On the Total Variation Distance of Labelled Markov Chains

Taolue Chen ${ }^{1}$ Stefan Kiefer ${ }^{2}$
${ }^{1}$ Middlesex University London, UK
${ }^{2}$ University of Oxford, UK

OASIS Seminar, Oxford 30 January 2015

Labelled Markov Chains (LMCs)

An LMC generates

 infinite words randomly.$\operatorname{Pr}(\{a b a c c c c \ldots\})=\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4}=\frac{1}{64}$
$\operatorname{Pr}\left(\{a\} \Sigma^{\omega}\right)=\frac{1}{2}$
$\operatorname{Pr}\left(\{b\} \Sigma^{\omega}\right)=\frac{1}{4}$
$\operatorname{Pr}($ "eventually only c ") $=1$
Pr assigns a measurable event $E \subseteq \Sigma^{\omega}$ a probability $\in[0,1]$.
$E \subseteq \Sigma^{\omega}$ could be defined by an LTL formula.

Labelled Markov Chains (LMCs)

$\operatorname{Pr}_{1}(\{\operatorname{accc} \ldots\})=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8} \quad \operatorname{Pr}_{2}(\{\operatorname{accc} \ldots\})=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$
\longrightarrow The two LMCs are not equivalent and have positive distance.
TV-distance $d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|$
How large can $\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)$ get?

Labelled Markov Chains (LMCs)

$\operatorname{Pr}_{1}(\{\operatorname{accc} \ldots\})=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}$
$\operatorname{Pr}_{2}(\{\operatorname{accc} \ldots\})=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$
\longrightarrow The two LMCs are not equivalent and have positive distance.
TV-distance $d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|$
How large can $\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)$ get? No larger than $\frac{15}{16}<1$.

Motivation: Efficient Model Checking

- "similar" LMCs M_{1}, \ldots, M_{n}
- (ω-regular) events E_{1}, \ldots, E_{m}
- want: bounds on $\operatorname{Pr}_{i}\left(E_{j}\right)$ for all i, j

Assume $d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{i}\right) \leq \varepsilon$ for all $i \leq n$. Then by definition

$$
\forall i \forall j: \operatorname{Pr}_{i}\left(E_{j}\right) \in\left[\operatorname{Pr}_{1}\left(E_{j}\right)-\varepsilon, \operatorname{Pr}_{1}\left(E_{j}\right)+\varepsilon\right]
$$

Digression: Total Variation Distance

Digression: Total Variation Distance

The TV-distance is half the L_{1}-norm of the difference:

$$
\begin{aligned}
d\left(\operatorname{Pr}_{\text {Taolue }}, \operatorname{Pr}_{\text {Stefan }}\right) & =\frac{1}{2}\left\|\operatorname{Pr}_{\text {Taolue }}-\operatorname{Pr}_{\text {Stefan }}\right\|_{1} \\
& :=\frac{1}{2} \sum_{x \in\{\bigcirc,}\left|\operatorname{Pr}_{\text {Taolue }}(x)-\operatorname{Pr}_{\text {Stefan }}(x)\right| \\
& =\frac{1}{2} \cdot(0.1+0.1+0.2)=0.2
\end{aligned}
$$

What is the Maximising Event?

$$
d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma \omega}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
$$

$d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)=\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)$ holds for

$$
E=\left\{w c c c \ldots \mid w \in\{a, b\}^{*}, \#_{a}(w) \geq \#_{b}(w)\right\}
$$

" E is a maximising event"
It's not clear that there is always a maximising event.

More Careful Definition

$$
d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma \omega}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
$$

More Careful Definition

$$
\begin{aligned}
& d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max x_{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right| \\
& d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\sup _{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
\end{aligned}
$$

More Careful Definition

$$
\begin{aligned}
& d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma \omega}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right| \\
& d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\sup _{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
\end{aligned}
$$

Technically, E ranges only over the measurable subsets of Σ^{ω} (still uncountably many such events E).

More Careful Definition

$$
\begin{aligned}
& d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right| \\
& d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\sup _{E \subseteq \Sigma^{\omega}}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
\end{aligned}
$$

Technically, E ranges only over the measurable subsets of Σ^{ω} (still uncountably many such events E).

Proposition (Existence of a Maximising Event)

There is an event $E \subseteq \Sigma^{\omega}$ with $d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)=\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)$.

$$
d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma \omega}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
$$

The Maximising Event is not Always ω-Regular.

$$
d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma \omega}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
$$

$d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)=\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)=\sqrt{2} / 4$ holds for

$$
E=\left\{w c c c \ldots \mid w \in\{a, b\}^{*}, \# a(w) \geq \#_{b}(w)\right\}
$$

\longrightarrow There is no ω-regular maximising event.

Example for Distance 1

- The LMC is very symmetric.
- Both states enable all runs.

But $d\left(\mathrm{Pr}_{1}, \mathrm{Pr}_{2}\right)=1$. What is the maximising event? $b a \quad a \quad b \quad b \quad a \quad a \quad b \quad b \quad a \quad b \quad a \quad b \quad a \quad b \quad b \quad \ldots$

Example for Distance 1

- The LMC is very symmetric.
- Both states enable all runs.

But $d\left(\mathrm{Pr}_{1}, \mathrm{Pr}_{2}\right)=1$. What is the maximising event?

b	a	a	b	b	a	a	b	b	a	b	a	b	a	b	b	\cdots
1				2	3				4	5			6		7	
	8	9														

Example for Distance 1

- The LMC is very symmetric.
- Both states enable all runs.

But $d\left(\mathrm{Pr}_{1}, \mathrm{Pr}_{2}\right)=1$. What is the maximising event?
b a

$\begin{array}{llll}a & a & b & b \\ & & 4 & 5 \\ & & & b \\ & & & \frac{0}{2}\end{array}$

a	b	b	\cdots
	8	9	
		b	
		$\frac{1}{4}$	$\rightarrow \frac{1}{3}$

Example for Distance 1

- The LMC is very symmetric.
- Both states enable all runs.

But $d\left(\mathrm{Pr}_{1}, \mathrm{Pr}_{2}\right)=1$. What is the maximising event?

b	a	a	b	b	a	a	b	b	a	b	a	b	a	b	b	\cdots
1			2	3			4	5		6		7		8	9	
				b				b								b
					$\frac{0}{1}$					$\frac{0}{2}$					$\frac{1}{3}$	
								$\rightarrow \frac{1}{3}$								

Let $E=$ "this sequence converges to $\frac{1}{3}$ ". Then:

$$
\operatorname{Pr}_{1}(E)=1 \text { and } \operatorname{Pr}_{2}(E)=0
$$

There is no ω-regular maximising event.

A Maximising Event: Intuition

$$
\begin{array}{c|ccc}
& & \\
\hline \operatorname{Pr}_{\text {Taolue }} & 0.3 & 0.6 & 0.1 \\
\operatorname{Pr}_{\text {Stefan }} & 0.2 & 0.5 & 0.3 \\
\operatorname{Pr}_{\text {Taolue }}(\{\bigcirc, \square\})-\operatorname{Pr}_{\text {Stefan }}(\{\bigcirc,<\})=0.2
\end{array}
$$

For LMCs, define

$$
\bar{L}(w):=\frac{\operatorname{Pr}_{2}(w)}{\operatorname{Pr}_{1}(w)}
$$

Maybe $E=\left\{w \in \Sigma^{\omega} \mid \bar{L}(w) \leq 1\right\}$ is a maximising event?

A Maximising Event: Intuition

$\operatorname{Pr}_{\text {Taolue }}(\{\bigcirc\})-,\operatorname{Pr}_{\text {Stefan }}(\{\bigcirc,<\})=0.2$

For LMCs, define

$$
\bar{L}(w):=\frac{\operatorname{Pr}_{2}(w)}{\operatorname{Pr}_{1}(w)}
$$

Maybe $E=\left\{w \in \Sigma^{\omega} \mid \bar{L}(w) \leq 1\right\}$ is a maximising event?
Redefine $\bar{L}(w) \ldots$

A Maximising Event

Fix a run $w=a_{1} a_{2} a_{3} \cdots \in \Sigma^{\omega}$.
For every $k \in \mathbb{N}$ define a nonnegative value:

$$
\begin{aligned}
L_{k}(w) & :=\frac{\operatorname{Pr}_{2}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right)}{\operatorname{Pr}_{1}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right)} \\
\operatorname{Pr}_{2}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right) & w \\
\operatorname{Pr}_{1}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right) & \begin{array}{c|c|c|c|c}
& a & a & b & \cdots \\
L_{k}(w) & \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} \cdot \frac{2}{3} & \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} & \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} & \cdots \\
\frac{1}{4} & \frac{1}{8} & \frac{1}{4} & \cdots
\end{array}
\end{aligned}
$$

If the run w is produced randomly (say, from the left state), L_{1}, L_{2}, \ldots is a sequence of random variables.

A Maximising Event

Fix a run $w=a_{1} a_{2} a_{3} \cdots \in \Sigma^{\omega}$.
For every $k \in \mathbb{N}$ define a nonnegative value:

$$
\begin{aligned}
L_{k}(w) & :=\frac{\operatorname{Pr}_{2}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right)}{\operatorname{Pr}_{1}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right)} \\
\operatorname{Pr}_{2}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right) & w \\
\operatorname{Pr}_{1}\left(a_{1} \cdots a_{k} \Sigma^{\omega}\right) & \begin{array}{c|c|c|c|c}
\\
L_{k}(w) & \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} \cdot \frac{2}{3} & \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} & \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} & \cdots \\
L_{k}(& \frac{1}{4} & \frac{1}{8} & \frac{1}{4} & \cdots
\end{array}
\end{aligned}
$$

If the run w is produced randomly (say, from the left state), L_{1}, L_{2}, \ldots is a sequence of random variables.

A Maximising Event

If w is produced randomly,
L_{1}, L_{2}, \ldots is a sequence of random variables.
For any prefix $a_{1} \cdots a_{k}$:

$$
\begin{gathered}
\mathbb{E}_{1}\left(L_{k+1}(w) \mid w \in a_{1} \cdots a_{k} \Sigma^{\omega}\right)=L_{k}(w) \\
\text { " } L_{1}, L_{2}, \ldots \text { is a martingale" }
\end{gathered}
$$

A Maximising Event

If w is produced randomly,
L_{1}, L_{2}, \ldots is a sequence of random variables.
For any prefix $a_{1} \cdots a_{k}$:

$$
\begin{gathered}
\mathbb{E}_{1}\left(L_{k+1}(w) \mid w \in a_{1} \cdots a_{k} \Sigma^{\omega}\right)=L_{k}(w) \\
\text { " } L_{1}, L_{2}, \ldots \text { is a martingale" }
\end{gathered}
$$

The martingale is nonnegative.
\Longrightarrow Martingale Convergence Theorem applies.
$\Longrightarrow \bar{L}:=\lim _{k \rightarrow \infty} L_{k}$ exists almost surely.
(\bar{L} is a random variable.)

Theorem (A Generic Maximising Event)

Define $E:=\left\{w \in \Sigma^{\omega} \mid \bar{L}(w) \leq 1\right\}$.
Then $d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)=\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)$.

Approximation: Lower Bound

$$
d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{E \subseteq \Sigma \omega}\left|\operatorname{Pr}_{1}(E)-\operatorname{Pr}_{2}(E)\right|
$$

Fix $k \in \mathbb{N}$.
Idea: consider only events definable by the length- k prefix. l.e., define $d_{k}\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right):=\max _{W \subseteq \Sigma^{k}}\left|\operatorname{Pr}_{1}\left(W \Sigma^{\omega}\right)-\operatorname{Pr}_{2}\left(W \Sigma^{\omega}\right)\right|$.

Proposition

For all $k \in \mathbb{N}$:

$$
d_{k}\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right) \leq d_{k+1}\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right) \leq d_{\infty}\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)=d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)
$$

Approximation: Upper Bound

Approximation: Upper Bound

This defines an increasing sequence:

$$
0 \leq \operatorname{con}(0) \leq \operatorname{con}(1) \leq \ldots \leq \operatorname{con}(\infty)=1-d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)
$$

In general, define con (k) using equivalent distributions rather than equal states.

Approximation: Upper Bound

This defines an increasing sequence:

$$
0 \leq \operatorname{con}(0) \leq \operatorname{con}(1) \leq \ldots \leq \operatorname{con}(\infty)=1-d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right)
$$

In general, define con(k) using equivalent distributions rather than equal states.

Theorem

Given $\varepsilon>0$, one can compute $x \in \mathbb{Q}$ with

$$
d\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right) \in[x, x+\varepsilon] .
$$

Open: convergence speed

Taolue:

Stefan:

Task for NSA: distinguish those guys!
Is there $E \subseteq\{\subset, f, B \mid B C]\}^{\omega}$ with

$$
\operatorname{Pr}_{\text {Taolue }}(E)=1 \text { and } \operatorname{Pr}_{\text {Stefan }}(E)=0 ?
$$

Taolue:

Stefan:

Task for NSA: distinguish those guys!
Is there $E \subseteq\{\subset \subset, f,[B] C]\}^{\omega}$ with

$$
\operatorname{Pr}_{\text {Taolue }}(E)=1 \text { and } \operatorname{Pr}_{\text {Stefan }}(E)=0 \text { ? }
$$

If not, Taolue can plausibly deny that he is Taolue.

The distance is $<1 \Longleftrightarrow \exists k \in \mathbb{N}: \operatorname{con}(k)>0$

The Distance-1 Problem: in PSPACE

The distance is $<1 \Longleftrightarrow \exists u \in \Sigma^{*}: \mu_{1}^{u}$ and μ_{2}^{μ} overlap.

- Whether μ_{1}^{u}, μ_{2}^{u} overlap depends only on the supports of μ_{1}^{u} and μ_{2}^{u}.
- Whether μ_{1}^{u}, μ_{2}^{u} overlap can be computed in poly time using previous work and linear programming.
- There are at most $2^{2|Q|}$ possible supports of μ_{1}^{u} and μ_{2}^{u}.
\longrightarrow PSPACE algorithm: guess a word $u \in \Sigma \leq 2^{2|Q|}$ and check if μ_{1}^{u}, μ_{2}^{u} overlap.

The Distance-1 Problem: in P

To get a polynomial-time algorithm:
(1) Generalise distance between states to distance between state distributions.
(2) Exploit structural properties of the generalised notion:

```
Lemma
d(\mp@subsup{\pi}{1}{},\mp@subsup{\pi}{2}{})=0\quad\Longrightarrow\quad\forallq\in\operatorname{supp}(\mp@subsup{\pi}{1}{}):d(q,\mp@subsup{\pi}{2}{})<1
d(\mp@subsup{\pi}{1}{},\mp@subsup{\pi}{2}{})<1\quad\Longrightarrow\quad\existsq\in\operatorname{supp}(\mp@subsup{\pi}{1}{}):d(q,\mp@subsup{\pi}{2}{})<1
```


The Distance-1 Problem: in P

To get a polynomial-time algorithm:
(0) Generalise distance between states to distance between state distributions.
(2) Exploit structural properties of the generalised notion:

Lemma

$$
\begin{array}{lll}
d\left(\pi_{1}, \pi_{2}\right)=0 & \Longrightarrow & \forall q \in \operatorname{supp}\left(\pi_{1}\right): d\left(q, \pi_{2}\right)<1 \\
d\left(\pi_{1}, \pi_{2}\right)<1 & \Longrightarrow & \exists q \in \operatorname{supp}\left(\pi_{1}\right): d\left(q, \pi_{2}\right)<1
\end{array}
$$

(3) Exploit previous work on LMC equivalence and use linear programming.

Theorem (Distance-1 Problem)

One can decide in polynomial time whether the distance between two LMCs is 1 .

Threshold Problem
 Input: 2 LMCs and threshold $\tau \in[0,1]$
 Output: Is $d\left(\mathrm{Pr}_{1}, \mathrm{Pr}_{2}\right) \geq \tau$?

> Square-Root-Sum Problem
> Input: $s_{1}, \ldots, s_{n} \in \mathbb{N}$ and $t \in \mathbb{N}$
> Output: Is $\sum_{i=1}^{n} \sqrt{s_{i}} \geq t$?

The Square-Root-Sum problem is not known to be in NP.

Threshold Problem

Threshold Problem
Input: 2 LMCs and threshold $\tau \in[0,1]$
Output: Is $d\left(\mathrm{Pr}_{1}, \mathrm{Pr}_{2}\right) \geq \tau$?

> Square-Root-Sum Problem Input: $s_{1}, \ldots, s_{n} \in \mathbb{N}$ and $t \in \mathbb{N}$ Output: Is $\sum_{i=1}^{n} \sqrt{s_{i}} \geq t$?

The Square-Root-Sum problem is not known to be in NP.

Theorem

The Threshold Problem is NP-hard.
The Threshold Problem is
hard for the Square-Root-Sum Problem.

LMC with 2 Parameters

Distance as Function in x

Distance as Function in x

Bernoulli-Convolutions

- $d_{\theta}^{\prime}(x)$ (rescaled) is the cumulative distribution function of

$$
\sum_{i=0}^{\infty} \frac{X_{i}}{\theta^{i}} \quad \text { with } \operatorname{Pr}\left(X_{i}=-1\right)=\operatorname{Pr}\left(X_{i}=+1\right)=\frac{1}{2}
$$

- "Bernoulli convolutions": studied since the 1930s
- $\forall \theta>1$: d_{θ}^{\prime} is either absolutely continuous or singular.
- d_{3}^{\prime} is the (ternary) Cantor function.
- For almost all $\theta \in(1,2]$: d_{θ}^{\prime} is absolutely continuous.
- If θ is a Pisot number, then $d_{\theta}^{\prime \prime}$ is singular. [Erdős, 1939]
- It is open, e.g., whether $d_{3 / 2}^{\prime}$ is absolutely continuous.

Related Work: Bisimilarity Pseudometric

LMCs are (trace) equivalent, but not bisimilar.
More precisely: TV-distance is 0 , but bisimilarity distance is 1 .
[D. Chen, F. van Breugel, J. Worrell, FoSSaCS'12]:
TV-distance \leq bisimilarity distance

Results and Open Problems

Positive Results:

- There is a maximising event.
- The distance can be approximated within arbitrary precision.
- The distance-1 problem is in P.

Negative Results:

- The maximising event may not be ω-regular.
- The threshold problem is NP-hard and hard for square-root-sum.
- The distance is related to Bernoulli convolutions.

Open Questions:

- Efficient approximation?
- Is the threshold problem decidable?

Pisot Number: Definition

A Pisot number is a real algebraic integer greater than 1 such that all its Galois conjugates are less than 1 in absolute value.

Smallest Pisot number (≈ 1.3247): the real root of $x^{3}-x-1$
Another one is the golden ratio $\frac{\sqrt{5}+1}{2} \approx 1.6180$.

