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Traditional Thermodynamics
1st Law: “Energy is conserved microscopically.”

2nd Law: “Order is non-decreasing in time.”

E
in

= E
out

??



2nd Law of 
Thermodynamics

• “It is impossible to construct a device who’s sole effect 
is the extraction of work from heat.”

• “It is impossible to construct a device who’s sole effect 
is the erasure of a bit.”

• “It is impossible to see inside a furnace, solely by the 
light of the furnace.”

* Bennett (1987)



Limitations of existing 
thermodynamics



The Thermodynamic Limit

• “Thermodynamics means the thermodynamic limit.” 
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The Thermodynamic Limit

• “Thermodynamics means the thermodynamic limit.” 

• (Except it doesn’t)



• Active work to develop nanoscale 
thermodynamic machines. 

• Nanotechnology ~$6 billion (currently)

Motivation



• Q: How do coherent superpositions 
extend thermodynamic processes?

Motivation

What laws describe irreversibility 
beyond the thermodynamic limit?

• Q: What thermodynamic laws operate 
at micro/nano/pico/… scales?



Axiomatic Analysis

• “Heat”, “temperature”  — ambiguous/complex/
indirect.

• Giles (1964): thermodynamics ultimately concerns 
the accessibility/inaccessibility of one physical 
state from another.

*”The mathematical foundations of thermodynamics”, R. Giles (1964)

“processes = primitives”



Ordering of States
⇢↵

!

Q: When does the thermodynamic 
ordering of states admit 

a unique entropic formulation?

⇢ ! �

, S(⇢)  S(�)

�



Theorem (Lieb & Ingvason 1999):
A unique additive entropy exists 
if and only if the following 7 conditions hold:

⇢ ! ⇢

⇢ ! � and � ! ⌧ implies ⇢ ! ⌧

⇢1 ! �1 and ⇢2 ! �2 then (⇢1, ⇢2) ! (�1,�2)

⇢ $ (⇢⌦t, ⇢⌦(1�t))

(⇢, ✏1) ! (�, ✏2) then ⇢ ! �

if ↵ ! ⇢ and � ! ⇢ then ↵ ! � or � ! ↵

Reflexivity

Transitivity

Consistency

Scale invariance

Splitting

Stability

Comparability

⇢ ! � then ⇢⌦t ! �⌦t
for t � 0
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if and only if the following 7 conditions hold:



Extreme Regimes

• Determine the thermodynamics of highly 
entangled quantum systems in extreme regimes.



Extreme Regimes

• Determine the thermodynamics of highly 
entangled quantum systems in extreme regimes.

and “ensemble of microstates”:  No!



Fluctuation Theorems?
• Arbitrarily violent dynamics on thermal state. 
• Sharpening of 2nd Law to an equality.

Core structure:

Distribution for 
backward process Distribution for 

forward process

� =
1

kT
P
�⇤(x) = e

��xP
�

(�x)



Fluctuation 
Theorems=Classical

P
�⇤(x) = e

��xP
�

(�x)

The pairing of     and      forces us into a classical regime. � �⇤

Poorly suited to handling coherence and 
entanglement.



Thermodynamics
D(H)

maximally ordered states

maximally disordered states





   Learn from Entanglement Theory?



• Entanglement defined by what it’s not. 

• Local algebra of observables at A and B. 

Define a set of “free quantum operations”:

Resource formulation
A

B

Local Operations + Classical Communications



LOCC = “Local operations + Classical Communications”

Free Operations

EA
EB

A

B

“k”

t



LOCC Examples

TrB



• Resource state        : anything that cannot be 
created under LOCC.

Entanglement Theory
⇢AB

LOCC induces partial order on set of all 
quantum states.

| �i = 1p
2
(|01i � |10i)E.g.



Entanglement Theory

E

D(H)



Entanglement Theory

E

Maximally Entangled states

Separable states

D(H)

X

k

pk �k ⌦ ⇢k

Free states



Entanglement Theory

E

D(H)

⇢

�

M(⇢) � M(�)



Resource formulation 
of thermodynamics
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I. Marvian, R. Spekkens, Nature Comm 5 (2014)
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Resource Theory of 
Thermodynamics

1. Allow single free state:             

2. Free quantum operations:

E(⇢) = trb[U(⇢⌦ �b)U
†]

� = e��H/Z

|'iAB

�

⇢AB

;

E
[U,H

tot

] = 0



Thermal Examples

Work Extraction

ordered/pure 
state

completely 
random + work

Thermalization



Thermal Examples

Thermalization Work Extraction

ordered/pure 
state

completely 
random + work



Information-Theoretic 
Components

Entanglement

Thermodynamics

Spatial/temporalAsymmetry

Randomness/Purity

Computation

Metrology



Ordering of States?
⇢↵

!
Q: Does the ordering of states 

admit an entropic formulation?

�

Zero-coherence states:

�!

⇢ �



The Second Laws of 
Thermodynamics

Theorem: For zero coherence states, the 
transformation              is possible  

if and only if 

⇢ ! �

F↵(⇢) � F↵(�)

F↵(⇢) := D↵(⇢||�)

Renyi-divergences: D↵(⇢||�) =
1

↵� 1

log [tr(�⇢�
)

↵
)]  =

1� ↵

2↵

* Brandao et al, PNAS (2015)

8↵



Rough ingredients
1. “Essentially classical states” 
2. Thermal operations —> bistochastic maps 
3. Bistochastic maps —> majorization relation 
4. Majorization relations <—> entropic measures

x � y

yk =
X

j

Akjxj

,
x � y

{S↵(x)  S↵(y)}↵

⇢ = diag(x)
1.

3.

2.

4.



F↵(⇢) := D↵(⇢||�)

�



But what about 
quantum coherence 

& Irreversibility?

* Lostaglio, DJ, Rudolph, Nature Comm. (2015) 

Korzekwa, Lostaglio, DJ, Rudolph, Phys. Rev. X (2015) 



Symmetry & the 1st Law of 
Thermodynamics

• Traditional form: 

• Microscopic energy conservation (system+bath).

[U,H
tot

] = 0

Quantum 
Mechanical
Symmetry:

Constrains non-conservation of 
two quantities: 

(a) System energy 
(b) System “coherence”t 7! e�itH

tot

dE = dQ+ dW



��

When is A is more asymmetric than B?



A theory of asymmetry

* I. Marvian,R. Spekkens Phys. Rev. A 90, (2014) 
* I. Marvian, R. Spekkens, New J. Phys. 15, (2013) 
* M. Ahmadi, DJ, T. Rudolph, New. J. Phys. 15 (2013) 
* Bartlett et al Rev. Mod. Phys. 79, (2007)



• “Group-theoretic Anna Karenina Principle”: 

A theory of asymmetry
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“all symmetric objects are alike; each asymmetric 
object can be asymmetric in its own way.”

A theory of asymmetry



Asymmetry Examples,      

Rotationally 
invariant states

Pointy/Asymmetric 
states



• Symmetry group, with unitary 
representation on    .

U : G ! B(H)

Ug(⇢) = U(g)⇢U(g)†
H

A theory of asymmetry



• Symmetry group, with unitary 
representation on    .

U : G ! B(H)

[Ug, E ] = 0Free operations: G-covariant maps

Ug(⇢) = U(g)⇢U(g)†

Free states: symmetric states Ug(⇢) = ⇢

H

A theory of asymmetry

⇢ is more asymmetric than � if

� = E(⇢) for some covariant E

E



• Symmetry group, with unitary 
representation on    .

U : G ! B(H)

[Ug, E ] = 0Free operations: G-covariant maps

Ug(⇢) = U(g)⇢U(g)†

Free states: symmetric states Ug(⇢) = ⇢

H

A theory of asymmetry



Examples:

⇢ ! p⇢+
(1� p)

l(l + 1)

X

↵=x,y,z

L
↵

⇢L
↵

|l, li �! | �i

E.g. 1

Ak = | �ihk|

E.g. 2

|l, li
| �i



Use of resources: 
asymmetry

⇢

Spatial
Rotation

F(⇢) ⇡ R(✓)⇢R(✓)†

E

�



E

Maximally asymmetric states

Symmetric states

D(H)

A theory of asymmetry



Application:  
the WAY-theorem



Application: the WAY theorem.
• Theorem (Wigner-Araki-Yanase, 1952):
Observable      (e.g. momentum) conserved globally.  P

[X,P ] 6= 0

X

If
Then     cannot be sharply measured.

“x”

M M

p(x)

Conservation Law present.

⇢s⇢s

No Conservation Law.

x

x



WAY-theorem: QI-view
• Define group action: U(✓) = e�i✓P

on H

E : B(H) ! B(H)

E(U⇢U†) = UE(⇢)U†

Measurement of X  
under conservation 

law

State discrimination 
of eigenstates of X, 
under covariance. 

Covariant 
CPTP maps

* M. Ahmadi, DJ, T. Rudolph NJP 15 (2013)



Proof:
State discrimination 
of eigenstates 
under covariance. 

{G[⇢1],G[⇢2], . . . }{⇢1, ⇢2, . . . }
State discrimination 
of 
with no constraint. 

{G[⇢k]} Perfectly 
distinguishable , pairwise orthogonal supports

, G[⇢k] = rank-1 , G[⇢k] =
Z

d✓U(✓)⇢kU(✓)† = |'kih'k| = ⇢k

, [P, ⇢k] = 0 , [P,X] = 0 ⌅

G(⇢) =
Z

d✓U(✓)⇢U(✓)†



Asymmetric resource states
• Asymmetric       state             can “simulate” a 

conservation-violating operation

Ẽ(⇢) = trR[E(⇢⌦ �R)]

�R

M

Conservation Law present.

⇢s

�R

Ẽ

x

(|0i+ ei✓1 |1i+ · · ·+ ei✓n�1 |n� 1i)

Resources decay.



Symmetry & the 1st Law of 
Thermodynamics

• Traditional form: 

• Microscopic energy conservation (system+bath).

[U,H
tot

] = 0

Quantum 
Mechanical
Symmetry:

Constrains non-conservation of 
two quantities: 

(a) System energy 
(b) System “coherence”t 7! e�itH

tot

dE = dQ+ dW

U(1)-asymmetry 



Thermal ⇢ U(1)-covariant ⇢ CPTP -maps

1. Free state:             

2. Free quantum operations:

E(⇢) = trb[U(⇢⌦ �b)U
†]

� = e��H/Z

[U,H] = 0

1. Free states             

2. Free quantum operations:

E(⇢) = trb[U(⇢⌦ �b)U
†]

[U,H] = 0

� = U(✓)�U(✓)†

*M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015) 
 (Covariant Stinespring), M. Keyl, R. Werner J. Math. Phys. 40 (1999)



The insufficiency of free energy relations. 

Coherence “work-locking”. 

General thermodynamic bounds on coherence. 

Intrinsically-quantum 2nd law constraints.

Applications of Framework:

*M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015) 

M. Lostaglio, K. Korzekwa, DJ, T. Rudolph, Phys. Rev. X (2015) 

M. Lostaglio, K. Korzekwa, J. Oppenheim, DJ, NJP (~2015) 



Consider any set of functions                  that  
“behave like free energies”:

{D↵(·)}↵

⇢ ! � {D↵(⇢)  D↵(�)}↵then we have

and D↵(⇢) � c||⇢� �||

Then                 cannot provide a complete set of 
thermodynamic constraints.

{D↵(·)}↵

If

(1). Insufficiency of free 
energies in thermodynamics.



(1). Insufficiency of free 
energies in thermodynamics.

Proof:

⇢

�
�

D↵ say “get closer to    .”  �

Symmetry says:  
“asymmetry non-increasing.”

Symmetric/incoherent states

� =


�1 0
0 �2

�

H = |1ih1|



Is a qubit worth 
kT ln2 of energy?



Work / Ordered Energy

Broad work definition:  
“raising a weight up a ladder by 
height W” W

W := sup{x : E thermal & sends ⇢⌦ �(0) ! �(x)}

�(x)

�(0)



(2). Work-locked in coherence

Theorem:
if ⇢ ! W then D(⇢) ! W

D(⇢) = GH(⇢) =

Z
dte�itH⇢eitH

Wwhere

* M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015)

�(x)

�(0)
Follows directly from

[E ,Ut] = 0 ) [E ,D] = 0



Szilard and coherence
|�i �

D(|�ih�|) = �

Pure state |�i

No work can be extracted 
from       on its own.|�i

Value of a qubit ? Non-trivial.

)

Requires “resource counting”.



Unlocking coherence for 
work.

• Must use additional coherent resources:
D(|�ih�|) = �

D(|�ih�|⌦ �R) 6= D(|�ih�|)⌦D(�R)
(relational 
coherence 
protected)

�R acts as quantum reference frame for |�i

E.g.
= kT ln 2 (for E = 0)

|�i ⌦ |�i ! W  Z�1e�
E
kT (E � 2kT lnZ)



A fully quantum Szilard engine
• Result: it is only for a particular “classical” regime 

that we can associate the free energy to every 
qubit state.

* M. Lostaglio, K. Korzekwa, J. Oppenheim, DJ,  
* “Extracting work from quantum coherence” NJP (2015)

|�i �

| i �! W = ��F



Bounding Coherence



Mode operators
• Apply harmonic analysis to operators: irreps of group action.

⇢ =
dX

⌫=�d

⇢(⌫)

Thermal 
operations

[E(⇢)](⌫) = E(⇢(⌫))

U(t)⇢(⌫)U(t)† = e�i⌫t⇢(⌫)

B(H) =
M

⌫

V⌫

||E(⇢)(⌫)||1  ||⇢(⌫)||1

*M. Lostaglio, K. Korzekwa, DJ, T. Rudolph, Phys. Rev. X (2015) 



State structure

⇢ =

p1
p2

pd

⌫ = 0 ⌫ = 1 ⌫ = 2

· · ·

previous results relate to the 
“zero-mode”

⇢ ! �

�F↵  0



(3). General Bounds on 
Coherence

Lower bound:
�(⌫) = �?⇢

(⌫)

Upper bound:
|�(⌫)

k | 
X

c:!c!k

|⇢(⌫)c |e��~(!k�!c) +
X

c:!c>!k

|⇢(⌫)c |

⇢ �

�?

Previous bound:
|�nm|  |⇢nm|ppn|npm|m

* Cwiklinski, Studzinski, Horodecki, Oppenheim, arxiv (2014)



(4). The full thermodynamic 
ordering of states?

⇢↵

!
Q: Does the ordering of states 

admit an entropic formulation?

�

coherence present:

�!

⇢ �



Thermodynamic structure

• Entanglement theory ~ non-local resources. 

• Asymmetry theory ~ asymmetry resources. 

• Thermodynamics ~ ordered energy + asymmetry

Work Quantum 
coherence



A↵

F↵

symmetric states

D(H)

�



(4). Necessary entropic 
constraints

Theorem: For arbitrary quantum states, 
the thermodynamic transformation              
is possible provided 

 

⇢ ! �

F↵(⇢) � F↵(�) 8↵ � 0
A↵(⇢) � A↵(�)

A↵(⇢) := D↵(⇢||G(⇢))
Monotones: G(⇢) =

Z

G
dg U(g)⇢U(g)†

* M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015).



A↵

F↵

symmetric states

D(H)

�



Macroscopic regime
• Theorem: for any                  we have ⇢ 2 B(H)



Current perspective

Essentially unique entropy.
⇢ ! � , S(⇢)  S(�)

he��(W��F )i = 1

⇢ ! � , D↵(⇢||�)  D↵(�||�)


F↵(⇢)
A↵(⇢)

�



F↵(�)
A↵(�)

�

(incomplete)

+



Beyond Thermodynamics 
— Irreversibility & non-

commutativity



Broad notions of 
Irreversibility

Newtonian Dynamics 

Unitary Dynamics  

Gauge dynamics 

Reversible Irreversible

 Classical Thermodynamics  

Quantum Thermodynamics  

??



Gauge (field) theories

 (x) ! e

i✓
 (x)

 (x) ! e

i✓(x)
 (x)

Global symmetry Local symmetry

Gauge field A(x)

(QED, QCD, Standard Model)



Irreversibility in gauge 
degrees of freedom

unitary  
dynamics

CPTP, 
Causal, 

Irreversible

Global conservation law Global monotonicity



Local quantum resources

E

Local group actions 
Global covariance

How do local operations
couple to obey

Global covariance?



Traditional Physics
Lagrangian ~ Kinetic energy - Potential energy

L =
1

2
ẋ

2 � 1

2
x

2

Dynamics: ẍ+ x = 0

Encode symmetries in L, e.g. L =  ̄(x)(i�µ@µ �m) (x)

Rigidity
CPTP maps?



Core structure
Theorem: The space of bipartite 
covariant maps is spanned by

�⇥ : B(HA ⌦HB) ! B(HÃ ⌦HB̃)

⇥ ⌘ (a, ã)
�! (b, b̃)

a

ã b̃

b

�

* Cristina Cirstoiu, DJ  arxiv:015.xx (2015)

�⇥ =
X

k

�k
A,(��) ⌦ �k

B,(+�)

(irrep labels)



Asymmetry charges

⇢

⇢0

�

�0

µ

Resource state

E
Local 

simulated map

Temporal/casual aspect: some irreps ruled out.

Traditional observables (energy,charge, density…) insufficient.
Asymmetry modes: gauge degrees of freedom.

* Cristina Cirstoiu, DJ  arxiv:015.xx (2015)



High level Picture
Multipartite irreversible asymmetry

quantum  
thermodynamics

reversible gauge 
dynamics

G = U(1) CPTP ! unitary



Outlook
Analysis of general processes 
(causal, quantum switches…)

Tool-kit for quantum operations

QI techniques to traditional 
gauge theory topics

Interplay of energetic + 
quantum properties.



For more see…
1. Lostaglio, DJ, Rudolph,                  

Nature Communications (2015)

2. Lostaglio, Korzekwa, DJ, Rudolph, 
Physical Review X (2015)

3. Korzekwa, Lostaglio, Oppenheim, DJ, 
New Journal of Physics (2015)

4. Cirstoiu, DJ  (soon!)

(insufficiency of free energy)

(general coherence bounds)

(coherence and work)

(non-abelian resources)




