
[Frm(w)lg =9 . s
min(0, r(s) + >, cqupp(u () ue) if s = (a, 1) € So.

The sequence (F/’f,l (0))k>0 is non-increasing, that is, F/(\)/t (0) > ﬁ‘/{/t 0)>...>

FJI\“A (0)..., and converges toward the greatest fixpoint of Fr, written fiz(Faq).
Lemma 5. If 7 satisfies EE(r), then for every o, fix(Fgr.o) is lower-bounded.

Proof. Let o be a strategy, let D < G™9 and let P be the transition probability
matrix of the DTMC D (see e.g. [2]). Let E % fiz(Fgnr.). First we show
how to reduce our case to an irreducible DTMC by applying qualitative graph
analysis on the DTMC G™°. We use that for every edge (s,t) € Sp x Sp
(that is, Ps; > 0), if E’: is unbounded then so is E: (due to the min-operator
in E: = min(0, r(s) + Ztesuch(s)PS,tE:))~ In particular, if fiz(Fgn.-) is lower-
bounded in the initial state then it is lower-bounded at every state (by definition
the induced DTMC G™7 contains only reachable states).

We now show that if fiz(Fgr.-) is lower-bounded in all BSCCs then it is also
lower-bounded in the transient states. We first give a linear over-approximation
of ' = Fgn.o (E*) in the following inequality:

E'>a+ PE", (1)

where a is defined by a; = min{0,r(s)}. We denote by Prr (resp. Pr,) the
transition probability matrix P of D restricted to probabilities between transient
states (resp. to probabilities of going from transient to recurrent states). We
denote by E; (resp. Ej_) the sub-vector of E corresponding to the transient
states (resp. the recurrent states). Our purpose is to show that E; is a vector
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with finite entries (that is, > —o0) knowing that E*J_ has finite entries. Applying
to transient states yields

E; > ar + PTTE; + PTJ_Ej_,

and hence
(I-Prp)Er > ar+Pr E.

In particular, (I — PTT)E*T is a vector with finite entries. The matrix (I — Ppr)
is invertible, since (I — Prr)~! = ;:OZ Pk, is well defined (see e.g. Remark
10.20 in [2]), and hence E; has also finite entries.

Note that, if G™ satisfies EE(r), then it satisfies EE(r) in every BSCC.
Thus it suffices to show the statement of the Lemma for an arbitrary single
BSCC.

Justified by the above argument, we suppose for the rest of this proof that
the DTMC D = G™7 considered is irreducible. We use EY as a shorthand for
Ep [rew™ (r)]. EY

. def
N can be expressed via a recurrence as follows: E? = 0, and
for N >0,

s bl
EfT = r(s)+ Y PuE).

tesucc(s)

Writing this in matrix form for N > 0 and j > 1 yields

7j—1
ENTI =3 "P'r+ EV. (2)
=0

We want to show that the sequence (E”) is not lower-bounded whenever
def

the sequence (EN) is not, where BY FY(0)) for all N > 0. It suffices to
prove the result for one arbitrary dimension of the reward structure r, which
we simply denote . We use the lower case € (resp. e) instead of E (resp. E) to
emphasize that we work with single-dimensional reward, but note that these are
still vectors, with one component for each state s of D; when looking at € or e
at a specific state, we write e; and &, (note that e; and é, are scalars specific to
the state s and to the same dimension as r). We show the following facts, noting
that D is assumed to be irreducible:

F1 For every s € Sp and k > 0, |é¥ — é*+1| < max, r(s);
F2 For all s, € Sp and k > 0, it holds that: é¥ < plopleh 4 2|S| max, 7(s),

min €t
where ppiy is the smallest probability on any transition in D, and thus, if
(€")ren is unbounded, then (max,(é¥))rey is likewise unbounded.
F3 If (ék)keN is unbounded then, for every M, there exist k,m € N such that
ektm — pmek 4 oM.
F4 For every k,m, M € N, if e* is lower-bounded by —M then e**™ — Pmek >
—M.
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Proof of We show this by induction on k. The base case is |¢¥ — él| =
let| = mm(O |7(s)|) < max,r(s). Now assume the result holds for k& — 1. Then
el — &t = min(0,7(s) + 32, Ps€r ) — min(0, (s )Jrzt P; %), If both X and
’S“H are zero, then the inequality is trivial. If both €% and eF*! are negatlve
then

S

<ZP8t|~’“ 1_ ek

< ZPS’t rnsaxr(s) < maxr(s).

S

~k:1

les — et = a6 —er)

If e¥ = 0, then, from the induction hypothesis, [¢¥71 < max; r(s)7 and so
0 <r(s )‘1‘215 6 < r(s )+Zt P; 1(éF + max;r(s)). Hence |e¥ — ektl| =
|est!] = [min(0,7(s) + > P 165 )| < maxg r(s).

Proof of If ¢ is a successor of s, then

bl < (s —|—ZP 168 < r(s) 4 Py geF < 1r(s) + pminty.

If ¢ is reachable from s in | < | S| steps, then, by iterating,

-1
A < S gy maxr(s) + Pt < Lk (s) + gt
i=0 )
The result follows by applying fact F[I] times, to obtain
S| &

mm

ek < lmsaxr(s) + lm;axr(s) + pl e < 28] msaxr( s)+p

def

Proof of Fl. Let [ be such that 'éls < B for every state s € Sp, where B =
—QM( 7|S‘\5| +2/9| max(r)). For every s the sequence (6.-™),,<; is zero for

pmlIl S

m = [, and so there is a first index m, (potentially different for every state),
such that &~ > C We let s* be the state for which mg« is minimal amongst
the mg, and so that 65* ™" is maximal amongst the €,~™:. By definition of s*,
every k < m«, and for every s it holds that é.~* < —C. This implies that
gl=mer < gl=ms+ =14 O < 0. This yields that, for every k < mg-, and every s, we
have é.=% < 0. Hence there is no cut-off between indices | — m and [, enabling
us to use the recurrence , to obtain

j—1
él—m—‘rj — ZP'L,’, + Pjél—m (3)
i=0
Hence e! — &' = Pmel=m — pmel=™ and e! — Pmel~m = ¢! — pmel—m,
We further have, for every state t € Sp, that

=P = D[P < e
tesS
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~l—mgx

where t* is such that €. is minimal. We therefore have

[6 — prerel M), <l —éime < p—elomer,

By virtue of F2| we get

—m . —15| sl—m, <
—Ep T < pmlm| Eor =" — 29| msaxr(s),
which is by definition of s* less than —pmm| |S| —2|S| max, r(s) = 757 B. Putting
the previous statements together, we obtain the desired result:

1
[6 _ P l myg *]t* _ [éft* _Pms*él—ms*]t* < (1+W> B < -2M.

Proof of F4. We use recurrence (2) to obtain ef*™ — Pmek = ZZBI Pir =

We are now ready to complete the proof. If (e )keN is unbounded, then,
using Fl for every M there exist k,m € N buch that ef+™ — Pmek % —M and
in particular e**™ — Pmek ¥ —2M. By this implies that (e*)pen is not
lower-bounded by —M . We have shown that ( *)ren is not lower-bounded when
(€")ken is not; this concludes the proof. O

Lemma 6. Given a PA M, it holds that fix(Fae) is lower-bounded for every
strategy o if and only if fix(Fa) is lower-bounded.

Proof. A straightforward induction allows us to get that for every & > 0 and
every state A of M (which is by definition of the induced DTMC a path of M)
it holds that [FY, (0)]x > [F(0)liast(n)- Hence [fizx(Fae)]n > [fiz(Fat)liastn)
for every o. This implies the “only if” direction.
For the “if” direction, we assume that fwc(ﬁ ‘Mo ) is lower-bounded for every
o and, in particular, for every memoryless deterministic (MD) o. We show as
a sufficient condition that the inequality [fiz(Fae )]y > [fix(FM)hast(,\) be-
comes an equality for a MD strategy o we are about to define. Indeed, it
suffices to define o that, in every state s € Sg, takes the successor ts for
which the minimum is reached in the definition of the fixpoint | fiz(F M)s =
min(0, 7(s) +mihsesuce ur (5) [F12(Faq)]e) = min(0, 7(s) + [fiz(Faq)]e, ). Then Faqe
and F( have exactly the same recurrent definition and hence the same fixpoint.
O

Lemma 7. Given a PA M and a bound M, if fm(FM) > —M then, for every
s € Sp, [fiz(Famom)]s # 0.

Proof. Let uw* = fiz(Fy). We show, by induction on k, that, for every k,
u* € Fy(T). The statement for k& = 0 holds since u* € Boxps. For the
inductive step, assume that u* € F/’\‘A_h("l') for some k > 1. Then, for every
O-state s, it holds that mingesuce,(s) Ui € Neesuccp(s) [Ff{’,l’M(T)]t, since the sets
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resulting from F /’f,l a are M-downward-closed. It also holds that, for every move

(@, 11)s 2 sesupp(ytt)uf € Zteﬂjpp(mu(t)[F/’\“A7M(T)]t. In both cases we deduce
that u? € [F/’\“A7M(T)]s, and hence the property is proved. We conclude that
u; € meQ[F/’{:A’M(T)}S = [fiz(Fpm,a)]s, which is thus non-empty for every s.

O

Lemma 8. Given a game G and a bound M, if there exists a strategy m such
that [fiz(For,m)le # O then [fiz(Fam)]e, # 0.

Proof. A straightforward induction yields that for every £ > 0 and every state
A of G™ (which is by definition of the induced PA a path of G) it holds that
[Fé p (T C [FE(T)lastn)- Hence [fiz(Far a)]x C [fiz(Fa)last(n) for every
state X of G™. By assumption, [fiz(Fg= a)le, 7 0 and hence [fiz(EFgr ar)le, # 0.

O

Proof (Proposition[9). Since EE(r) is achievable, there is a Player ¢ strategy
satisfying EE(r), and so, by Lemma for every Player O strategy o, fiz(Fgr.o)
is lower bounded by some —M, > —co. From Lemmal6] there is a lower bound
—M > —o0 on fi:r(ﬁ‘gw,a), which holds for every Player O strategy o. Hence,
by Lemma the fixpoint [fiz(Fg= a)]s is nonempty for every state s € Sg= of
the PA G™ induced by applying 7 to G. Finally, Lemma [8| states that the same
bound M is also valid for the game G, and hence [fiz(Fg )], # 0, concluding
the proof. a

C.3 Proof of Lemma [3]

Lemma 9. Given a sequence (YF)y<imi1 of elements of PM(Boxys) such that
fork <m, 0 C Y CYF and YF Z YFH 6. Then it must be that m < k*
with k* = n - (147 +2)2 +2).

The proof of Lemma [0 makes use of the following Ramsey like theorem.

Theorem 4 (Theorem 4.5.2 of [16]). Let G = (V, E) be a linearly-ordered
complete graph over m nodes given with an n-coloring of its edges. Then G
contains a monochromatic directed path of length |\/m/n —2] — 1

Proof (of Lemma|9). By assumption there exists a sequence (x*)p<m, € (YF N
(Boxas \ dwe(YF T + €)))k<im of points. We first prove that for all j < k, there
exists a coordinate ¢(j, k) for which xi(j’k) — x’j(j,k) >¢c Forj<k al —cd
dwc({z"*}); otherwise 7 — ¢ would be in Y}, for which we have Y} C YJ*1.
This implies that there exists a coordinate c¢(j, k) for which wi(j’k) - a:ff(jyk) > €.

Now consider the linearly-ordered complete graph over m nodes V- = {1,...,m}
and with edges (j,k) for 1 < j < k < m. Endow the edges of this graph with
the n-colouring ¢ given above, i.e. there is one color per dimension of the M-
polyhedrals.

Assume toward a contradiction that m is greater than or equal to k* =
n- ((2 +2)% + 2). Then, by Theorem |4 there exists a monochromatic path
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j1 = j2 = --- = ji of length I > [27, and thus by denoting ¢ the colour of
this path it holds that 2f* > zf2 +e > ... > afl +1le > -M + % >0, a

contradiction. O

Proof (Lemma @ Our goal is to find an index i < k** % (2k*)I5! such that
X+l C X!+ ¢ for all s € S. Fix an ordering on states, s, . . -1 815]-1-

We recursively define a finite sequence of sets of indices (/;);< g such that
|| = (2k*)!5171 Iiyy C I, and for all i € Iy, Xi € Xt 4 e Let Iy =
{0,1,...,(2k")I¥1 — 1}. Assume that I, = {io, ..., igpe)51-1 )31} is already
constructed. For every p < (2k*)!81=!/k* — 1, we use Lemma [9] with the se-
quence X7 .. ,X;k*“’“)’l to find an index i;, among the k* indices in the
set {ig=p, -0k (p+1)—1}, such that ijp C X;“’H +eor ijpﬂ = (). Note that
if X" = then X0 = xo
index for which X 2“7 iz X;j p +e&. If such an index i;,_ exists, we can define the
two sets {i;,|p < ¢} and {i;,|p > ¢}, and we define I;;; to be the set amongﬁthese
with maximal cardinality. Thus 4, contains at least |I;|/(2k*) = (2k*)I¥I=1=1
elements. Up to deleting some indices we define I;; with exactly (2&*)I51=t-1
elements.

We now have a unique index ¢ € I‘g‘, such that for all s € S, it holds that
X! C XI*! + e Further, the index i € |5 C Iy is bounded by k** = (2k*)!°,
which is the bound we set out to prove. a

= () for ¢ > p. Then there can be only one

C.4 Proof of Theorem [l

Proof. Let & > 0, and let k such that X! # @ and X* C X*1 4 e[f] We
define T C S as the set of states s for which X**1 5 ) (in particular ¢5 € T).
Note that, if a move or a Player O state is in T, then it means that, for every
t € succ(s), X 43 XF #0 and hence t € T

Firstly, we show that the strategy is well-defined. We now show that the
points g! can be picked from X[. For any state s € S, depending on the type
of s (i.e. Player ¢, Player [J, or move), we define an auxiliary set Y} without
the cut-off. We then show that we can find the required coefficients and corner
points for every point in Y, and prove that for all extreme points p of X* we
have p — ¢ in Y for k > 0, allowing us to show well-definedness of the strategy.
Take s € T.

def

— Case s € Sy. Let YF = r(s) + conv(Uresucc(s)n T XF). Take any p’ € YF.
Due to the convex hull, there now exist coefficients v € Alsuce()NT| gt ¢ An
and points gt € CF for t € succ(s) NT, such that D tesuce(s) VT 2 Bt-qt >

/
p' —r(s).

! Note that we allow ¢ = 0. As long as k is finite, the sets X* can be finitely repre-
sented, yielding finite-memory Player ¢ strategies.
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— Case s € So. Let Y* = dwc(r(s) + Mtesuce(s) XF). Take any p’ € Y. For

any t € succ(s), there now exist coefficients 3¢ € A™ and points gt € CF
such that }°, 8f - q > p’ —r(s).

— Case s = (a,1) € So. Let YF & 1(s) + 3, oo (1) X XF'. Take any
p’ € YF. Due to the Minkowski sum, there now exist coefficients 3' € A"

and points g} € Cf such that 35,000 u(t) - 32, B - qf > p' —r(s).

We have X* C X*+1 4 ¢ and so dwc(YF) NBoxys = X*+! J XF — . Then, for
any point p € C¥, it holds that p — e € dwc(Y) N Boxy;. Hence we can find for
p’ = p — € the corresponding coefficients and extreme points to construct the
strategy, as described in Section Note that only states in T are accessed by
the strategy.

Secondly, we let o be an arbitrary Player OJ strategy, let D be the DTMC
induced by applying (7,0) to G and let s, be an arbitrary state of D. It has the
form s, = (s,(s,p,), m), where s is a state of G and (s,p,) is the memory of
Player ¢ and m is the memory of Player .

We show that Ep s, [rew¥ ()] > p, — Ne. For this we show that the memory
of 7 is always above p, — Ep s, [rew™ (r)] — Ne, and since this memory is always
non-positive due to the Box,; intersection in the F); operator, we get the desired
result.

Let A € 2p s, be a path ending in (s, (s,y),m), where s € S is the current
state, (s,vy) is the current memory of 7, and m is the current memory of o. Let
Yn : 2p — R"™ be the random variable that assigns y to a path A for which
An = (8, (s,9),m). We now show that Ep s [Yn] > po — Ep s, [rew™ (r)] — Ne
for all N > 0 by induction on the length N of paths.

— Base case. For N =0, we have Ep ;, [Y)] = po,

— Inductive case. Assume that Ep s [Yn] > po — Ep s, [rew’ (r)] — Ne. Let
W be the set of all finite paths of length N in the induced DTMC D. For
each path X = X - (s, (s,y), m) € Wy, we have

Zt»Esucc(s) W”(Sv (Sa y))(t) ’ Zz 6f : qﬁ if s € S()
Eps, [YN+1|)\I] = Zthucc(s) Un(87 m)(t) . ZZ ﬁzt . q§ if s € Sp
2 tesupp() H(E) - 22 Bi - q; if s = (a,p) € So,

which, by the definition of 7, is greater than or equal to y — r(s) — €.
We now apply the law of total probability (note that the memory of the
strategies is countable), to obtain (we again denote X' = X - (s, (s,y), m))

Eps, Yl = Y Ep.,[YapalN]-Prg?(X)
NeWn

> ) (y—r(s)—e)-Prg7(X)
NEWN
=Ep.s,[Yn] = (Eps, [rew" T (r)] = Ep ,, [rew™ (r)]) — ¢

>po—Eps, [reWNJrl(r)} — (N 4+ 1)e,
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where the last inequality holds by the induction hypothesis.

Since Ep s, [Yn] < 0 for all N, we have that Ep 5, [rew(r)] — p, +€- N >
—Eps,[Yn] > 0, and hence D satisfies EE,, (r + €) for every state s, of D,
concluding the proof.

|

D Assume-Guarantee Rules

D.1 Proof of Proposition

Proof. Fix m and take any Player O strategy o. Fix i. Using definition of ¢; and
Lemma [4] we know that, with probability one, mp(c;) > 0. We first show that
the following holds for almost every path:

m = ratio (Z) (A)-

Again, by Lemma [4] with probability one, a path A ends in a BSCC B and the
limit inferior can be replaced by the true limit in the definitions of mp(c;) and
mp(r;). Hence,

mp(r;)(\) _ limpy oo ﬁreWN(ri)(A) i ﬁreWN(r Y(N)
mp(c;)(A)  limy_eo ﬁrewN(ci)(A) NS00 N—_HrewN( c)(N)

There is no indeterminacy for this quotient of limits, as the denominator is

positive and both numerator and denominator are bounded. Simplifying the
. . DO A ..

N7 term yields the equality zggz gg)\; limy 00 % This is almost

surely equal to ratio (%) (A) = limpy 00 %m since rew™ (¢;)(\) — +o0

almost surely. It follows straightforwardly that mp(r;)(A) — v; - mp(c;)(A) > 0

holds almost surely exactly when ratio Z—L) A = % > v; holds almost
surely. Since we have shown this for all strategies m and o, almost every path A,

and all dimensions ¢, the proposition follows. a

D.2 Proof of Theorem [3

Projections. Given a state s = (s1,82) of M; || Ma, the projection of s onto
M is s[ g, = 54, and for a distribution p over states of M || My we define its
projection by pf . (si) = Zer:sqz u(s). Given a (finite or infinite) path A of

M, || Ma, the projection of A onto M;, denoted by Af 4., is the path obtained
from A by projecting each state and distribution, and removing all moves with
actions not in the alphabet of M;, together with the subsequent states.
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Definition 3 (Strategy Projection, [13]). Let My and My be PAs and o
a strategy of My || Ma. The projection of o onto M; is the strategy o, ,

defined such that for any finite path A\; of M; and transition last(\;) —= w;
(where last(\) is last state of N), o g, (Ni)(a, ps) is defined as

Pro(\,).

Lemma 10. Given PAs M1 and My with actions Ay and As resp., a specifi-
cation ¢ defined on traces of A C A; for some i € {1,2}, and a strategy o, we

ol g
have (My || Ma)” = 0 M = .
Proof. From Lemma 7.2.6 in [I7], for PAs M; and Ms, and a strategy o of M ||

Mo, for any trace w over actions A C A; we have Pri, g, (w) = Prj/rlf:/‘ (w).
Therefore, since ¢ is defined on traces of A C A;, we have that (M || M2)? =

o'i[ - 0'7'[ "
@ & 0Py m,) € e(Pry ) & MM = 0

Proof (Of Theorem[3). Take any fair strategy o of M; || Ms. From Lemma 2
in [I3], the projections o[, and o, are fair strategies. We have, for i € {1,2},
that M; =/ % implies M?W"' = ¢, since oy, is fair; this in turn implies
(M1 || M2)? = ¢%, by Lemma since Ag, C A;. Since o was an arbitrary
fair strategy of M || Mz, we have that this implies M || My = %1 A %2,
O

D.3 Proof of Proposition

Proof. 1t is sufficient to show that this holds for single-dimensional reward struc-
tures r and ¢, as specifications over n-dimensional reward structures are defined
on traces over the union of the actions of the individual dimensions.

Let A = {7} U A. Given a path A, A\, = PROJg\ (4,UA,)(A) is the sequence
of moves s such that such that r(s) # 0 or ¢(s) > 0. Given an index N and
an infinite path )\, divide it into two, its prefix and suffix AP, AP°* such that
|AP7¢| = N. We have for all N and m that rew™ (r)(A) = rew™ ()(Are), and
rew™ (¢)(A) = rew™ (¢)(Are), where N’ = |\27¢|. Hence

rew™ (r)(A) /rew™ (c)(A) = rew™ (r)(Are) /rew™ (¢)(Are).

If A contains an infinite number of actions in A, U A, then, and as N — oo,
also N’ — co. Hence, we have that ratio(r/c)()) is equal to

N N
lim inf rew” (r)(A) = liminf rew ™ (1) (Are)

N—o0 HTN(c)()\) N—ooo 1 + I'GVVN(C)(/\TC) = ratio(r/c)()‘rc).

If, on the other hand, A contains only a finite number of actions in A, UA., then
ratio(r/c)(\) = ratio(r/c)(Are) = 0. Then, we have for any DTMCs D and D’
with Prp ., (w) = ﬁrD/7§6 (w) for traces w € (A, UA.)*, that Prp o (ratio(r/c) >
v) = Prp/ o (ratio(r/c) > v). O
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