On the Total Variation Distance of Labelled Markov Chains

Taolue Chen¹ Stefan Kiefer²

¹Middlesex University London, UK

²University of Oxford, UK

OASIS Seminar, Oxford 30 January 2015

Labelled Markov Chains (LMCs)

An LMC generates infinite words randomly.

$$\begin{aligned} &\mathsf{Pr}(\{a\mathsf{bacccc}\ldots\}) = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{64} \\ &\mathsf{Pr}(\{a\}\Sigma^{\omega}) = \frac{1}{2} \\ &\mathsf{Pr}(\{b\}\Sigma^{\omega}) = \frac{1}{4} \\ &\mathsf{Pr}(\text{``eventually only } c") = 1 \end{aligned}$$

Pr assigns a measurable event $E \subseteq \Sigma^{\omega}$ a probability $\in [0, 1]$. $E \subseteq \Sigma^{\omega}$ could be defined by an LTL formula.

Labelled Markov Chains (LMCs)

 $\Pr_1(\{accc...\}) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \qquad \qquad \Pr_2(\{accc...\}) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$

The two LMCs are not equivalent and have positive distance.

TV-distance $d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$

How large can $Pr_1(E) - Pr_2(E)$ get?

Labelled Markov Chains (LMCs)

 $\Pr_1(\{accc...\}) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \qquad \qquad \Pr_2(\{accc...\}) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$

The two LMCs are not equivalent and have positive distance.

TV-distance $d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$

How large can $Pr_1(E) - Pr_2(E)$ get? No larger than $\frac{15}{16} < 1$.

Motivation: Efficient Model Checking

- "similar" LMCs M_1, \ldots, M_n
- (ω -regular) events E_1, \ldots, E_m
- want: bounds on Pr_i(E_j) for all i, j

Assume $d(Pr_1, Pr_i) \le \varepsilon$ for all $i \le n$. Then by definition

$$\forall i \; \forall j: \; \Pr_i(E_j) \in [\Pr_1(E_j) - \varepsilon, \Pr_1(E_j) + \varepsilon]$$

Digression: Total Variation Distance

Taolue Chen, Stefan Kiefer

On the Total Variation Distance of Labelled Markov Chains

Digression: Total Variation Distance

The TV-distance is half the L_1 -norm of the difference:

$$d(\Pr_{\text{Taolue}}, \Pr_{\text{Stefan}}) = \frac{1}{2} \|\Pr_{\text{Taolue}} - \Pr_{\text{Stefan}}\|_{1}$$
$$:= \frac{1}{2} \sum_{x \in \{\bigcirc, \bigtriangledown, \bigcirc, \bigcirc\}} |\Pr_{\text{Taolue}}(x) - \Pr_{\text{Stefan}}(x)|$$
$$= \frac{1}{2} \cdot (0.1 + 0.1 + 0.2) = 0.2$$

What is the Maximising Event?

 $d(\Pr_1, \Pr_2) = \Pr_1(E) - \Pr_2(E)$ holds for

$$\mathsf{E} = \{\mathit{wccc} \dots \mid \mathit{w} \in \{\mathit{a}, \mathit{b}\}^*, \ \#_{\mathit{a}}(\mathit{w}) \geq \#_{\mathit{b}}(\mathit{w})\}$$

"E is a maximising event"

It's not clear that there is always a maximising event.

Taolue Chen, Stefan Kiefer On the Total Variation Distance of Labelled Markov Chains

$$d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

$$d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

$$d(\Pr_1, \Pr_2) := \sup_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

$$d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

$$d(\mathsf{Pr}_1,\mathsf{Pr}_2):=\sup_{E\subseteq\Sigma^\omega}|\mathsf{Pr}_1(E)-\mathsf{Pr}_2(E)|$$

Technically, *E* ranges only over the measurable subsets of Σ^{ω} (still uncountably many such events *E*).

$$d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

$$d(\mathsf{Pr}_1,\mathsf{Pr}_2):=\sup_{E\subseteq\Sigma^\omega}|\mathsf{Pr}_1(E)-\mathsf{Pr}_2(E)|$$

Technically, *E* ranges only over the measurable subsets of Σ^{ω} (still uncountably many such events *E*).

Proposition (Existence of a Maximising Event)

There is an event $E \subseteq \Sigma^{\omega}$ with $d(\Pr_1, \Pr_2) = \Pr_1(E) - \Pr_2(E)$.

$$d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

The Maximising Event is not Always ω -Regular.

 $E = \{wccc... \mid w \in \{a, b\}^*, \ \#_a(w) \ge \#_b(w)\}$

 \rightarrow There is no ω -regular maximising event.

- The LMC is very symmetric.
- Both states enable all runs.

But $d(Pr_1, Pr_2) = 1$. What is the maximising event?

baabbaabbabababb ····

- The LMC is very symmetric.
- Both states enable all runs.

But $d(Pr_1, Pr_2) = 1$. What is the maximising event?

b a a b b a b a b a b a b b b ... 1 2 3 4 5 6 7 8 9

- The LMC is very symmetric.
- Both states enable all runs.

But $d(Pr_1, Pr_2) = 1$. What is the maximising event?

- The LMC is very symmetric.
- Both states enable all runs.

But $d(Pr_1, Pr_2) = 1$. What is the maximising event?

b	а	а	b	b	а	а	b	b	а	b	а	b	а	b	b	• • •
1			2	3			4	5		6		7		8	9	
				b				b			а				b	
				<u>0</u> 1				<u>0</u> 2			$\frac{1}{3}$				$\frac{1}{4}$	$ ightarrow rac{1}{3}$

Let
$$E$$
 = "this sequence converges to $\frac{1}{3}$ ". Then:
Pr₁(E) = 1 and Pr₂(E) = 0

There is no ω -regular maximising event.

A Maximising Event: Intuition

$$\label{eq:rescaled_$$

For LMCs, define

$$\overline{L}(w) := \frac{\mathsf{Pr}_2(w)}{\mathsf{Pr}_1(w)}$$

Maybe $E = \{w \in \Sigma^{\omega} \mid \overline{L}(w) \leq 1\}$ is a maximising event?

A Maximising Event: Intuition

$$\label{eq:rescaled_$$

For LMCs, define

$$\overline{L}(w) := \frac{\mathsf{Pr}_2(w)}{\mathsf{Pr}_1(w)}$$

Maybe $E = \{w \in \Sigma^{\omega} \mid \overline{L}(w) \leq 1\}$ is a maximising event?

Redefine $\overline{L}(w) \dots$

Fix a run $w = a_1 a_2 a_3 \dots \in \Sigma^{\omega}$. For every $k \in \mathbb{N}$ define a nonnegative value:

$$L_{k}(w) := \frac{\Pr_{2}(a_{1} \cdots a_{k} \Sigma^{\omega})}{\Pr_{1}(a_{1} \cdots a_{k} \Sigma^{\omega})}$$

$$\frac{w}{\Pr_{2}(a_{1} \cdots a_{k} \Sigma^{\omega})} \begin{vmatrix} b & a & b & \cdots \\ \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac$$

If the run *w* is produced randomly (say, from the left state), L_1, L_2, \ldots is a sequence of random variables.

Fix a run $w = a_1 a_2 a_3 \dots \in \Sigma^{\omega}$. For every $k \in \mathbb{N}$ define a nonnegative value:

$$L_{k}(w) := \frac{\Pr_{2}(a_{1} \cdots a_{k} \Sigma^{\omega})}{\Pr_{1}(a_{1} \cdots a_{k} \Sigma^{\omega})}$$

$$\frac{w}{\Pr_{2}(a_{1} \cdots a_{k} \Sigma^{\omega})} \begin{vmatrix} b & a & b & \cdots \\ \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac$$

If the run *w* is produced randomly (say, from the left state), L_1, L_2, \ldots is a sequence of random variables.

If w is produced randomly,

 L_1, L_2, \ldots is a sequence of random variables.

For any prefix $a_1 \cdots a_k$:

 $\mathbb{E}_1(L_{k+1}(w) \mid w \in a_1 \cdots a_k \Sigma^{\omega}) = L_k(w)$

" L_1, L_2, \ldots is a martingale"

If w is produced randomly,

 L_1, L_2, \ldots is a sequence of random variables.

For any prefix $a_1 \cdots a_k$:

 $\mathbb{E}_1\left(L_{k+1}(w) \mid w \in a_1 \cdots a_k \Sigma^{\omega}\right) = L_k(w)$

" L_1, L_2, \ldots is a martingale"

The martingale is nonnegative.

 \implies Martingale Convergence Theorem applies.

 $\implies \overline{L} := \lim_{k \to \infty} L_k$ exists almost surely.

 $(\overline{L} \text{ is a random variable.})$

Theorem (A Generic Maximising Event)

Define $E := \{ w \in \Sigma^{\omega} \mid \overline{L}(w) \leq 1 \}.$

Then $d(Pr_1, Pr_2) = Pr_1(E) - Pr_2(E)$.

Approximation: Lower Bound

$$d(\Pr_1, \Pr_2) := \max_{E \subseteq \Sigma^{\omega}} |\Pr_1(E) - \Pr_2(E)|$$

Fix $k \in \mathbb{N}$. Idea: consider only events definable by the length-k prefix. I.e., define $d_k(\Pr_1, \Pr_2) := \max_{W \subseteq \Sigma^k} |\Pr_1(W\Sigma^{\omega}) - \Pr_2(W\Sigma^{\omega})|$.

$\begin{array}{l} \mbox{Proposition} \\ \mbox{For all } k \in \mathbb{N}: \\ \mbox{d_k}(\mbox{Pr}_1,\mbox{Pr}_2) \leq d_{k+1}(\mbox{Pr}_1,\mbox{Pr}_2) \leq d_{\infty}(\mbox{Pr}_1,\mbox{Pr}_2) = d(\mbox{Pr}_1,\mbox{Pr}_2) \end{array}$

Approximation: Upper Bound

Taolue Chen, Stefan Kiefer

On the Total Variation Distance of Labelled Markov Chains

Approximation: Upper Bound

This defines an increasing sequence:

$$0 \leq \mathit{con}(0) \leq \mathit{con}(1) \leq \ldots \leq \mathit{con}(\infty) = 1 - \mathit{d}(\mathsf{Pr}_1,\mathsf{Pr}_2)$$

In general, define con(k) using equivalent distributions rather than equal states.

Approximation: Upper Bound

This defines an increasing sequence:

```
0 \leq con(0) \leq con(1) \leq \ldots \leq con(\infty) = 1 - d(Pr_1, Pr_2)
```

In general, define con(k) using equivalent distributions rather than equal states.

Given $\varepsilon > 0$, one can compute $x \in \mathbb{Q}$ with $d(\Pr_1, \Pr_2) \in [x, x + \varepsilon]$.

Open: convergence speed

Theorem

Taolue Chen, Stefan Kiefer On the Total Variation Distance of Labelled Markov Chains

The Distance-1 Problem: Deniability

Task for NSA: distinguish those guys! Is there $E \subseteq \left\{ \overbrace{r}, \overbrace{f}, \overbrace{E} \right\}^{\omega}$ with $\Pr_{Taolue}(E) = 1 \text{ and } \Pr_{Stefan}(E) = 0 ?$

The Distance-1 Problem: Deniability

Task for NSA: distinguish those guys! Is there $E \subseteq \left\{ \overbrace{f}, \overbrace{f}, \overbrace{BBC}^{\omega} \right\}^{\omega}$ with $\Pr_{Taolue}(E) = 1 \text{ and } \Pr_{Stefan}(E) = 0 ?$ If not, Taolue can plausibly deny that he is Taolue.

On the Total Variation Distance of Labelled Markov Chains

The Distance-1 Problem

The distance is $< 1 \iff \exists k \in \mathbb{N} : con(k) > 0$

Taolue Chen, Stefan Kiefer On the Total Variation Distance of Labelled Markov Chains

The Distance-1 Problem: in PSPACE

The distance is $< 1 \iff \exists u \in \Sigma^* : \mu_1^u$ and μ_2^u overlap.

- Whether μ₁^u, μ₂^u overlap depends only on the supports of μ₁^u and μ₂^u.
- Whether μ^u₁, μ^u₂ overlap can be computed in poly time using previous work and linear programming.
- There are at most $2^{2|Q|}$ possible supports of μ_1^u and μ_2^u .
- → PSPACE algorithm: guess a word $u \in \Sigma^{\leq 2^{2|Q}}$ and check if μ_1^u , μ_2^u overlap.

The Distance-1 Problem: in P

To get a polynomial-time algorithm:

- Generalise distance between states to distance between state distributions.
- Exploit structural properties of the generalised notion:

Lemma $d(\pi_1, \pi_2) = 0 \implies \forall q \in supp(\pi_1) : d(q, \pi_2) < 1$ $d(\pi_1, \pi_2) < 1 \implies \exists q \in supp(\pi_1) : d(q, \pi_2) < 1$

The Distance-1 Problem: in P

To get a polynomial-time algorithm:

- Generalise distance between states to distance between state distributions.
- Substitution Structural properties of the generalised notion:

Lemma $d(\pi_1, \pi_2) = 0 \implies \forall q \in supp(\pi_1) : d(q, \pi_2) < 1$ $d(\pi_1, \pi_2) < 1 \implies \exists q \in supp(\pi_1) : d(q, \pi_2) < 1$

Exploit previous work on LMC equivalence and use linear programming.

Theorem (Distance-1 Problem)

One can decide in polynomial time whether the distance between two LMCs is 1.

Taolue Chen, Stefan Kiefer On the Total Variation Distance of Labelled Markov Chains

Threshold Problem

<u>Threshold Problem</u> Input: 2 LMCs and threshold $\tau \in [0, 1]$ Output: Is $d(Pr_1, Pr_2) \ge \tau$?

Square-Root-Sum ProblemInput: $s_1, \ldots, s_n \in \mathbb{N}$ and $t \in \mathbb{N}$ Output: Is $\sum_{i=1}^n \sqrt{s_i} \ge t$?

The Square-Root-Sum problem is not known to be in NP.

<u>Threshold Problem</u> Input: 2 LMCs and threshold $\tau \in [0, 1]$ Output: Is $d(Pr_1, Pr_2) \ge \tau$?

Square-Root-Sum ProblemInput: $s_1, \ldots, s_n \in \mathbb{N}$ and $t \in \mathbb{N}$ Output: Is $\sum_{i=1}^n \sqrt{s_i} \ge t$?

The Square-Root-Sum problem is not known to be in NP.

Theorem

The Threshold Problem is NP-hard. The Threshold Problem is hard for the Square-Root-Sum Problem.

LMC with 2 Parameters

Distance as Function in x

Distance as Function in x

• $d'_{\theta}(x)$ (rescaled) is the cumulative distribution function of

$$\sum_{i=0}^{\infty} \frac{X_i}{\theta^i} \quad \text{with } \Pr(X_i = -1) = \Pr(X_i = +1) = \frac{1}{2}$$

- "Bernoulli convolutions": studied since the 1930s
- $\forall \theta > 1$: d'_{θ} is either absolutely continuous or singular.
- d'_3 is the (ternary) Cantor function.
- For almost all $\theta \in (1, 2]$: d'_{θ} is absolutely continuous.
- If θ is a Pisot number, then d'_{θ} is singular. [Erdős, 1939]
- It is open, e.g., whether $d'_{3/2}$ is absolutely continuous.

Related Work: Bisimilarity Pseudometric

LMCs are (trace) equivalent, but not bisimilar. More precisely: TV-distance is 0, but bisimilarity distance is 1.

[D. Chen, F. van Breugel, J. Worrell, FoSSaCS'12]: TV-distance ≤ bisimilarity distance

Positive Results:

- There is a maximising event.
- The distance can be approximated within arbitrary precision.
- The distance-1 problem is in P.

Negative Results:

- The maximising event may not be ω -regular.
- The threshold problem is NP-hard and hard for square-root-sum.
- The distance is related to Bernoulli convolutions.

Open Questions:

- Efficient approximation?
- Is the threshold problem decidable?

A Pisot number is a real algebraic integer greater than 1 such that all its Galois conjugates are less than 1 in absolute value.

Smallest Pisot number (\approx 1.3247): the real root of $x^3 - x - 1$

Another one is the golden ratio
$$\frac{\sqrt{5}+1}{2} \approx 1.6180$$
.