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What is a spectrum?

For our purposes, a spectrum is an assignment

{commutative algebras} → {topological spaces}

of which there are several examples.

Commutative rings: Spec(R) = {prime ideals of R}
C*-algebras: Spec(A) = {max. ideals of A} = Hom(A,C)

Boolean algebra: Spec(B) = {ultrafilters of B} = Hom(B, {0, 1})

Why are these so nice? Each Spec is a (contravariant) functor:

A homorphism f : A→ B on the “algebra side” yields a continuous
function Spec(f ) : Spec(B)→ Spec(A).
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Dualities between categories

All of the examples mentioned actually provide dualities between a
category of algebras and a category of spaces (after imposing the
appropriate topological or geometric structure on the spectrum).

Examples of comm. algebra-geometry correspondence:

Classical alg. geom.: reduced, f.g. comm. algebras ! affine varieties

Algebraic geometry: commutative rings ! affine schemes

Functional analysis: comm. C*-algebras ! compact Hausdorff spaces

Logic: Boolean algebras ! Stone spaces
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From commutative to noncommutative

The usual explanation of noncommutative geometry:

{commutative algebras}! {spaces}
{noncommutative algebras}! {“noncommutative” spaces}

(Various strands of noncommutative geometry come from different
geometric theories: differential geometry, algebraic geometry, point-set
topology, etc.)

The acutal mathematics is done without any use of an underlying
“noncommutative space.” The above is just metaphor and motivation.

(Common substitutes: module categories, homological conditions.)
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The spectrum

Thus, in noncommutative geometry we often avoid:

Question

What is the “noncommutative space” underlying a noncommutative
algebra?

Why would we care?

Dimension theory for noncommutative rings is hard: competing
definitions, (when) are they equal?

Which noncommutative rings are “geometrically nice”? (When do we
expect them to be noetherian?)

Quantum modeling: given an algebra of observables, how should we
“visualize” the underlying “phase space” of the system?

These and other related questions could benefit if we had an actual
“spatial” object to refer to when thinking geometrically about rings.
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Modeling all rings via “spaces”?

To give guidance as we seek a noncommutative spectrum, we should first
set some ground rules.

My list of demands:

(A) Keep the classical construction if the ring is commutative.
(Let’s not tell “commutative” geometers how to do their own job!)

(B) Make it a functorial construction.
(To ensure it’s a true algebra-geometry correspondence.)

This provides us with:

Obstructions proving that certain constructions are impossible;

Better ideas on how to make progress.
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Taking commutative subalgebras seriously

(A) Keep the usual construction if the ring is commutative.

(B) Make it a functorial construction.

Applying the criteria: look at commutative subalgebras C of any
noncommutative algebra A. (Associativity of A ⇒ enough C ⊆ A)

Suppose F : Ringop → {“spaces”} is a “spectrum functor.”

(A) means we know what the F (C ) look like.

(B) gives us maps F (A)→ F (C ), compatible on intersections.

This also fits well with standard pictures of quantum physics:

A ! algebra of observables for quantum system

C ! “classical contexts” of the quantum system
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Can we begin with a set of points?

Algebraic geometry provides clever ways to add structure to a topological
space, and the structure can even be noncommutative.

Perhaps a “noncommutative space” is just a “commutative space” with
added noncommutative structure?

Naive idea: Can we assign a topological space to each ring (that can
later be endowed with extra structure)?

Setting aside the topology, we’d need a functorial “underlying set” — and
it had better be nonempty!

Question: Can we extend the functor Spec : cRingop → Set to a functor
F : Ringop → Set such that R 6= 0 =⇒ F (R) 6= ∅?

Answer: No!
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Obstruction to point sets

Theorem (R., 2012)

Any functor Ringop → Set whose restriction to the full subcategory cRing
equals Spec must assign the empty set to Mn(C) for n ≥ 3.

The proof proceeds in roughly three steps:

1 Find a “universal example” of F : Ring→ Set extending Spec.

2 Show that this universal example assigns the empty set to Mn(C).

3 By universality, conclude that every such functor does the same!

A surprise: Step (2) uses the Kochen-Specker theorem of quantum
mechanics!
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Obstruction to point sets, take 2

The analogue of this result also holds in the context of operator algebras.

Roughly: A C*-algebra is a C-algebra with an antilinear involution
x 7→ x∗ and a norm ‖ • ‖, which is norm-complete, has ‖xy‖ ≤ ‖x‖‖y‖,
and ‖x∗x‖ = ‖x‖2.
Ex: C (X ),B(H), L∞[0, 1] all with “supremum-norms”

Here, the Gelfand spectrum (maximal ideals) provides an contravariant
equivalence of commutative C*-algebras with compact Hausdorff spaces.

Theorem (R., 2012)

Any functor Cstarop → Set whose restriction to the full subcategory
cCstar is isomorphic to the Gelfand spectrum must assign the empty set
to Mn(C) for n ≥ 3.
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Prime partial ideals

How do we define the “universal extension” of Spec?

(Idea: Think of a ring only in terms of its commutative subrings.)

Definitions: Let R be a ring.

A subset I ⊆ R is a partial ideal if, for all commutative subrings
C ⊆ R, I ∩ C is an ideal of C .

A partial ideal p 6= R is prime if p ∩ C is a prime ideal of C for all
commutative subrings C ⊆ R.

p-Spec(R) is the set of all partial prime ideals of R.

Example: {nilpotent elements} ⊆ R is always a partial ideal, even though
it’s not generally an ideal for noncommutative R.
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Functoriality

This “spectrum” gives a functor p-Spec : Ringop → Set.

Lemma: If f : R → S is a ring homorphism and p ⊆ S is a prime partial
ideal, then so is f −1(p).

In fact, it is the “universal extension” of Spec.

Theorem

Let F : Ringop → Set be any functor such that F |cRing
∼= Spec. Then

there exists a unique morphism of functors F → p-Spec preserving the
isomorphism with Spec.

Idea: In fact, p-Spec(R) = lim←− Spec(C ) where C ranges over the
commutative subrings of R. The claim follows rather immediately from
the universal property of the limit.
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Partial spectrum to Kochen-Specker

Any p ⊆M3(C) induces a coloring on the set of projections Proj(M3(C)):
say those in p are “black” and those outside are “white.”

Exercise: if P1 + P2 + P3 = I is a sum of orthogonal projections, then two
Pi lie in p (black), exactly one lies outside (white).

But this is the kind of coloring that Kochen and Specker proved to be
impossible! (It’s a non-contextual assignment of “yes” and “no” values to
the observables in Proj(M3(C)).)

Corollary

For n ≥ 3, p-Spec(Mn(C)) = ∅.
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Proof of the first obstruction

Now we have all the pieces for the proof.

Theorem

Any functor F : Ringop → Set whose restriction to cRing is isomorphic to
Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

Proof: Let F be as above. Then there exists a morphism of functors
F → p-Spec by universality of the latter.

For n ≥ 3, the Kochen-Specker
Theorem implies that p-Spec(Mn(C)) = ∅.

The only set with a map to the empty set is the empty set, so the
existence of a function F (Mn(C))→ p-Spec(Mn(C)) = ∅ implies that the
former is empty.

Corollary: The same obstruction holds for Mn(A) whenever C ⊆ A.

Idea: C ⊆ A induces Mn(C)→Mn(A) and F (Mn(A))→ F (Mn(C)) = ∅.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 16 / 33



Proof of the first obstruction

Now we have all the pieces for the proof.

Theorem

Any functor F : Ringop → Set whose restriction to cRing is isomorphic to
Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

Proof: Let F be as above. Then there exists a morphism of functors
F → p-Spec by universality of the latter. For n ≥ 3, the Kochen-Specker
Theorem implies that p-Spec(Mn(C)) = ∅.

The only set with a map to the empty set is the empty set, so the
existence of a function F (Mn(C))→ p-Spec(Mn(C)) = ∅ implies that the
former is empty.

Corollary: The same obstruction holds for Mn(A) whenever C ⊆ A.

Idea: C ⊆ A induces Mn(C)→Mn(A) and F (Mn(A))→ F (Mn(C)) = ∅.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 16 / 33



Proof of the first obstruction

Now we have all the pieces for the proof.

Theorem

Any functor F : Ringop → Set whose restriction to cRing is isomorphic to
Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

Proof: Let F be as above. Then there exists a morphism of functors
F → p-Spec by universality of the latter. For n ≥ 3, the Kochen-Specker
Theorem implies that p-Spec(Mn(C)) = ∅.

The only set with a map to the empty set is the empty set,

so the
existence of a function F (Mn(C))→ p-Spec(Mn(C)) = ∅ implies that the
former is empty.

Corollary: The same obstruction holds for Mn(A) whenever C ⊆ A.

Idea: C ⊆ A induces Mn(C)→Mn(A) and F (Mn(A))→ F (Mn(C)) = ∅.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 16 / 33



Proof of the first obstruction

Now we have all the pieces for the proof.

Theorem

Any functor F : Ringop → Set whose restriction to cRing is isomorphic to
Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

Proof: Let F be as above. Then there exists a morphism of functors
F → p-Spec by universality of the latter. For n ≥ 3, the Kochen-Specker
Theorem implies that p-Spec(Mn(C)) = ∅.

The only set with a map to the empty set is the empty set, so the
existence of a function F (Mn(C))→ p-Spec(Mn(C)) = ∅ implies that the
former is empty.

Corollary: The same obstruction holds for Mn(A) whenever C ⊆ A.

Idea: C ⊆ A induces Mn(C)→Mn(A) and F (Mn(A))→ F (Mn(C)) = ∅.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 16 / 33



Proof of the first obstruction

Now we have all the pieces for the proof.

Theorem

Any functor F : Ringop → Set whose restriction to cRing is isomorphic to
Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

Proof: Let F be as above. Then there exists a morphism of functors
F → p-Spec by universality of the latter. For n ≥ 3, the Kochen-Specker
Theorem implies that p-Spec(Mn(C)) = ∅.

The only set with a map to the empty set is the empty set, so the
existence of a function F (Mn(C))→ p-Spec(Mn(C)) = ∅ implies that the
former is empty.

Corollary: The same obstruction holds for Mn(A) whenever C ⊆ A.

Idea: C ⊆ A induces Mn(C)→Mn(A) and F (Mn(A))→ F (Mn(C)) = ∅.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 16 / 33



Proof of the first obstruction

Now we have all the pieces for the proof.

Theorem

Any functor F : Ringop → Set whose restriction to cRing is isomorphic to
Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

Proof: Let F be as above. Then there exists a morphism of functors
F → p-Spec by universality of the latter. For n ≥ 3, the Kochen-Specker
Theorem implies that p-Spec(Mn(C)) = ∅.

The only set with a map to the empty set is the empty set, so the
existence of a function F (Mn(C))→ p-Spec(Mn(C)) = ∅ implies that the
former is empty.

Corollary: The same obstruction holds for Mn(A) whenever C ⊆ A.

Idea: C ⊆ A induces Mn(C)→Mn(A) and F (Mn(A))→ F (Mn(C)) = ∅.
Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 16 / 33



The case n = 2

Question: What happens for M2(C)?

Proposition

Let I ⊆M2(C) be a set of idempotents such that the set of all
idempotents of M2(C) is partitioned as {0, 1} t I t {1− e : e ∈ I}.
There is a bijection between:

The set of prime partial ideals of M2(C);

The set of functions I → {0, 1}.

So for the particular functor F = p-Spec, the set p-Spec(M2(C)) has

cardinality 2c = 22
ℵ0 . (It’s huge!)

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 17 / 33



1 Spectrum: from algebra to geometry

2 From points to contextuality in noncommutative geometry

3 Contextuality in the “purely algebraic” setting

4 A positive result: steps toward a noncommutative spectrum

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 18 / 33



Replacing C with Z

Theorem: Any functor F : Ringop → Set whose restriction to cRing is
isomorphic to Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

What is so special about C? What if we use the “universal” ring Z?

Q: For F as above, must F (Mn(Z)) = ∅ for n ≥ 3?

As before, reduce to F = p-Spec.

As before, any p ∈ p-Spec(M3(Z)) yields a Kochen-Specker coloring
of the idempotent (E = E 2) integer matrices.

Q’: Is there an “integer-valued” Kochen-Specker theorem? Yes!

Kochen-Specker uncolorable vector configurations in the literature typically
use vectors in C3 (even R3) with irrational entries. So there was real work
to be done here.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 19 / 33



Replacing C with Z

Theorem: Any functor F : Ringop → Set whose restriction to cRing is
isomorphic to Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

What is so special about C? What if we use the “universal” ring Z?

Q: For F as above, must F (Mn(Z)) = ∅ for n ≥ 3?

As before, reduce to F = p-Spec.

As before, any p ∈ p-Spec(M3(Z)) yields a Kochen-Specker coloring
of the idempotent (E = E 2) integer matrices.

Q’: Is there an “integer-valued” Kochen-Specker theorem?

Yes!

Kochen-Specker uncolorable vector configurations in the literature typically
use vectors in C3 (even R3) with irrational entries. So there was real work
to be done here.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 19 / 33



Replacing C with Z

Theorem: Any functor F : Ringop → Set whose restriction to cRing is
isomorphic to Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

What is so special about C? What if we use the “universal” ring Z?

Q: For F as above, must F (Mn(Z)) = ∅ for n ≥ 3?

As before, reduce to F = p-Spec.

As before, any p ∈ p-Spec(M3(Z)) yields a Kochen-Specker coloring
of the idempotent (E = E 2) integer matrices.

Q’: Is there an “integer-valued” Kochen-Specker theorem? Yes!

Kochen-Specker uncolorable vector configurations in the literature typically
use vectors in C3 (even R3) with irrational entries. So there was real work
to be done here.

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 19 / 33



Colorability of projections in various rings

First try: Look at orthogonal projections in M3(R) whose entries happen
to be integer or rational. In general, for any commutative ring R, can
consider Proj(M3(R)) = {symmetric idempotents}.

Theorem: (M. Ben-Zvi, A. Ma, R., 2015?)

ring R prime p Proj(M3(R)) p-Spec(M3(R)sym)

Fp p ≥ 5 uncolorable empty

Z[1/30] uncolorable empty

Fp p = 2, 3 colorable nonempty

Z colorable nonempty /

Idea: J. Bub (1996) produced an uncolorable configuration of (non-unit)
vectors with integer entries such that ‖v‖2 all divide 30. Analyze Fp for
p = 2, 3, 5 as special cases. Use functoriality for the rest.
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Colorability of idempotents in various rings

This means we really need to consider non-symmetric idempotent matrices.

Counting argument =⇒ idempotents of M3(Fp) cannot be colored
whenever p ≡ 2 (mod 3). (Communicated to us by A. Chirvasitu.)

It is possible to find a set S of 28 idempotents in M3(Z) that are
“lifts” of every rank-1 idempotent in M3(F2).

However, some orthogonality relations are not preserved, so the proof
of uncolorability does not lift.

Nevertheless, a case-splitting argument shows that S is uncolorable!

Theorem (M. Ben-Zvi, A. Ma, R., 2015?)

There is no Kochen-Specker coloring of the set of idempotents in Mn(Z)
for any n ≥ 3. (Same is true of Mn(R) for any ring R.)
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Finishing the spectrum obstruction

As mentioned before, this directly implies

Theorem

Given any functor F : Ringop → Set extending Spec as before, we have
F (Mn(Z)) = ∅ for any ring R and any integer n ≥ 3.

Corollary: We also get F (Mn(R)) = ∅ for any ring R and n ≥ 3.

Again: Z→ R gives Mn(Z)→Mn(R) and F (Mn(R))→ F (Mn(Z)) = ∅.
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Avoiding the obstruction with pointless topology?

Pointless topology: Recall that the category Loc of locales is a
“point-free” way to study topology.

Can we avoid the obstruction by “throwing away points?”

No!

Theorem (van den Berg & Heunen, 2014)

Any functor Ringop → Loc whose restriction to cRingop is isomorphic to
Spec (considered as a locale) must assign the trivial locale to Mn(R) for
any ring R with C ⊆ R and any n ≥ 3. (The same holds for C*-algebras.)

Corollary (Ben-Zvi, Chirvasitu, Ma, R.)

The obstruction above still holds with any ring R and any integer n ≥ 3.
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1 Spectrum: from algebra to geometry

2 From points to contextuality in noncommutative geometry

3 Contextuality in the “purely algebraic” setting

4 A positive result: steps toward a noncommutative spectrum
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A toy problem

Is there is really no “noncommutative functorial spectrum” at all?

I’m not ready to belive so. We need to be even more creative!

A positive example: Jointly w/ Chris Heunen, we were able to extend a
kind of spectrum to noncommutative algebras.

The goal was to fill in the blank below:

{commutative AW*-algebras} ∼ //
� _

��

{complete Boolean algebras}� _

��
{AW*-algebras} // {???}
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AW*-algebras: C*-algebras with many projections

Projections: p = p2 = p∗ in a C*-algebra; think orthogonal projection

Definition: (Kaplansky 1951) An AW*-algebra is a C*-algebra A that
satisfies the following equivalent conditions:

Every maximal commutative ∗-subalgebra is the closure of the linear
span of its projections, and Proj(A) is a complete lattice;

The left annihilator of any subset of A is generated (as a left ideal) by
a projection.

Kaplansky’s motivation: isolate the “algebraic” part of the theory of
W*-algebras (i.e., von Neumann algebras, key players in “noncommutative
measure theory”). The term is meant to stand for “abstract W*-algebra.”

Proj(A) is complete orthomodular lattice (with orthogonal complement
p⊥ = 1− p), and a complete Boolean algebra when A is commutative
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Examples of AW*-algebras

Example 1: Commutative AW*-algebras are of the form C ∼= C (X ) for a
compact Hausdorff Stonean space X .
(Lots of clopen sets = lots of projections. Correspond to complete
Boolean algebras.)

Example 2: B(H) for a Hilbert space H is an AW*-algebra. So is every
von Neumann algebra in B(H).
Sub-example: L∞[0, 1] ⊆ B(L2[0, 1])

Fact : If A is an AW*-algebra, then so is Mn(A).

Fact: Every maximal abelian ∗-subalgebra (MASA) of an AW*-algebra is
again an AW*-algebra.

So noncommutative AW*-algebras contain many complete Boolean
algebras!

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 27 / 33



Examples of AW*-algebras

Example 1: Commutative AW*-algebras are of the form C ∼= C (X ) for a
compact Hausdorff Stonean space X .
(Lots of clopen sets = lots of projections. Correspond to complete
Boolean algebras.)

Example 2: B(H) for a Hilbert space H is an AW*-algebra. So is every
von Neumann algebra in B(H).
Sub-example: L∞[0, 1] ⊆ B(L2[0, 1])

Fact : If A is an AW*-algebra, then so is Mn(A).

Fact: Every maximal abelian ∗-subalgebra (MASA) of an AW*-algebra is
again an AW*-algebra.

So noncommutative AW*-algebras contain many complete Boolean
algebras!

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 27 / 33



Examples of AW*-algebras

Example 1: Commutative AW*-algebras are of the form C ∼= C (X ) for a
compact Hausdorff Stonean space X .
(Lots of clopen sets = lots of projections. Correspond to complete
Boolean algebras.)

Example 2: B(H) for a Hilbert space H is an AW*-algebra. So is every
von Neumann algebra in B(H).
Sub-example: L∞[0, 1] ⊆ B(L2[0, 1])

Fact : If A is an AW*-algebra, then so is Mn(A).

Fact: Every maximal abelian ∗-subalgebra (MASA) of an AW*-algebra is
again an AW*-algebra.

So noncommutative AW*-algebras contain many complete Boolean
algebras!

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 27 / 33



Examples of AW*-algebras

Example 1: Commutative AW*-algebras are of the form C ∼= C (X ) for a
compact Hausdorff Stonean space X .
(Lots of clopen sets = lots of projections. Correspond to complete
Boolean algebras.)

Example 2: B(H) for a Hilbert space H is an AW*-algebra. So is every
von Neumann algebra in B(H).
Sub-example: L∞[0, 1] ⊆ B(L2[0, 1])

Fact : If A is an AW*-algebra, then so is Mn(A).

Fact: Every maximal abelian ∗-subalgebra (MASA) of an AW*-algebra is
again an AW*-algebra.

So noncommutative AW*-algebras contain many complete Boolean
algebras!

Manuel L. Reyes (Bowdoin) The spectrum problem May 22, 2015 27 / 33



Stone duality

Boolean algebra: (B, 0, 1,∨,∧,¬)

Spec(B) = {prime ideals} ∼= {ultrafilters} = Hom(B, {0, 1})

forms a compact totally disconnected Hausdorff space.

B complete ⇔ Spec(B) is Stonean ⇔ C (Spec(B)) is an AW*-algebra.

If we “skip the space,” can we find “quantum complete Boolean algebras”
to act as a spectrum for noncommutative AW*-algebras? Yes!!

cAWstar
∼ //� _

��

Stonean
∼ // CBoolean� _

��
AWstar // ActiveLat
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How can we “quantize” Boolean algebras?

Say B = Proj(A) for a commutative AW*-algebra A with p, q ∈ B:

p ∧ q = pq;

p ∨ q = p + q − pq;

“symmetric difference” p∆q = (p ∨ q)− (p ∧ q) = p + q − 2pq gives
an abelian group “addition” operation.

We can encode the last one in the unitary group of A via p ↔ 1− 2p:

(1− 2p)(1− 2q) = 1− 2(p + q − 2pq) = 1− 2(p∆q).

Idea: Think of the noncommutative product (1− 2p)(1− 2q) as a
“quantum symmetric difference,” even though the latter need not have the
form 1− 2p′ for any projection p′ ∈ A.
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Active lattices

Definition (roughly): An active lattice consists of the following data:

A complete orthomodular lattice P

A group G with an injection P ↪→ G onto a generating set of
“reflections”

With an action of G on P

For each AW*-algebra A, we get an active lattice AProj(A) with:

Lattice P = Proj(A)

Group of symmetries G = Sym(A) = 〈1− 2p | p ∈ Proj(A)〉
Action of G on P, where s = 1− 2p acts by conjugation in A:
s(p) = sps−1 = sps.

This gives us a functor AProj : AWstar→ ActiveLat (with appropriate
morphisms on each side).
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Active lattices determine AW*-algebras

Theorem (Heunen and R., 2014)

The functor AProj : AWstar→ ActiveLat is a full and faithful
embedding, i.e., there is a bijection between morphisms A→ B between
AW*-algebras and AProj(A)→ AProj(B) of active lattices.

It seems likely that there are active lattices that do not arise from an
AW*-algebra.

Question

Which active lattices L satisfy L ∼= AProj(A) for some AW*-algebra A?
(That is, what is the essential image of AProj?)

This is a kind of “coordinatization problem” similar to some that have
appeared in lattice theory before. (Most notably, von Neumann’s
continuous geometries.)
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What’s next?

The obstructions suggest to me that we should make creative attempts to
fill in the “???” below:

{commutative algebras} Spec //
� _

��

{sets}� _

��
{noncommutative algebras} // {???}

If we take noncommutative geometry seriously, we should expect:

{“noncommutative sets”} ↔ {suitable noncommutative algebras}

Idea: Try to extend C (X ) ↪→ `∞(X ) to a functor Cstar→ Alg (with a
natural embedding) for some suitable category of ∗-algebras Alg.

We know: Alg can’t be AWstar [Heunen & R., 2015], but not much else!
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Thank you! (Plus some references)

M. Ben-Zvi, A. Ma, and M. Reyes, Kochen-Specker contextuality for integer
matrices and noncommutative spectrum functors. Preprint, 2015?

B. van den Berg and C. Heunen, Extending obstructions to noncommutative
functorial spectra. Theory App. Categ., 2014.

J. Bub, Schütte’s tautology and the Kochen-Specker theorem. Found. Phys.,
1996.

C. Heunen and M. Reyes, Active lattices determine AW*-algebras. J. Math. Anal.
Appl., 2014.

C. Heunen and M. Reyes, On discretization of C*-algebras. arXiv:1412.1721.

I. Kaplansky, Projections in Banach algebras. Ann. Math., 1951.

S. Kochen and E.P. Specker, The problem of hidden variables in quantum
mechanics. J. Math. Mech., 1967.

M. Reyes, Obstructing extensions of the functor Spec to noncommutative rings.
Israel J. Math., 2012.
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