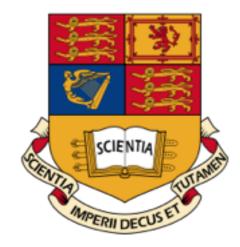
Irreversibility and symmetry in quantum theory

Imperial College London



David Jennings

Outline

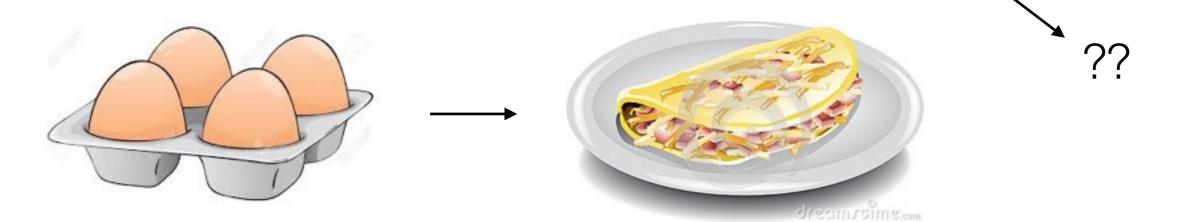
- Motivations.
- Limitations of traditional accounts.
- Conservation laws and asymmetry.
- Coherence in thermodynamics.
- Irreversibility & non-commutativity

Traditional Thermodynamics

 $E_{\rm in} = E_{\rm out}$

1st Law: "Energy is conserved microscopically."

2nd Law: "Order is non-decreasing in time."

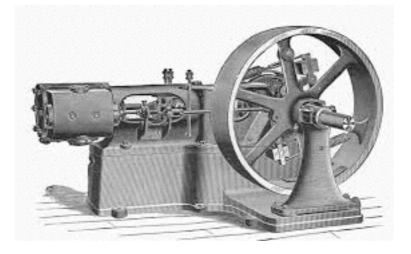


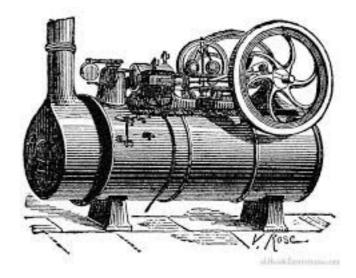
2nd Law of Thermodynamics

- "It is impossible to construct a device who's sole effect is the extraction of work from heat."
- "It is impossible to construct a device who's sole effect is the erasure of a bit."
- "It is impossible to see inside a furnace, solely by the light of the furnace."



Limitations of existing thermodynamics





The Thermodynamic Limit

• "Thermodynamics means the thermodynamic limit."

The Thermodynamic Limit



- "Thermodynamics means the thermodynamic limit."
- (Except it doesn't)

The Thermodynamic Limit

- "Thermodynamics means the thermodynamic limit."
- (Except it doesn't)

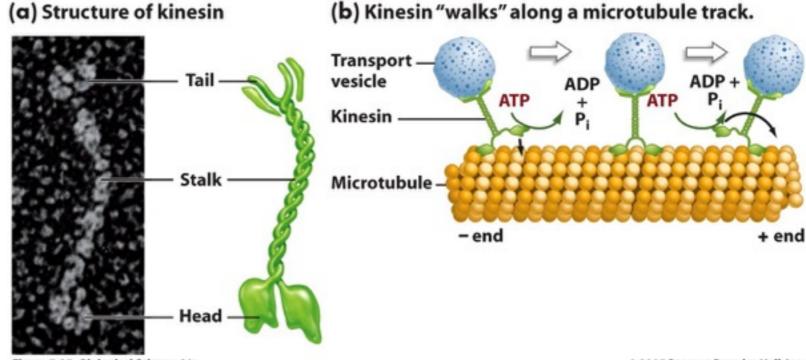
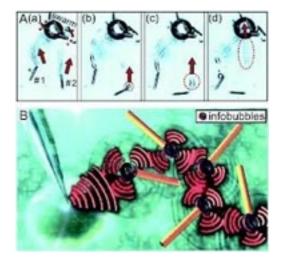


Figure 7-37 Biological Science, 2/e

Motivation

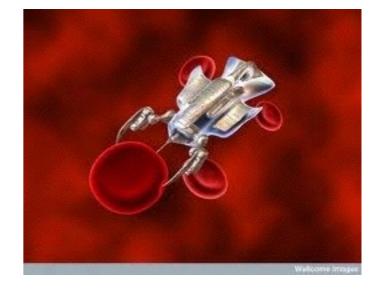
- Active work to develop nanoscale thermodynamic machines.
- Nanotechnology ~\$6 billion (currently)

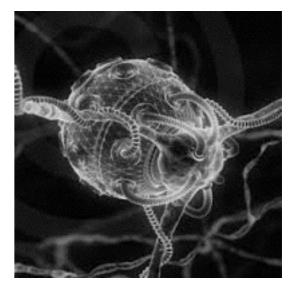


Motivation

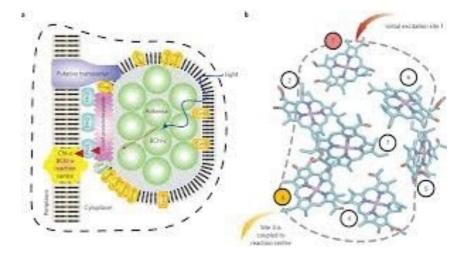
Q: What thermodynamic laws operate at micro/nano/pico/... scales?

Q: How do coherent superpositions extend thermodynamic processes?





What laws describe irreversibility beyond the thermodynamic limit?



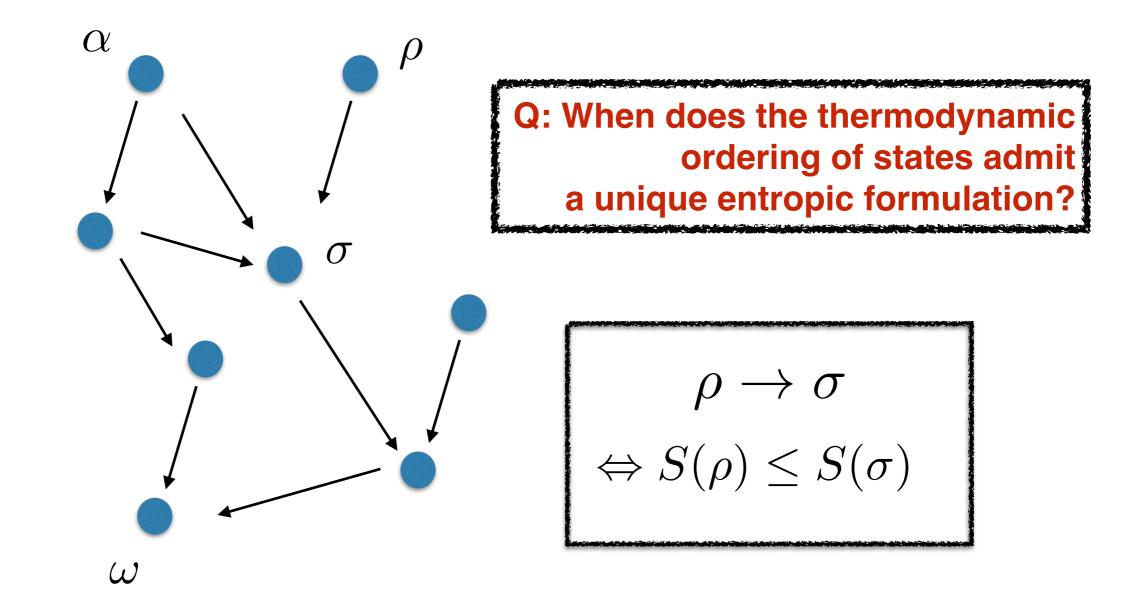
Axiomatic Analysis

- "Heat", "temperature" ambiguous/complex/ indirect.
- **Giles (1964)**: thermodynamics ultimately concerns the accessibility/inaccessibility of one physical state from another.

"processes = primitives"

*"The mathematical foundations of thermodynamics", R. Giles (1964)

Ordering of States



Theorem (Lieb & Ingvason 1999):

A unique additive entropy exists if and only if the following 7 conditions hold:

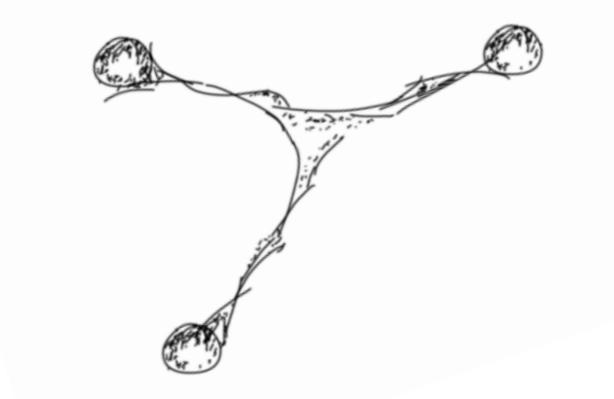
 $\rho \to \rho$ Reflexivity $\rho \to \sigma \text{ and } \sigma \to \tau \text{ implies } \rho \to \tau$ Transitivity $\rho_1 \to \sigma_1$ and $\rho_2 \to \sigma_2$ then $(\rho_1, \rho_2) \to (\sigma_1, \sigma_2)$ Consistency $\rho \to \sigma$ then $\rho^{\otimes t} \to \sigma^{\otimes t}$ for $t \ge 0$ Scale invariance $\rho \leftrightarrow (\rho^{\otimes t}, \rho^{\otimes (1-t)})$ Splitting $(\rho, \epsilon_1) \to (\sigma, \epsilon_2)$ then $\rho \to \sigma$ **Stability** if $\alpha \to \rho$ and $\beta \to \rho$ then $\alpha \to \beta$ or $\beta \to \alpha$ Comparability

Theorem (Lieb & Ingvason 1999):

A unique additive entropy exists if and only if the following 7 conditions hold:

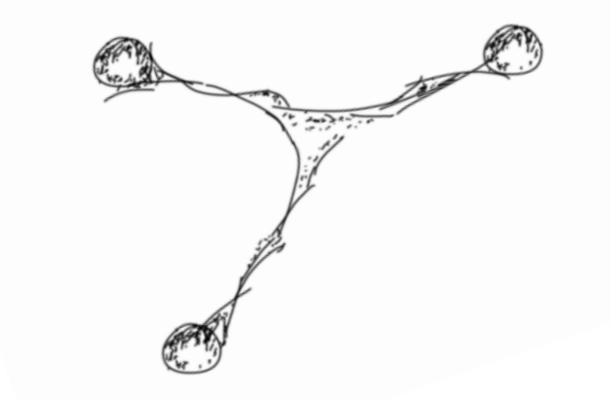
 $\rho \to \rho$ Reflexivity $\rho \to \sigma \text{ and } \sigma \to \tau \text{ implies } \rho \to \tau$ Transitivity $\rho_1 \to \sigma_1$ and $\rho_2 \to \sigma_2$ then $(\rho_1, \rho_2) \to (\sigma_1, \sigma_2)$ Consistency **Scale invariance** $\rho \to \sigma$ then $\rho^{\otimes t} \to \sigma^{\otimes t}$ for t > 0 $\rho \leftrightarrow (\rho^{\otimes t}, \rho^{\otimes (1-t)})$ Splitting $(\rho, \epsilon_1) \to (\sigma, \epsilon_2)$ then $\rho \to \sigma$ **Stability** if $\alpha \to \rho$ and $\beta \to \rho$ then $\alpha \to \beta$ or $\beta \to \alpha$ Comparability

Extreme Regimes



 Determine the thermodynamics of highly entangled quantum systems in extreme regimes.

Extreme Regimes



 Determine the thermodynamics of highly entangled quantum systems in extreme regimes.

 $\langle H \rangle$ and "ensemble of microstates": No!

Fluctuation Theorems?

- Arbitrarily violent dynamics on thermal state.
- Sharpening of 2nd Law to an equality.

Core structure: $\mathcal{P}_{\gamma_*}(x) = e^{-\beta x} \mathcal{P}_{\gamma}(-x)$

Distribution for backward process

Distribution for forward process

 $\beta = \frac{1}{kT}$

Fluctuation Theorems=Classical

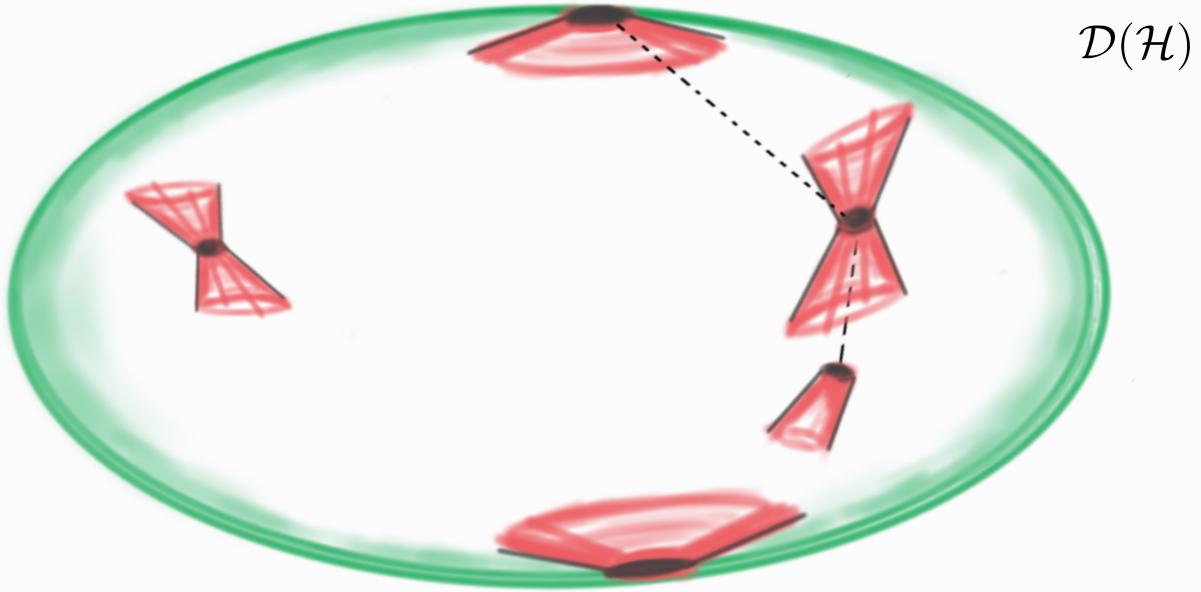
$$\mathcal{P}_{\gamma_*}(x) = e^{-\beta x} \mathcal{P}_{\gamma}(-x)$$

The pairing of γ and γ_* forces us into a **classical** regime.

Poorly suited to handling **coherence** and **entanglement**.

Thermodynamics

maximally ordered states



maximally disordered states

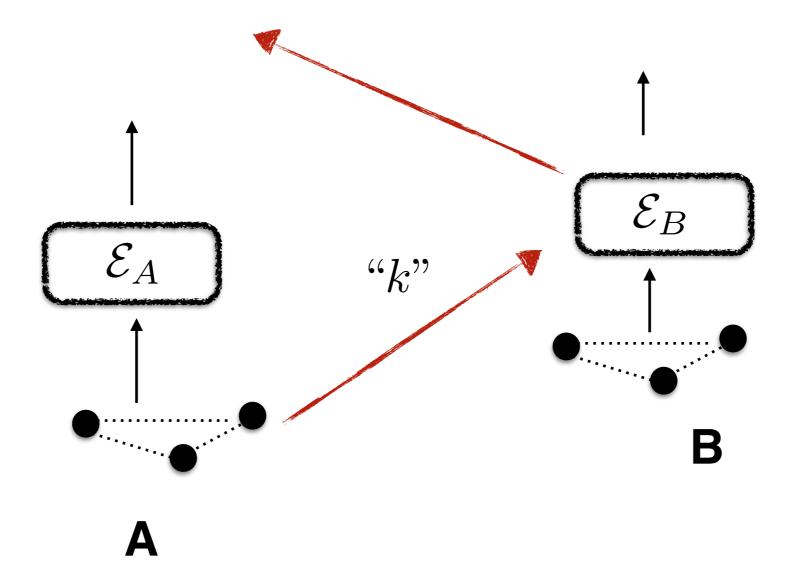
ANDERSON

Resource formulation

- Entanglement defined by what it's not.
- Local algebra of observables at **A** and **B**.

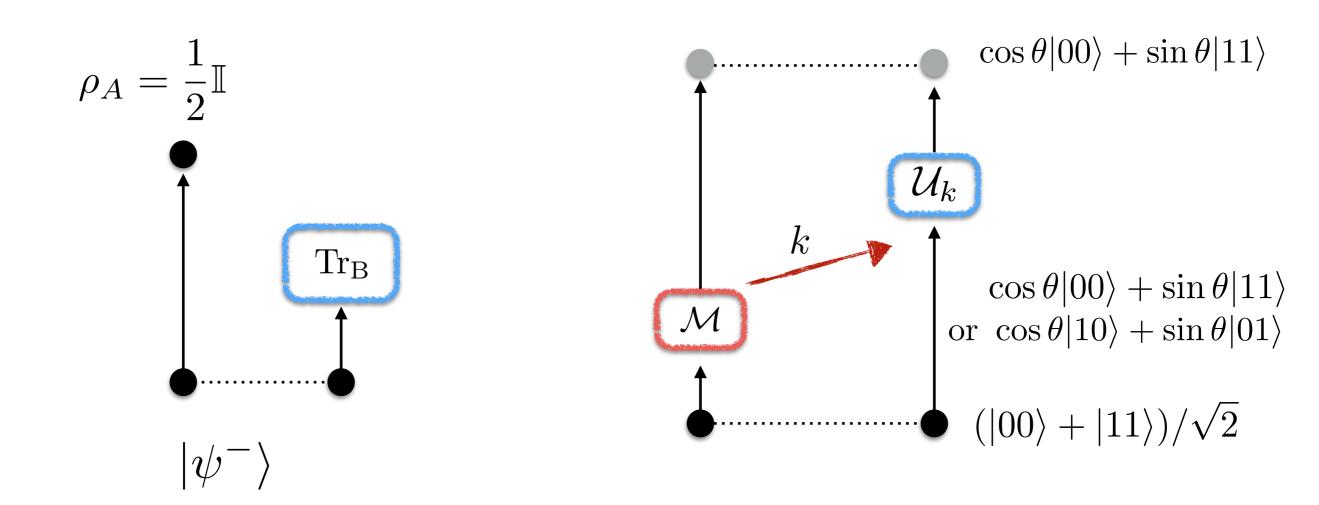
Define a set of "free quantum operations":

Local Operations + Classical Communications



LOCC = "Local operations + Classical Communications"

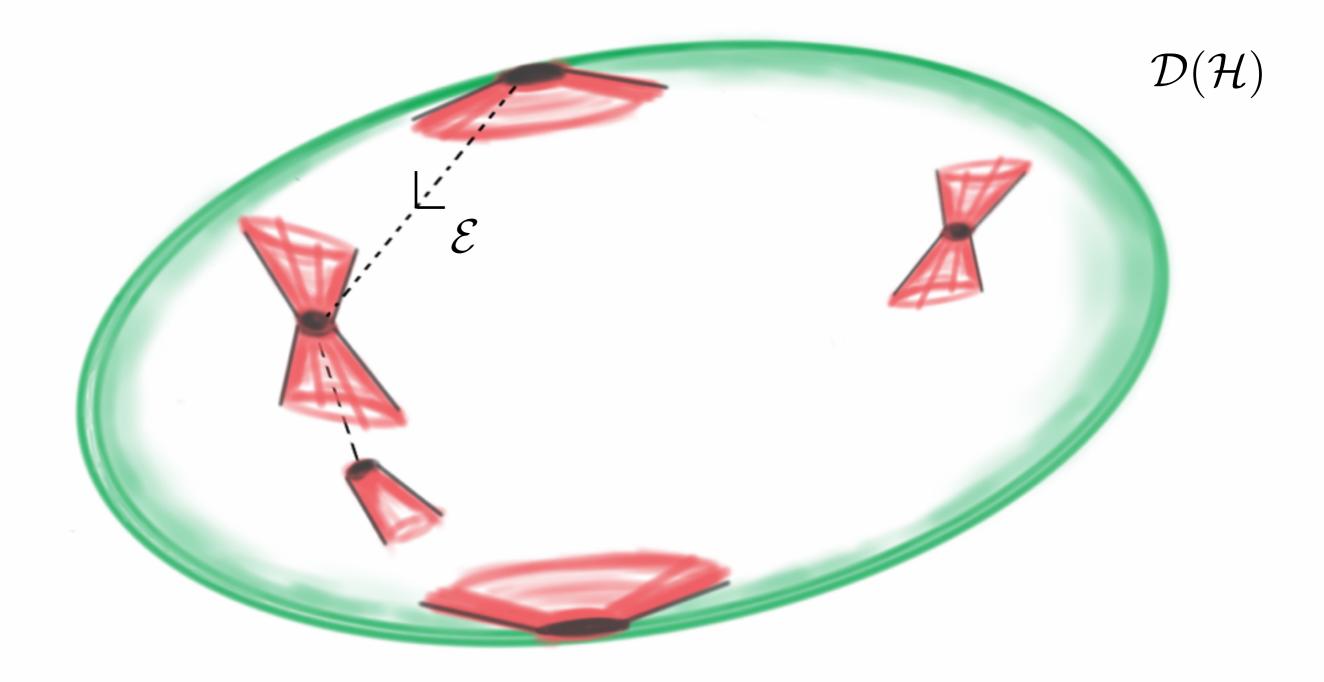
LOCC Examples



• **Resource state** ρ_{AB} : anything that **cannot** be created under LOCC.

E.g.
$$|\psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

LOCC induces **partial order** on set of all quantum states.



Maximally Entangled states

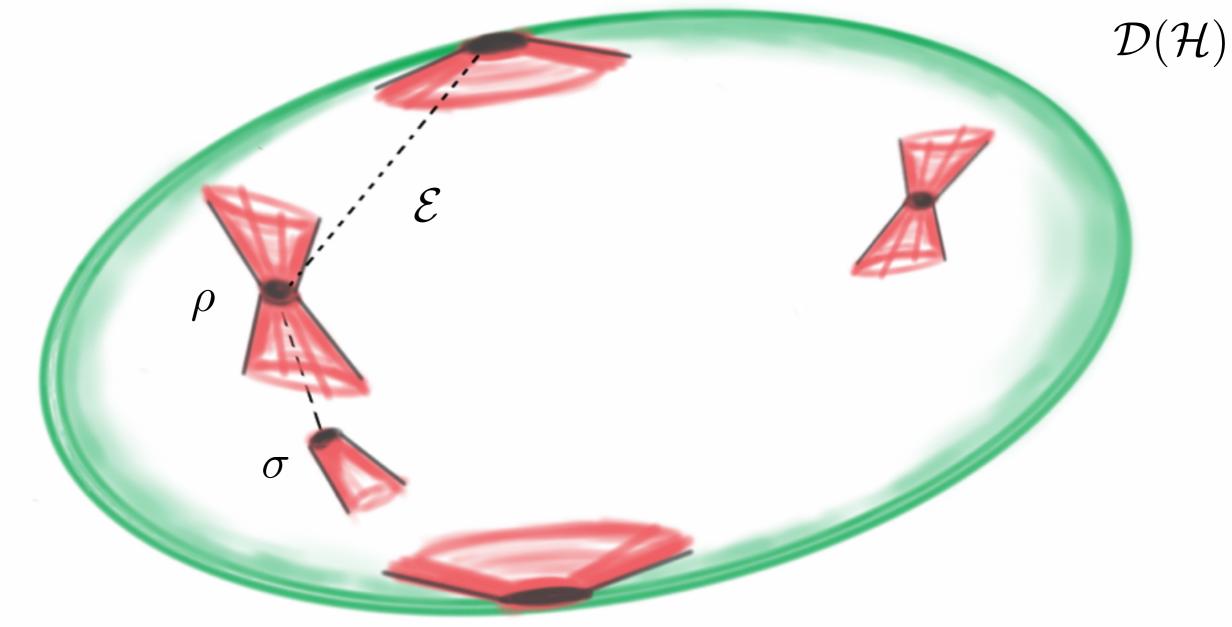
 \mathcal{E}

Separable states

 $\sum_k p_k \, \sigma_k \otimes
ho_k$

Free states

 $\mathcal{D}(\mathcal{H})$



 $M(\rho) \ge M(\sigma)$

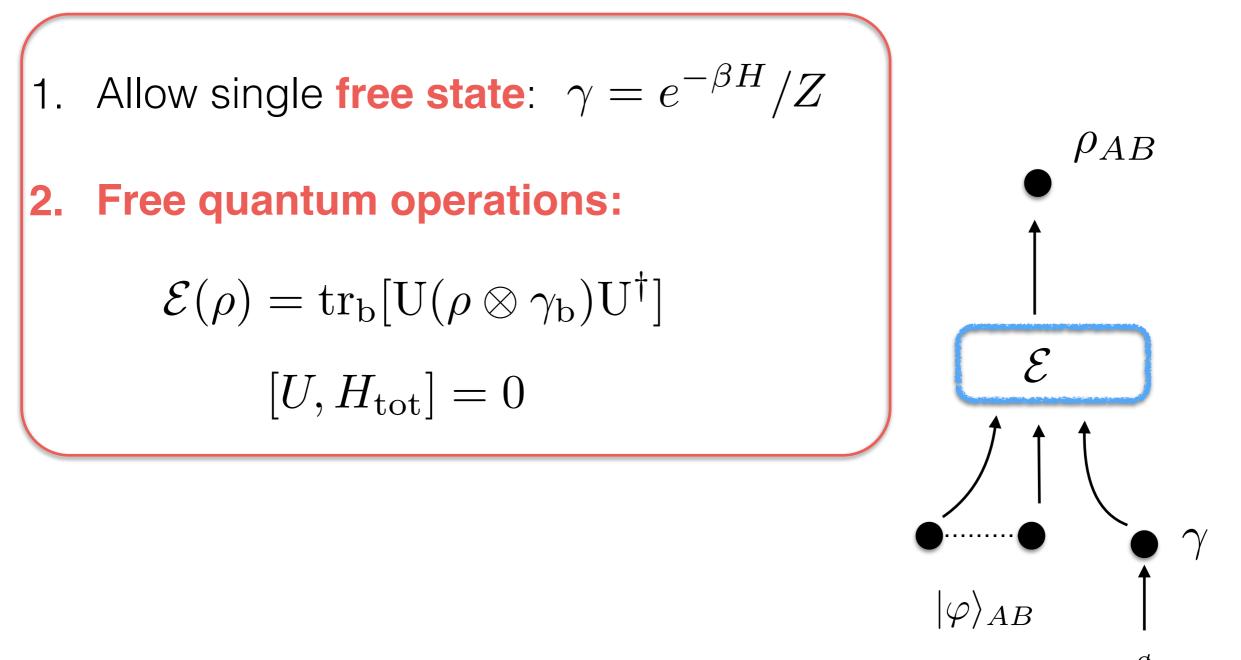
Resource formulation of thermodynamics

Recent developments

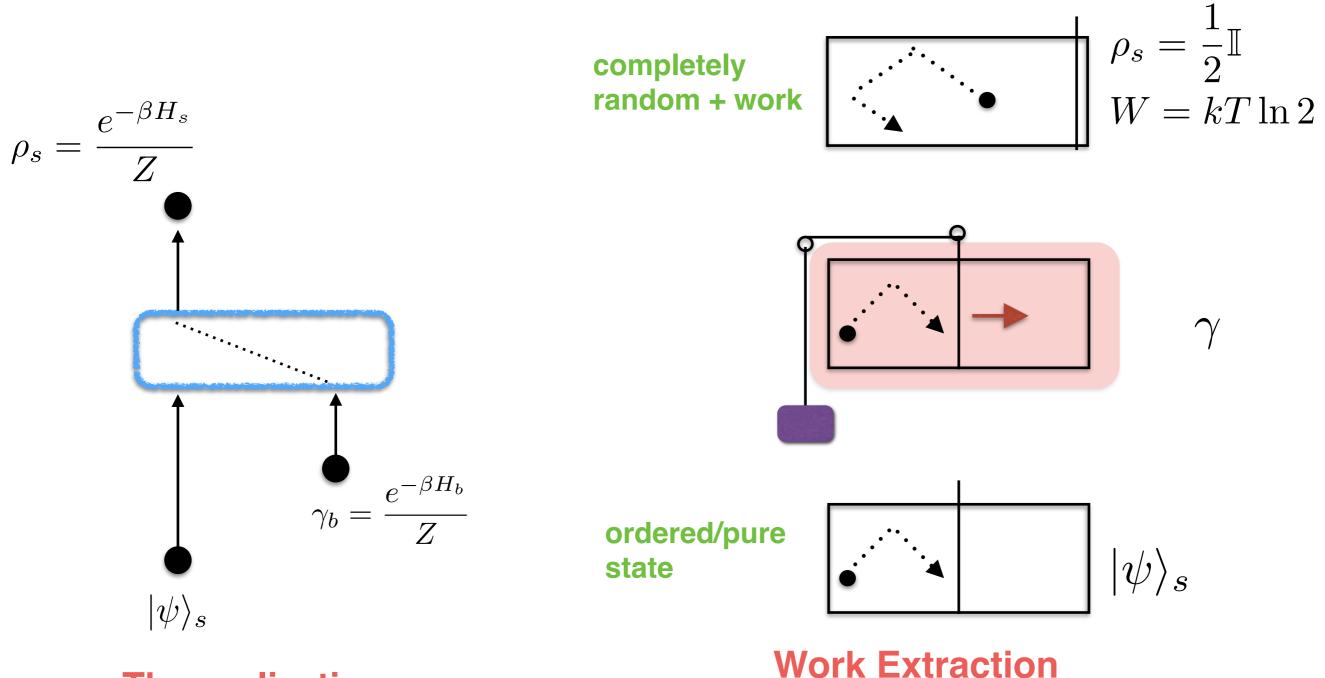
- L. del Rio et al, Nature 474 (2011)
- I. Marvian, R. Spekkens, Nature Comm 5 (2014)
- Toyabe et al, Nature Physics, (2010)
- M. Horodecki, Oppenheim, Nature Comm 4 (2013)
- F. Brandao et al, Phys. Rev. Lett. 111 (2014)
- F. Brandao et al, Nature Phys. (2014)
- J. Aberg, Nature Comm (2013)
- F. Brandao, M. Plenio, Nature Physics (2010)

- 1. Lostaglio, DJ, Rudolph, Nature Communications (2015)
- 2. Lostaglio, Korzekwa, DJ, Rudolph, Physical Review X (2015)
- 3. Korzekwa, Lostaglio, Oppenheim, DJ, New Journal of Physics (2015)
- 4. Cirstoiu, DJ (soon!)

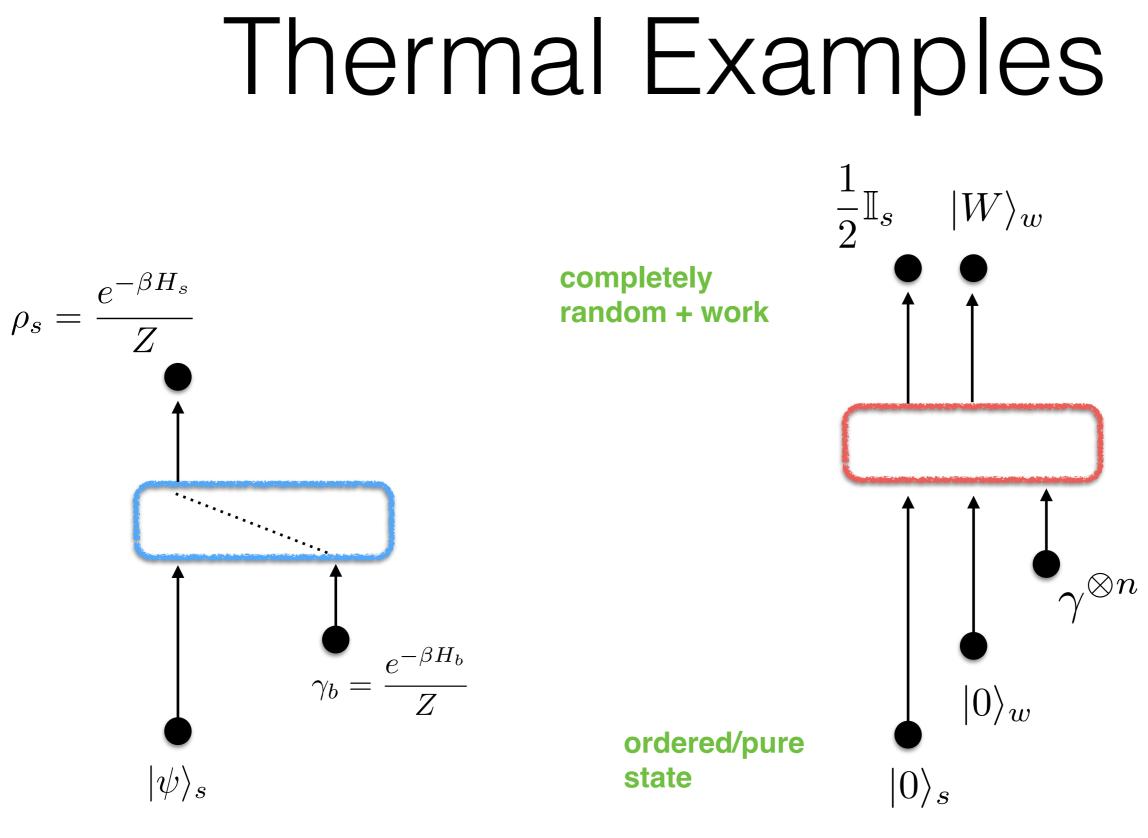
Resource Theory of Thermodynamics



Thermal Examples



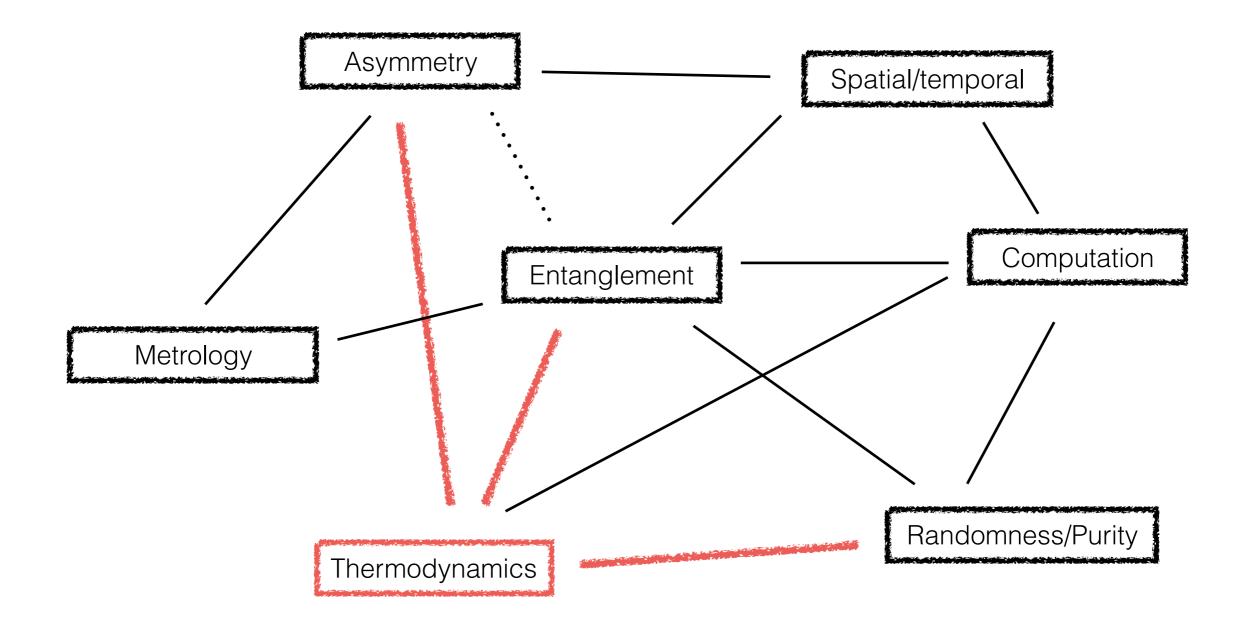
Thermalization



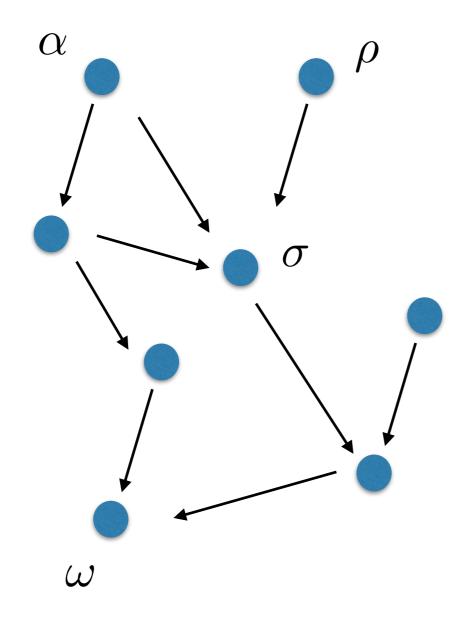
Thermalization

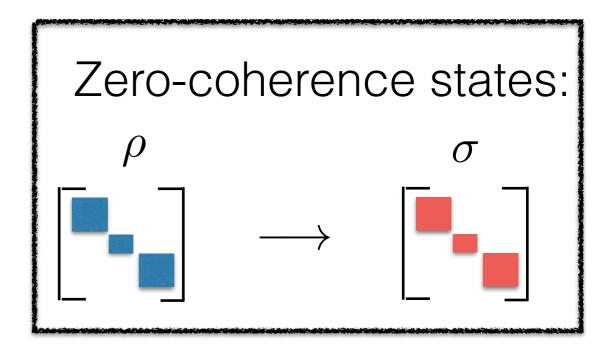
Work Extraction

Information-Theoretic Components



Ordering of States?





Q: Does the ordering of states admit an entropic formulation?

The Second Laws of Thermodynamics

Theorem: For zero coherence states, the transformation $\rho \rightarrow \sigma$ is possible

if and only if

$$F_{\alpha}(\rho) \ge F_{\alpha}(\sigma)$$

Renyi-divergences:
$$D_{\alpha}(\rho||\sigma) = \frac{1}{\alpha - 1} \log [\operatorname{tr}(\sigma^{\kappa} \rho \sigma^{\kappa})^{\alpha})]$$
 $\kappa = \frac{1 - \alpha}{2\alpha}$
 $F_{\alpha}(\rho) := D_{\alpha}(\rho||\gamma)$

* Brandao et al, PNAS (2015)

 $\forall \alpha$

Rough ingredients

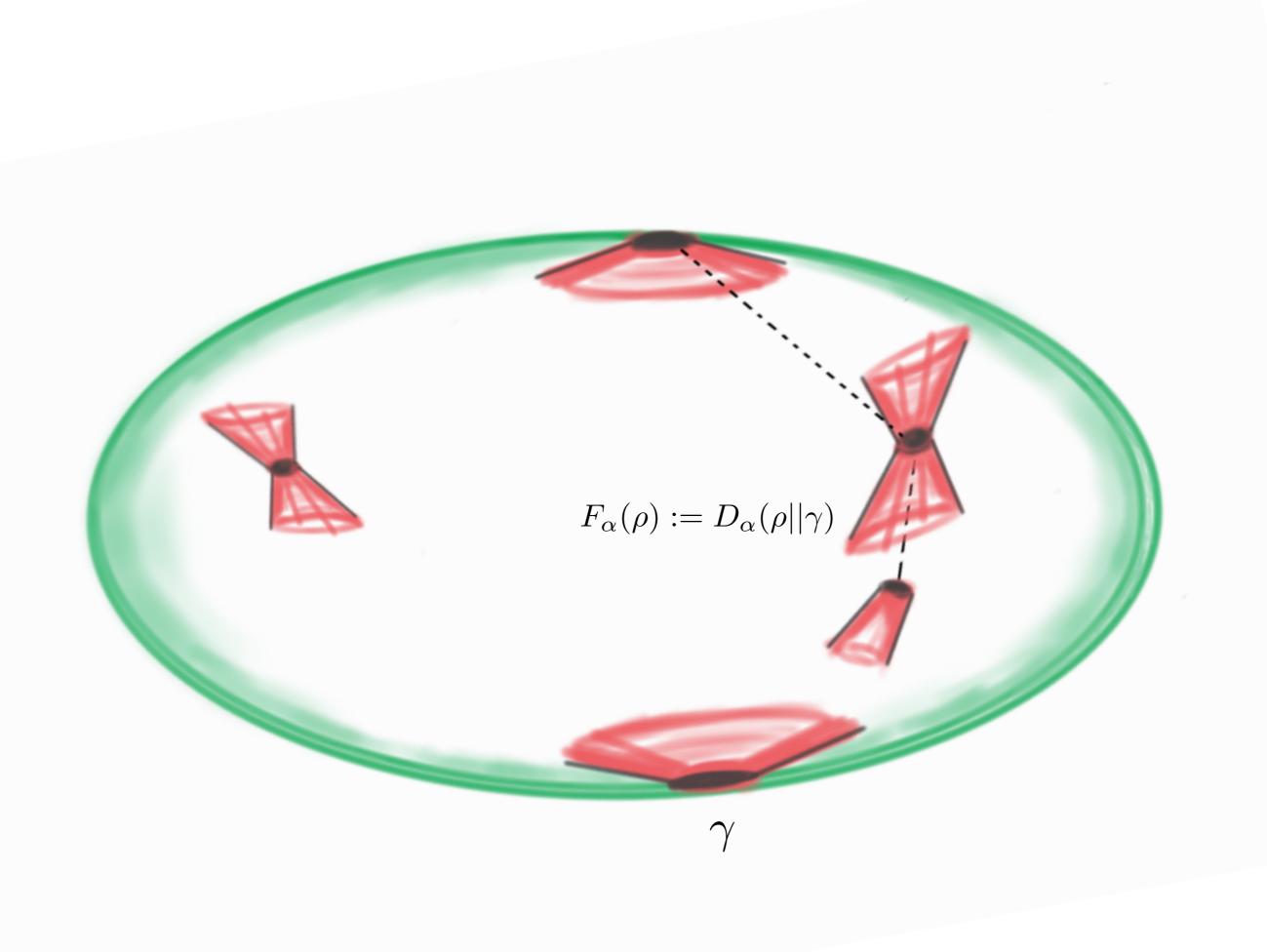
- 1. "Essentially classical states"
- 2. Thermal operations —> bistochastic maps
- 3. Bistochastic maps —> majorization relation
- 4. Majorization relations <---> entropic measures

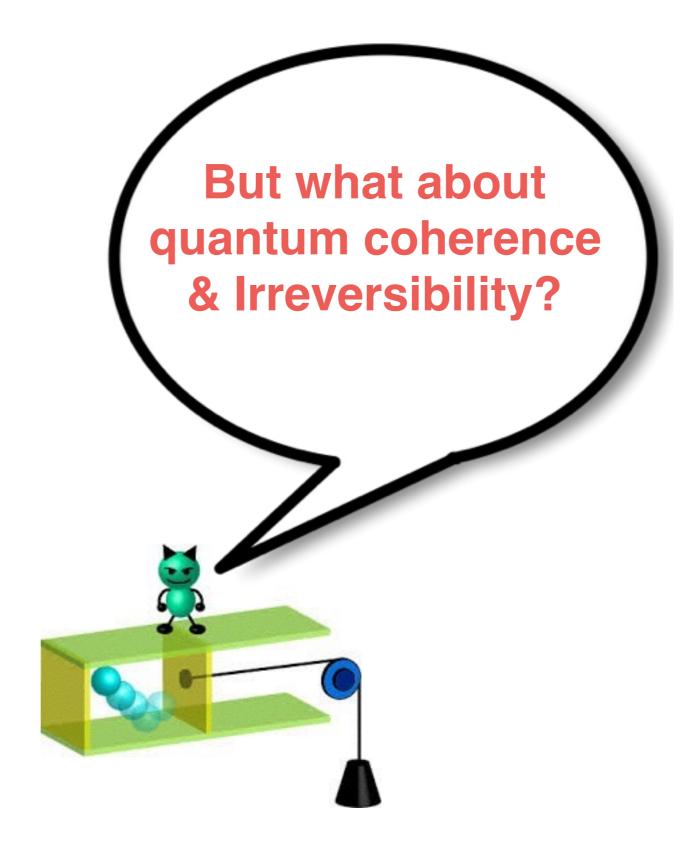
1.
$$\rho = \operatorname{diag}(\boldsymbol{x})$$

2.
$$y_k = \sum_j A_{kj} x_j$$

3.
$$x \prec y$$

4.
$$\begin{cases} x \prec y \\ \Leftrightarrow \\ \{S_\alpha(x) \leq S_\alpha(y)\}_\alpha \end{cases}$$





* Lostaglio, DJ, Rudolph, Nature Comm. (2015)

Korzekwa, Lostaglio, DJ, Rudolph, Phys. Rev. X (2015)

Symmetry & the 1st Law of Thermodynamics

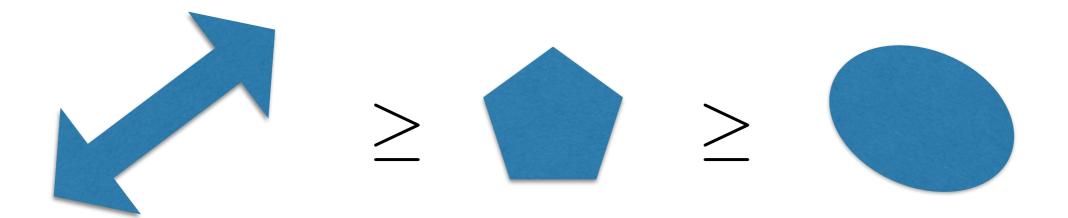
- Traditional form: dE = dQ + dW
- Microscopic energy conservation (system+bath).

Quantum Mechanical Symmetry: $[U, H_{tot}] = 0$ $t \mapsto e^{-itH_{tot}}$

Constrains **non-conservation** of **two** quantities:

(a) System energy(b) System "coherence"

When is A is more asymmetric than B?



- * I. Marvian, R. Spekkens Phys. Rev. A 90, (2014)
- * I. Marvian, R. Spekkens, New J. Phys. 15, (2013)
- * M. Ahmadi, DJ, T. Rudolph, New. J. Phys. 15 (2013)
- * Bartlett et al Rev. Mod. Phys. 79, (2007)

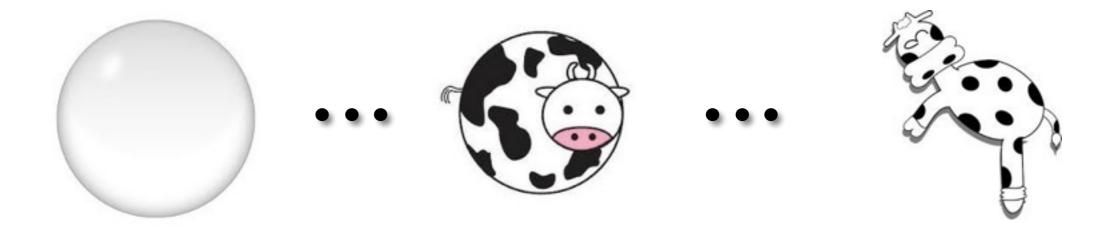
• "Group-theoretic Anna Karenina Principle":

• "Group-theoretic Anna Karenina Principle":

"all symmetric objects are alike; each asymmetric object can be asymmetric in its own way."

• "Group-theoretic Anna Karenina Principle":

"all symmetric objects are alike; each asymmetric object can be asymmetric in its own way."



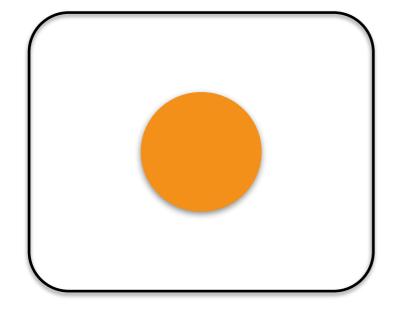
Asymmetry Examples, G = SU(2)

Rotationally invariant states

Pointy/Asymmetric states

$$|\psi^-\rangle, \rho_s = \frac{1}{2}\mathbb{I}$$

$$\rho_s = |\uparrow\uparrow\rangle, \quad \frac{1}{3}|l,l\rangle\langle l,l| + \frac{2}{3}|l,0\rangle\langle l,0|,$$

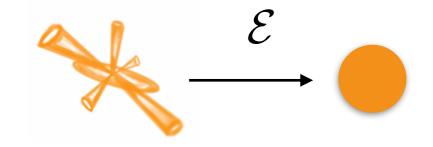




• Symmetry group, with unitary $U: G \to \mathcal{B}(\mathcal{H})$ representation on \mathcal{H} . $\mathcal{U}_q(\rho) = U(g)\rho U(g)^{\dagger}$

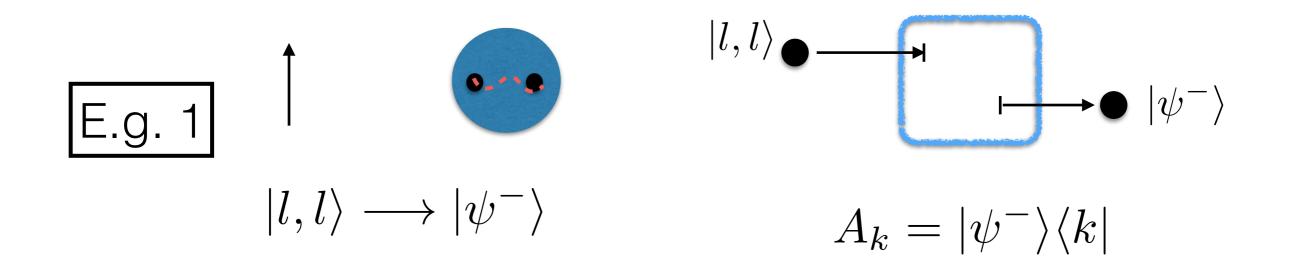
• Symmetry group, with unitary $U: G \to \mathcal{B}(\mathcal{H})$ representation on \mathcal{H} . $\mathcal{U}_q(\rho) = U(g)\rho U(g)^{\dagger}$

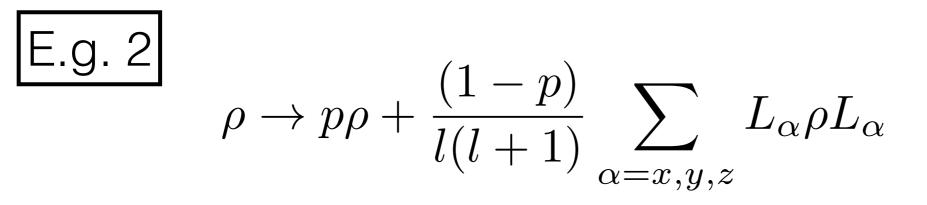
 ρ is more asymmetric than σ if $\sigma = \mathcal{E}(\rho)$ for some covariant \mathcal{E}



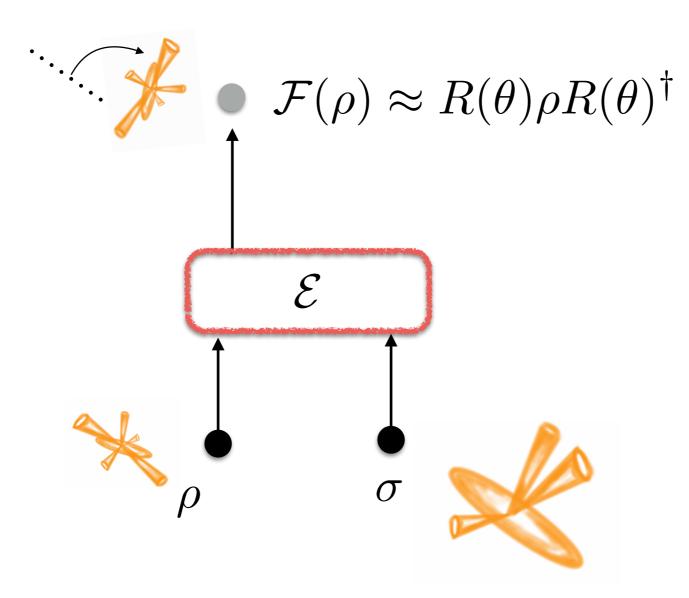
• Symmetry group, with unitary $U: G \to \mathcal{B}(\mathcal{H})$ representation on \mathcal{H} . $\mathcal{U}_q(\rho) = U(g)\rho U(g)^{\dagger}$

Examples:





Use of resources: asymmetry



Spatial Rotation

 $\mathcal{D}(\mathcal{H})$

Maximally asymmetric states

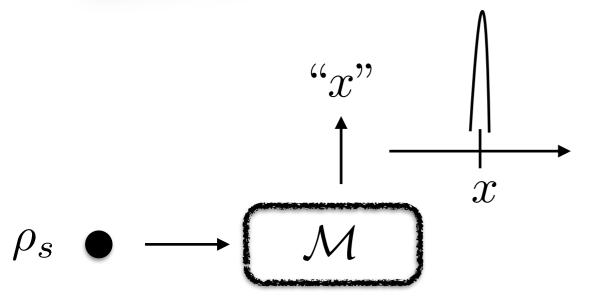
 \mathcal{E}

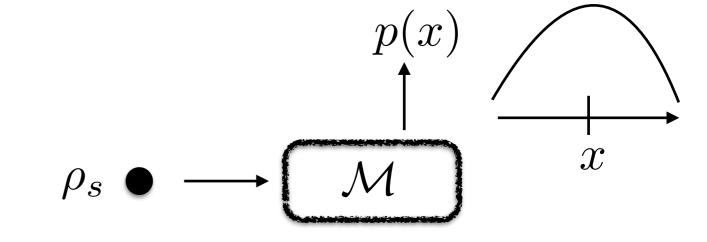
Symmetric states

Application: the WAY-theorem

Application: the WAY theorem.

Theorem (Wigner-Araki-Yanase, 1952):
 Observable P (e.g. momentum) conserved globally.
 If [X, P] ≠ 0
 Then X cannot be sharply measured.





No Conservation Law.

Conservation Law present.

WAY-theorem: QI-view

• Define group action: $U(\theta) = e^{-i\theta P}$ on \mathcal{H}

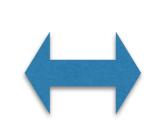
 $10(\alpha l)$

Covariant CPTP maps

$$\mathcal{E}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$$
$$\mathcal{E}(U\rho U^{\dagger}) = U\mathcal{E}(\rho)U^{\dagger}$$

10(0)

Measurement of X under conservation law



State discrimination of eigenstates of X, under covariance.

* M. Ahmadi, DJ, T. Rudolph NJP 15 (2013)

Proof:

State discrimination State discrimination of eigenstates $\{\rho_1, \rho_2, \dots\}$ \longleftrightarrow State discrimination of $\{\mathcal{G}[\rho_1], \mathcal{G}[\rho_2], \dots\}$ under covariance. with **no constraint**.

State discrimination

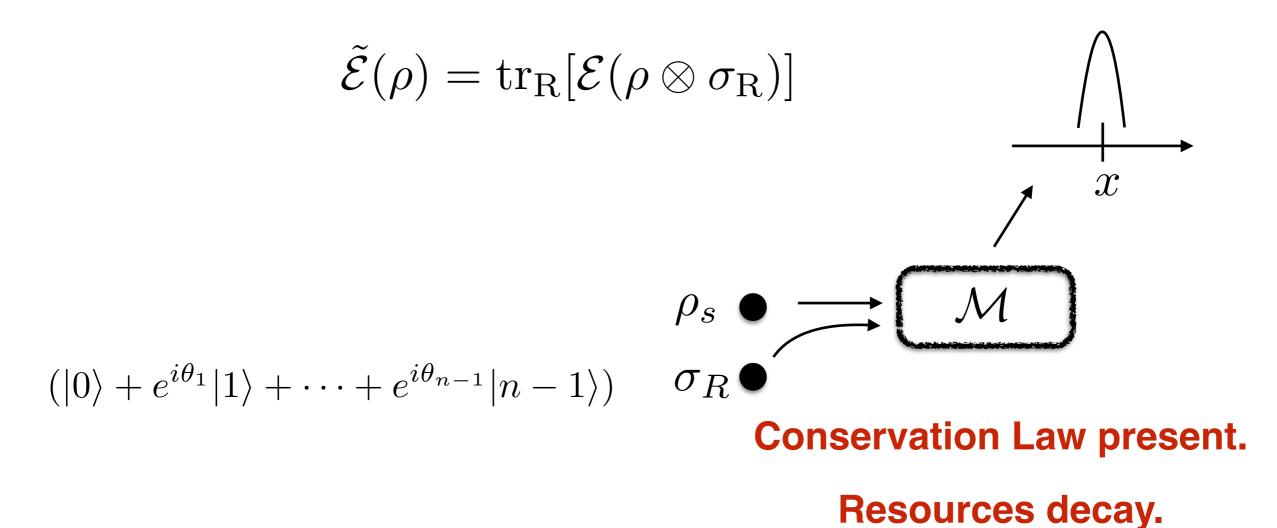
$$\mathcal{G}(\rho) = \int d\theta U(\theta) \rho U(\theta)^{\dagger}$$

 $\{\mathcal{G}[\rho_k]\}\$ Perfectly \Leftrightarrow pairwise orthogonal supports

 $\Leftrightarrow \mathcal{G}[\rho_k] = \operatorname{rank-1} \Leftrightarrow \mathcal{G}[\rho_k] = \int d\theta U(\theta) \rho_k U(\theta)^{\dagger} = |\varphi_k\rangle \langle \varphi_k| = \rho_k$ $\Leftrightarrow [P, \rho_k] = 0 \iff [P, X] = 0 \quad \blacksquare$

Asymmetric resource states

• Asymmetric σ_R state \longrightarrow can "simulate" a conservation-violating operation $\tilde{\mathcal{E}}$



Symmetry & the 1st Law of Thermodynamics

- Traditional form: dE = dQ + dW
- Microscopic energy conservation (system+bath).

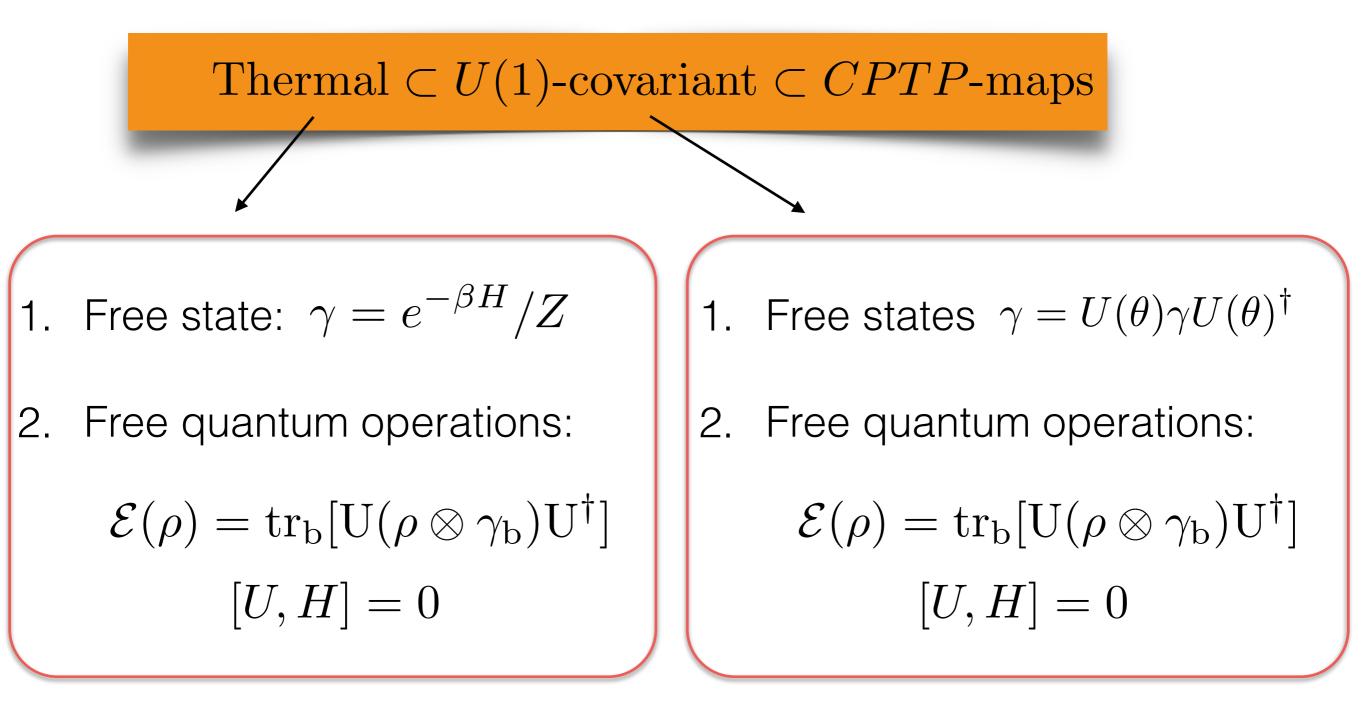
QuantumMechanicalSymmetry: $[U, H_{tot}] = 0$

 $t \mapsto e^{-itH_{\rm tot}}$

Constrains **non-conservation** of **two** quantities:

(a) System energy(b) System "coherence"

U(1)-asymmetry



*M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015) (Covariant Stinespring), M. Keyl, R. Werner J. Math. Phys. 40 (1999)

Applications of Framework:

- The insufficiency of free energy relations.
- Coherence "work-locking".
- General thermodynamic bounds on coherence.
- Intrinsically-quantum 2nd law constraints.

*M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015) M. Lostaglio, K. Korzekwa, DJ, T. Rudolph, Phys. Rev. X (2015)

M. Lostaglio, K. Korzekwa, J. Oppenheim, DJ, NJP (~2015)

(1). Insufficiency of free energies in thermodynamics.

Consider any set of functions $\{D_{\alpha}(\cdot)\}_{\alpha}$ that **"behave like free energies"**:

If
$$\rho \to \sigma$$
 then we have $\{D_{\alpha}(\rho) \leq D_{\alpha}(\sigma)\}_{\alpha}$
and $D_{\alpha}(\rho) \geq c ||\rho - \gamma||$

Then $\{D_{\alpha}(\cdot)\}_{\alpha}$ cannot provide a complete set of thermodynamic constraints.

(1). Insufficiency of free energies in thermodynamics.

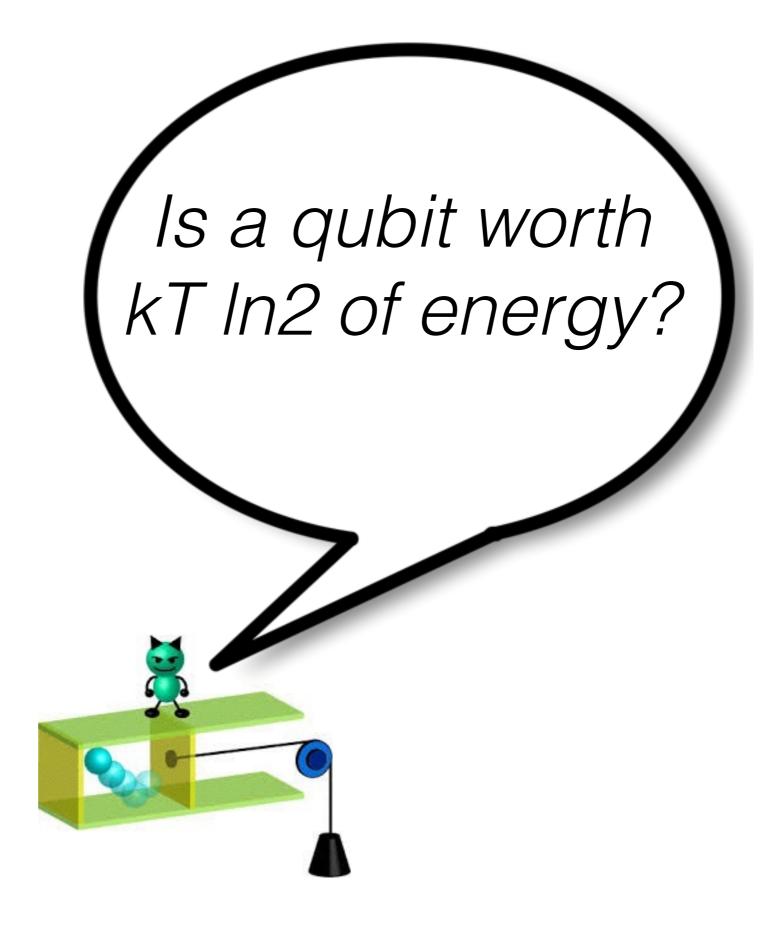
Proof:

 D_{α} say "get closer to γ ." Symmetry says: "asymmetry non-increasing."

 $H = |1\rangle\langle 1| \qquad \gamma \bullet \sigma$

Symmetric/incoherent states ρ

$$\sigma = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$$



Work / Ordered Energy

 $\sigma(x)$

Ŵ

Broad work definition:

"raising a weight up a ladder by height W"

$W := \sup\{\mathbf{x} : \mathcal{E} \text{ thermal } \& \text{ sends } \rho \otimes \sigma(0) \to \sigma(\mathbf{x})\}$

(2). Work-locked in coherence

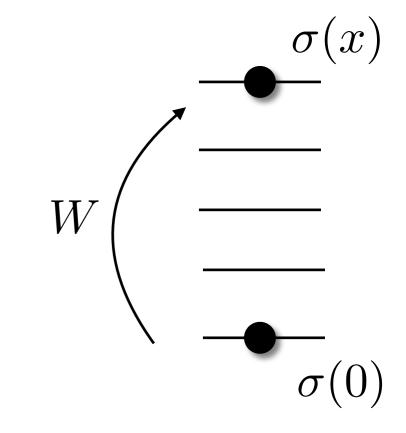
Theorem:
if
$$\rho \to W$$
 then $\mathcal{D}(\rho) \to W$

where

$$\mathcal{D}(\rho) = \mathcal{G}_H(\rho) = \int dt e^{-itH} \rho e^{itH}$$

Follows directly from

$$[\mathcal{E},\mathcal{U}_t] = 0 \Rightarrow [\mathcal{E},\mathcal{D}] = 0$$

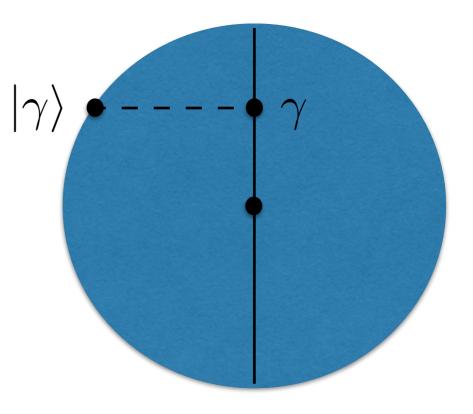


* M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015)

Szilard and coherence

Pure state $|\gamma\rangle$ $\mathcal{D}(|\gamma\rangle\langle\gamma|) = \gamma$

 $\Rightarrow \text{ No work } \text{can be extracted} \\ \text{from } |\gamma\rangle \text{ on its own.}$



Value of a qubit ? Non-trivial. Requires "resource counting".

Unlocking coherence for work.

• Must use additional coherent resources: $\mathcal{D}(|\gamma\rangle\langle\gamma|) = \gamma \qquad (relational \\ \mathcal{D}(|\gamma\rangle\langle\gamma|\otimes\sigma_R) \neq \mathcal{D}(|\gamma\rangle\langle\gamma|)\otimes\mathcal{D}(\sigma_R) \qquad (relational \\ coherence \\ protected) \qquad (relational \\ protected) \qquad (relationa$

 σ_R acts as quantum reference frame for $|\gamma\rangle$

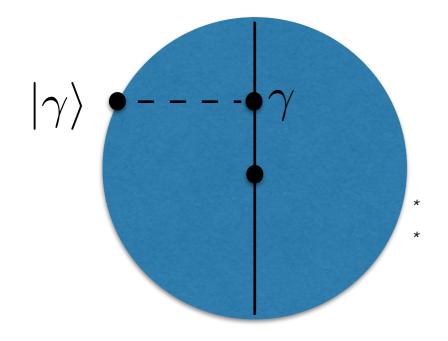
E.g.
$$|\gamma\rangle \otimes |\gamma\rangle \to W \leq Z^{-1}e^{-\frac{E}{kT}}(E - 2kT\ln Z)$$

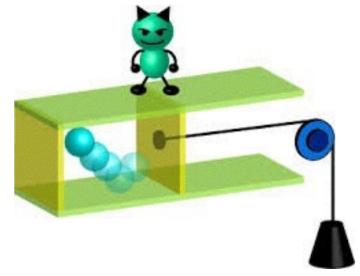
= $kT\ln 2$ (for $E = 0$)

A fully quantum Szilard engine

 Result: it is only for a particular "classical" regime that we can associate the free energy to every qubit state.

$$|\Psi\rangle \longrightarrow W = -\Delta F$$





M. Lostaglio, K. Korzekwa, J. Oppenheim, DJ, "Extracting work from quantum coherence" NJP (2015)

Bounding Coherence

Mode operators

• Apply harmonic analysis to operators: irreps of group action.

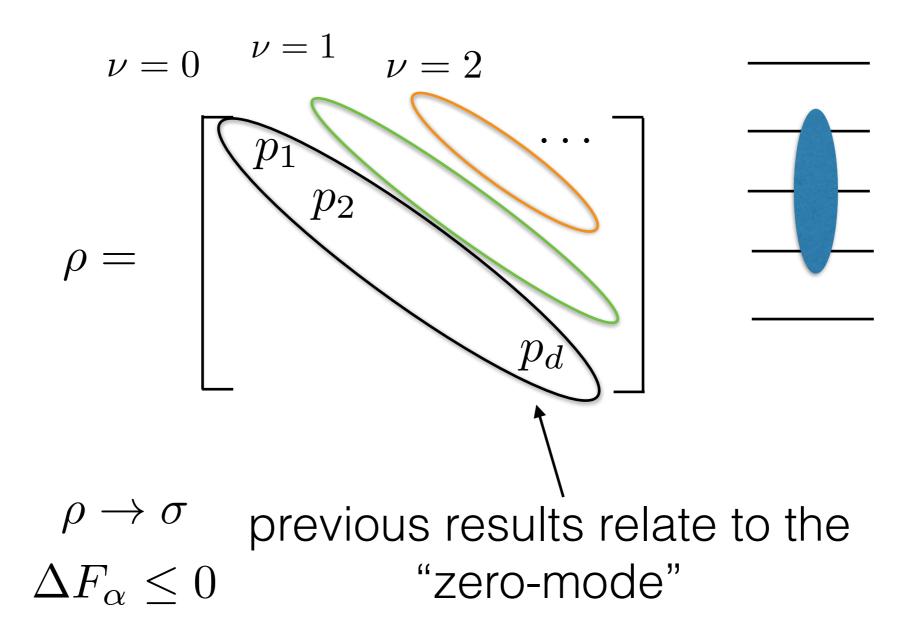
$$\mathcal{B}(\mathcal{H}) = \bigoplus_{\nu} V_{\nu}$$
$$U(t)\rho^{(\nu)}U(t)^{\dagger} = e^{-i\nu t}\rho^{(\nu)}$$

$$\rho = \sum_{\nu = -d}^{d} \rho^{(\nu)}$$

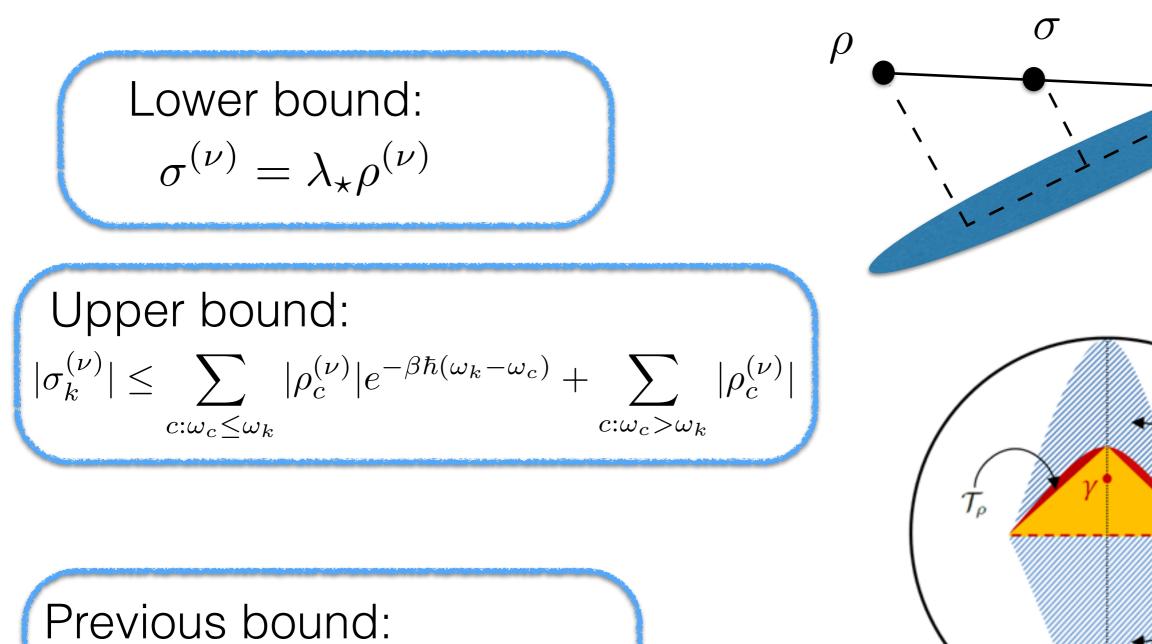
Thermal $[\mathcal{E}(\rho)]^{(\nu)} = \mathcal{E}(\rho^{(\nu)})$ operations $||\mathcal{E}(\rho)^{(\nu)}||_1 \le ||\rho^{(\nu)}||_1$

*M. Lostaglio, K. Korzekwa, DJ, T. Rudolph, Phys. Rev. X (2015)

State structure



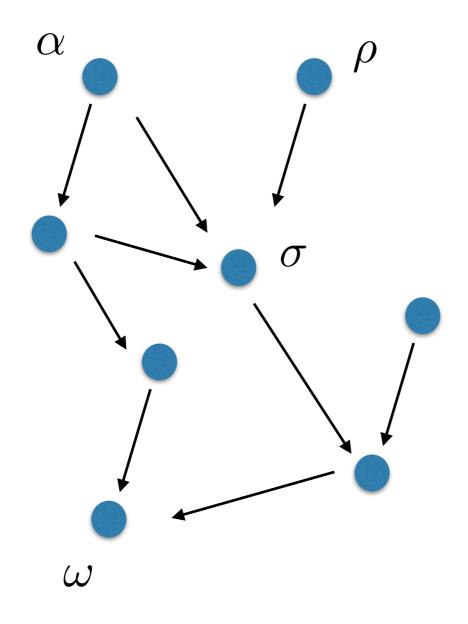
(3). General Bounds on Coherence

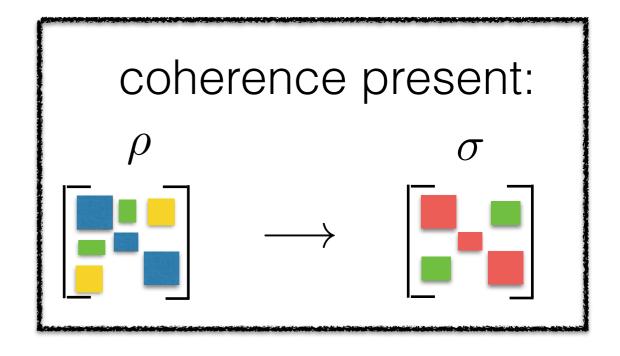


 $|\sigma_{nm}| \le |\rho_{nm}| \sqrt{p_{n|n} p_{m|m}}$

* Cwiklinski, Studzinski, Horodecki, Oppenheim, arxiv (2014)

(4). The full thermodynamic ordering of states?

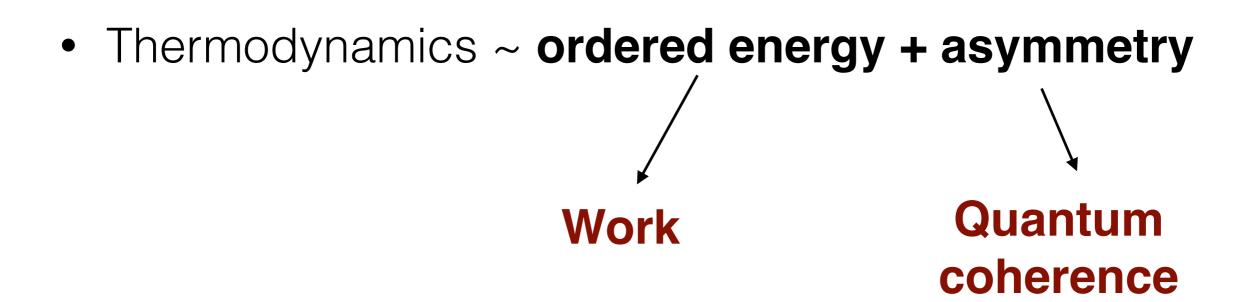


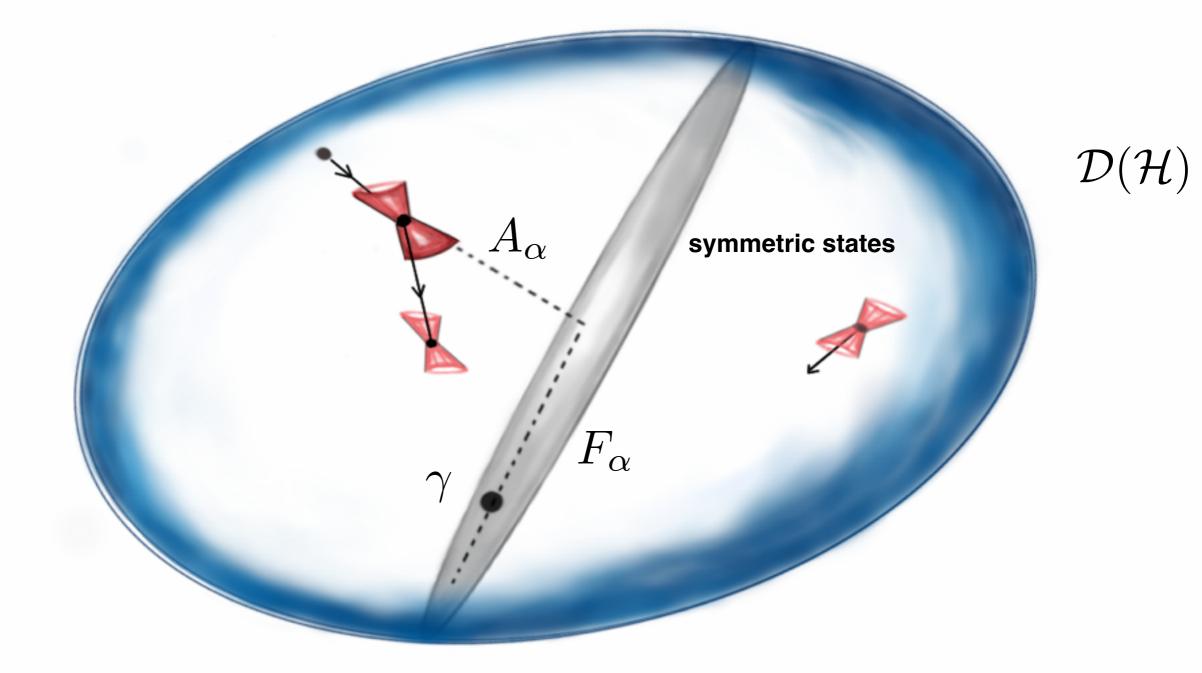


Q: Does the ordering of states admit an entropic formulation?

Thermodynamic structure

- Entanglement theory ~ non-local resources.
- Asymmetry theory ~ asymmetry resources.





(4). Necessary entropic constraints

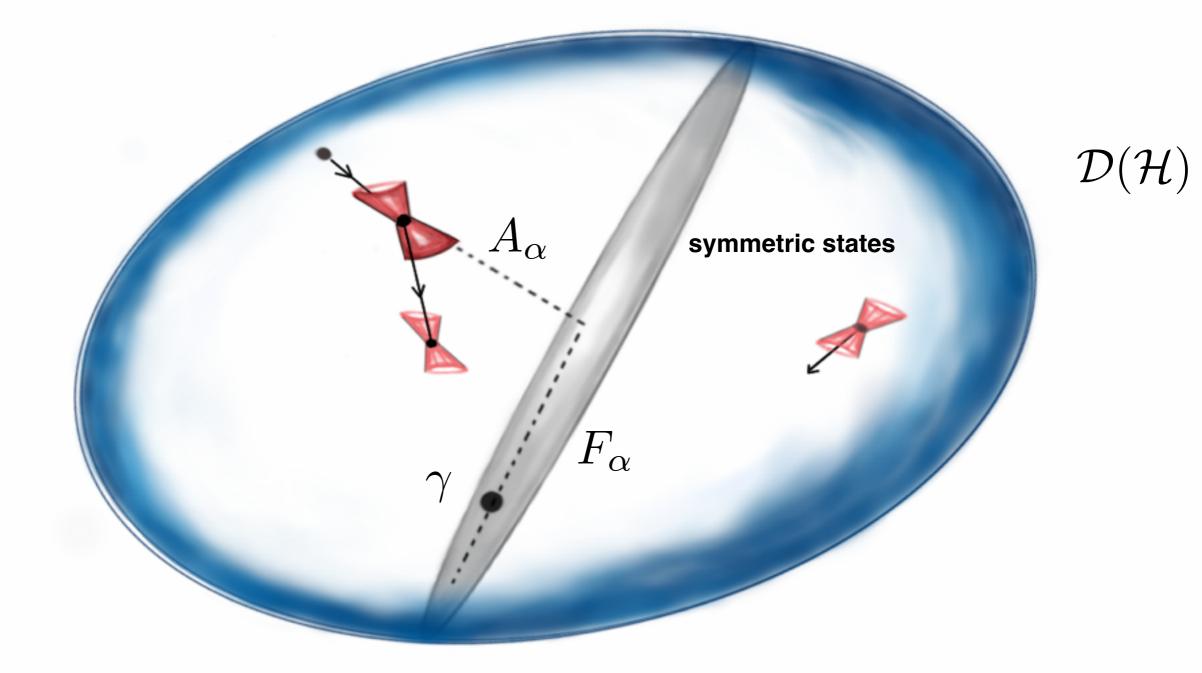
Theorem: For arbitrary quantum states, the thermodynamic transformation $\rho \rightarrow \sigma$ is possible provided

 $F_{\alpha}(\rho) \ge F_{\alpha}(\sigma) \qquad \forall \alpha \ge 0$ $A_{\alpha}(\rho) \ge A_{\alpha}(\sigma)$

Monotones: $A_{\alpha}(\rho) := D_{\alpha}(\rho || \mathcal{G}(\rho))$

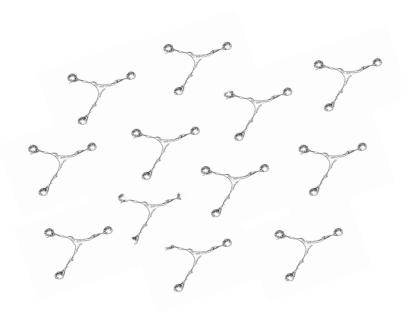
 $\mathcal{G}(\rho) = \int_C dg \ U(g) \rho U(g)^{\dagger}$

* M. Lostaglio, DJ, T. Rudolph, Nature Comm. (2015).



Macroscopic regime

Theorem: for any $\rho \in \mathcal{B}(\mathcal{H})$ we have $\lim_{n \to \infty} \frac{1}{n} \begin{bmatrix} F_{\alpha}(\rho^{\otimes n}) \\ A_{\alpha}(\rho^{\otimes n}) \end{bmatrix} = \begin{bmatrix} F(\rho) - F(\gamma) \\ 0 \end{bmatrix}$

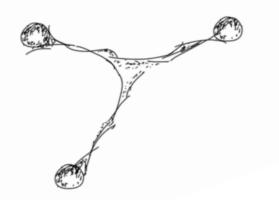


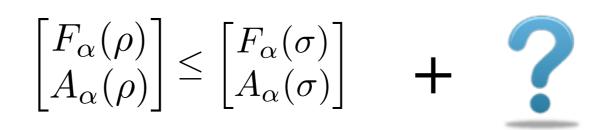
$$F = \langle H \rangle - TS$$

Current perspective

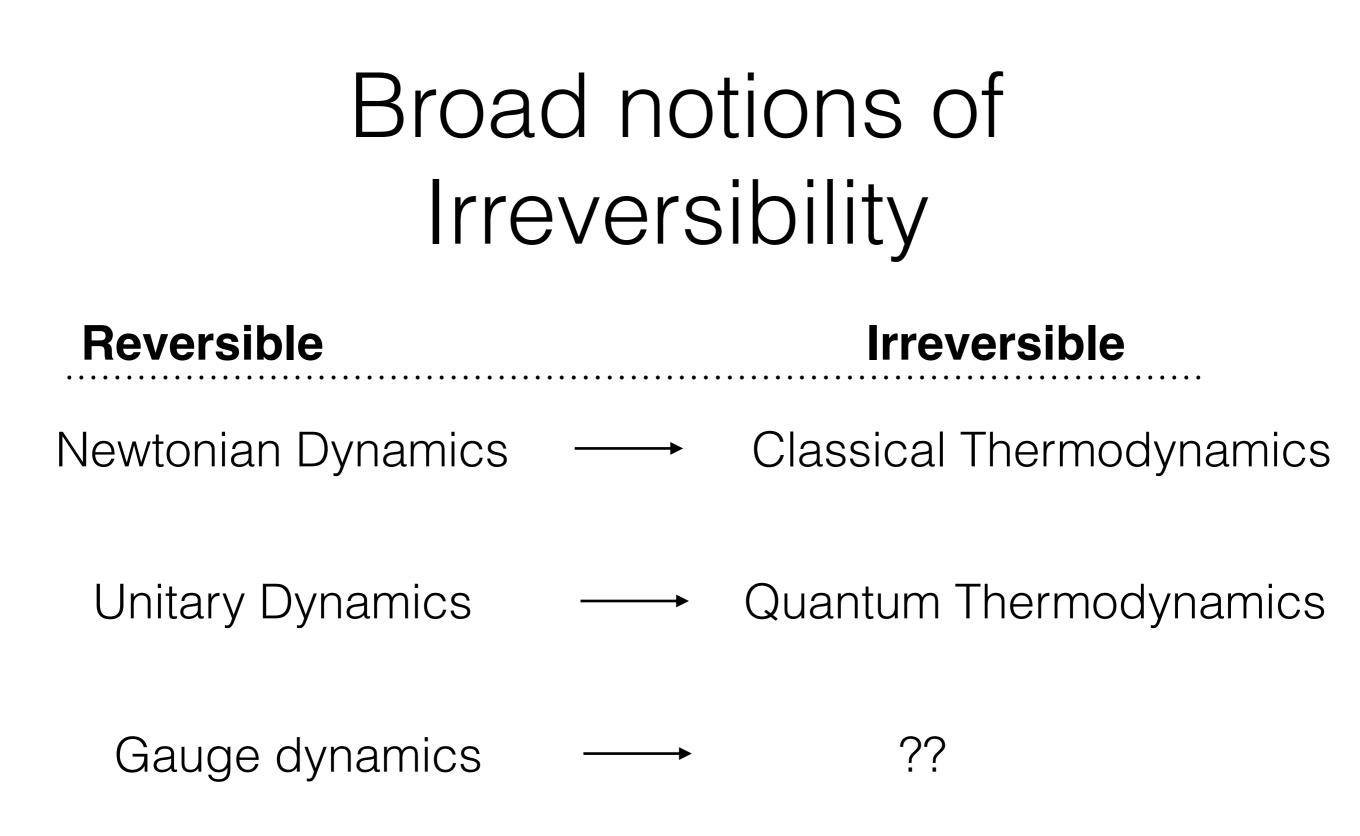
Essentially unique entropy. $\rho \rightarrow \sigma \Leftrightarrow S(\rho) \leq S(\sigma)$

$$\langle e^{-\beta(W-\Delta F)} \rangle = 1$$
 (incomplete)
 $\rho \to \sigma \Leftrightarrow D_{\alpha}(\rho || \gamma) \le D_{\alpha}(\sigma || \gamma)$



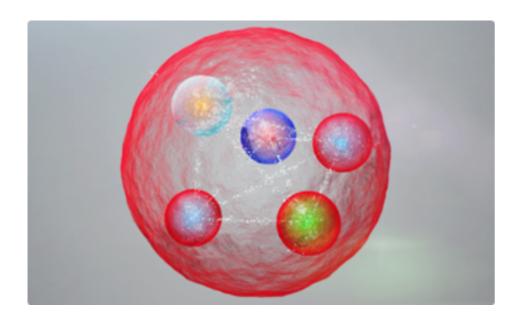


Beyond Thermodynamics — Irreversibility & noncommutativity



Gauge (field) theories

Global symmetry $\psi(x) \rightarrow e^{i\theta}\psi(x)$

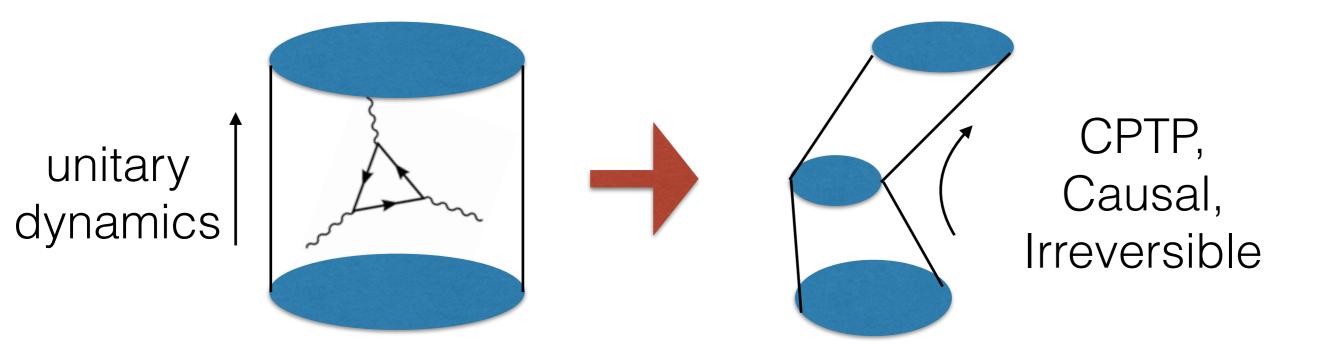


Local symmetry $\psi(x) \rightarrow e^{i\theta(x)}\psi(x)$

Gauge field A(x)

(QED, QCD, Standard Model)

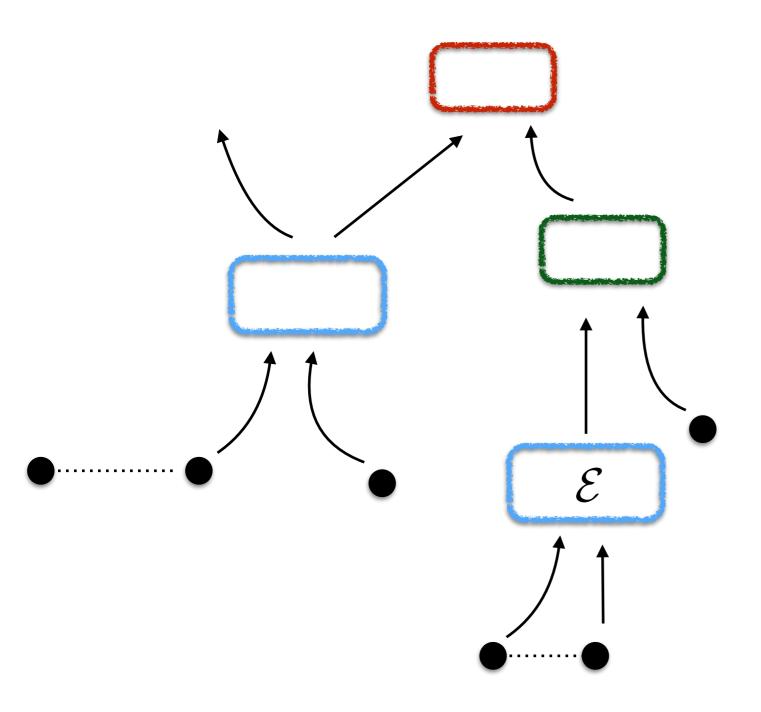
Irreversibility in gauge degrees of freedom



Global conservation law

Global monotonicity

Local quantum resources



Local group actions Global covariance

How do local operations couple to obey Global covariance?

Traditional Physics

Lagrangian ~ Kinetic energy - Potential energy

$$L = \frac{1}{2}\dot{x}^2 - \frac{1}{2}x^2$$

Dynamics: $\ddot{x} + x = 0$

Encode symmetries in L, e.g. $L = \psi(x)(i\gamma^{\mu}\partial_{\mu} - m)\psi(x)$

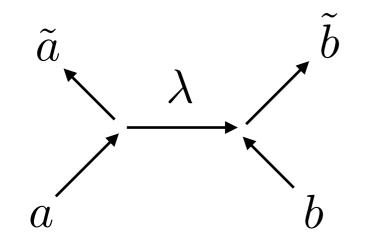
Rigidity

CPTP maps?

Core structure

Theorem: The space of bipartite covariant maps is spanned by $\Phi_{\Theta}: \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{B}(\mathcal{H}_{\tilde{A}} \otimes \mathcal{H}_{\tilde{B}})$

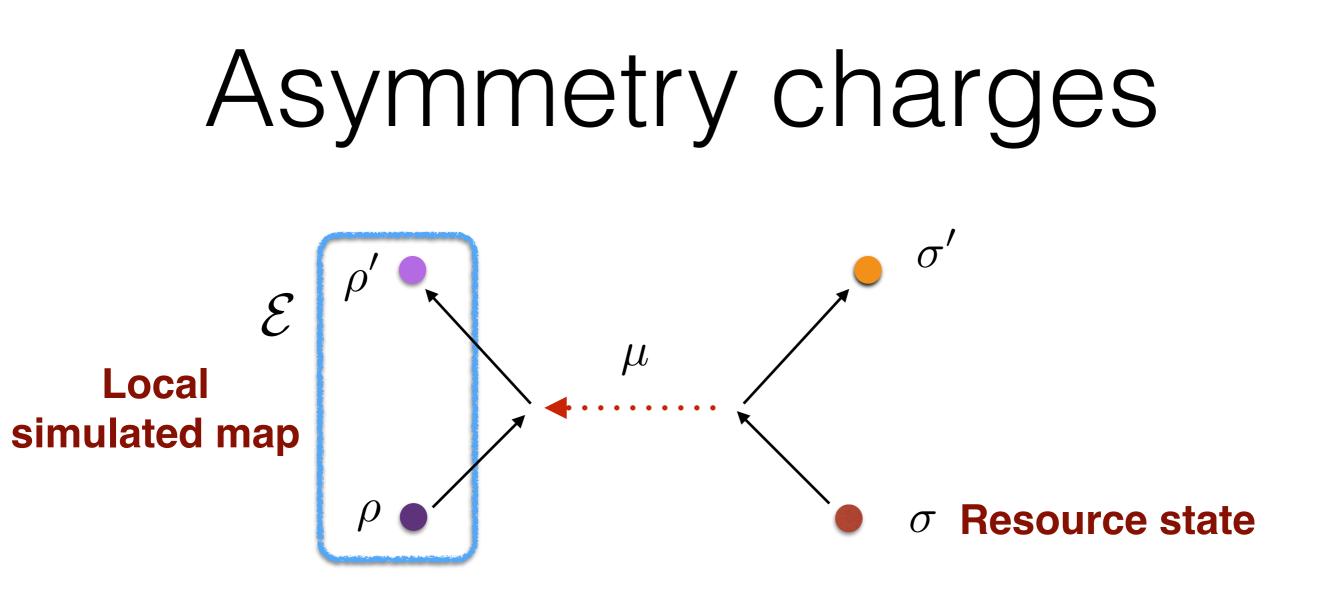
$$\Theta \equiv (a, \tilde{a}) \stackrel{\lambda}{\to} (b, \tilde{b})$$



$$\Phi_{\Theta} = \sum_{k} \Phi_{A,(-\lambda)}^{k} \otimes \Phi_{B,(+\lambda)}^{k}$$

* Cristina Cirstoiu, DJ arxiv:015.xx (2015)

(irrep labels)



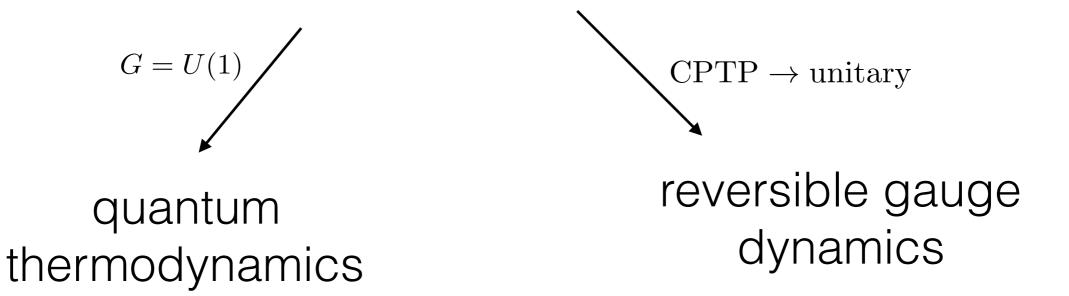
Temporal/casual aspect: some irreps ruled out.

Traditional observables (energy, charge, density...) insufficient.

Asymmetry modes: gauge degrees of freedom.

* Cristina Cirstoiu, DJ arxiv:015.xx (2015)

Multipartite irreversible asymmetry



Outlook

Analysis of general processes (causal, quantum switches...)

Tool-kit for quantum operations

QI techniques to traditional gauge theory topics

Interplay of energetic + quantum properties.

For more see...

