
Poster Abstract: WiFi Sensors Meet Visual
Tracking For An Accurate Positioning System

Savvas Papaioannou, Hongkai Wen, Zhuoling Xiao, Andrew Markham, and Niki Trigoni
Department of Computer Science, University of Oxford. Email: firstname.lastname@cs.ox.ac.uk.

Abstract—In this poster abstract, we propose a new posi-
tioning technique that can localize people by combining WiFi
information from their mobile devices with visual tracking. We
show that the proposed approach can improve visual tracking
by resolving motion and appearance ambiguities while at the
same time can uniquely identify each person with their device
ID.

I. INTRODUCTION

The development of practical and accurate indoor po-
sitioning systems has received a lot of attention from the
research community. One commonly used positioning tech-
nique is vision-based tracking. Many existing vision-based
tracking algorithms are capable of accurately estimating
the trajectories of multiple targets from video footage.
However, the estimated trajectories are usually anonymous.
Visual identification (e.g. face recognition) cannot always
be applied since it requires knowledge on the mapping
between IDs and pictures, and can be computationally
expensive and privacy intrusive. On the other hand, the
WiFi-based positioning systems are able to localize the
mobile devices carried by the targets. Therefore, the WiFi
systems possess the knowledge of the targets’ ID, but
typically require a stable radio map, use many APs and
often a floor plan to achieve good accuracy.

Motivated by the above problems, we propose a new
positioning technique which is able to perform accurate
localization and privacy-preserving identification. The key
idea is to exploit the existing WiFi and camera infrastruc-
ture, which is available in most of today’s large indoor
environments. We use visual tracking techniques to detect
moving objects in the camera footage, and generate anony-
mous tracklets based on a motion model. The tracklets
are then fused with WiFi signal strength measurements
to produce accurate trajectories of each target. Unlike
most of the existing work which uses WiFi information to
match the trajectories produced by visual tracking, our ap-
proach incorporates WiFi measurements in visual tracking
to generate the trajectories, and thus can achieve similar
performance with less infrastructure and noisy signals.

II. PROPOSED APPROACH

A. System Architecture

The proposed approach contains two components: a
foreground detector and a tracker, as shown in Figure 1. We
assume the indoor environment is covered by one calibrated
stationary camera, and multiple WiFi access points (APs)
with known locations are deployed. A number of people
(targets) are moving around with their mobile devices
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Fig. 1. The architecture of the proposed system.
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Fig. 2. The detections generated by our implementation of foreground
detector.

receiving WiFi beacons from the APs periodically. The cap-
tured video stream is processed by the foreground detector
to extract detections of moving objects, and then the tracker
fuses the visual detections with WiFi RSSI measurements
collected by the mobile devices to a) generate accurate
trajectories, and b) identify the target ID of each trajectory.

B. Foreground Detector

The foreground detector detects any moving objects in
the camera footage, and can be implemented in a number
of different ways [1]. Comparing to the more sophisticated
object detection techniques (e.g. [2]), foreground detector
is lightweight, and it can be used in real-time in embedded
camera networks [3]. However, the detections generated by
a foreground detector can be very noisy. We have observed
three distinct cases in our preliminary experiments where
this happens (as shown in Figure 2): a) multiple detections
are generated for one moving object (D1 and D2), b) a
detection contains no moving object at all (D4), and c) one
detection contains multiple moving objects (D5).

C. WiFi-based Tracker

The key component of the proposed approach is the
WiFi-based tracker, which works in two steps: 1) tracklet
generation and 2) tracklet merging. Concretely, suppose we
have m targets. The input video is divided into s segments,
each of which has n frames. The tracker first generates
short trajectories (tracklets) for the s video segments, and
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Fig. 3. (a) Tracklets generated for two targets in two video segments, where T1, T2 are in the first segment, and T3, T4 in the second. (b) WiFi
signal strength measurements can help find the correct solutions: T1+T3 with device 1 and T2+T4 with device 2 (the first plot and the last plot).

then merges them to produce the final trajectories of the m
targets.
Tracklet generation: For each segment a weighted directed
acyclic graph G = (V,E,W ) is generated, where the
vertices V represents the detections computed by the fore-
ground detector, and are partitioned into n disjoint groups
according to frames. The edges E are defined between the
vertices in different groups to form a trellis diagram. The
weight w of an edge e describes the appearance and motion
costs that two detections belong to the same trajectory.
The appearance cost is determined by the color histogram
intersection between the two detections. The motion cost
is calculated by comparing the distance between the two
detections with a motion model learned from the data,
which constrains the movement speed. For one target, we
use a Viterbi-like technique to traverse the trellis graph to
find the tracklet with the minimum cost by selecting one
detection from each group of vertices. We then remove
the found tracklet from the graph and perform the same
procedure for the next target until all m tracklets are found.
Tracklet merging: In this step, the tracker merges the
tracklets generated for each segment to produce the com-
plete trajectories, and assigns the correct target IDs to
them. We use a sliding window algorithm, which considers
the tracklets in k segments at a time. Concretely, the
algorithm performs k-partite matching to find the most
likely trajectory of a target. It iteratively searches the space
of all possible solutions that contain k tracklets within
the current window, guided by a cost function: C(l) =
wACA(l) + wMCM (l) + wWCW (l), where l is a solution
(i.e. a possible trajectory associated with a target ID), CA,
CM , CW are the cost functions for appearance, motion and
WiFi respectively, and wA, wM , wW are the normalizing
weights. CA(l) is computed from the pairwise intersections
of the average color histograms of tracklets in l. CM (l)
is evaluated by comparing the pairwise distances between
the tracklets in l (begin and end points) with the motion
model. The WiFi cost CW (l) describes how consistent
is the solution l with the WiFi RSSI measurements of a
device (carried by a target). Given the locations of the APs,
the log-distances between the points on the solution l and
the APs can be known exactly. If l is correct, then the
relationship between the log-distances and the sequence of
signal strength measurements should be linear, governed by

the radio propagation model. With this intuition, our tracker
performs Bayesian linear regression on the log-distances
and the RSSI measurements, and CW (l) is defined as the
log-likelihood that the observed RSSI sequence agrees with
the trajectory l under the radio model. Figure 3 shows
how WiFi can help to associate the tracklets correctly. We
consider two targets (two different devices) in two video
segments, where (T1,T2) and (T3,T4) are the tracklets
in the 1st and 2nd segment respectively. In this case it
is very difficult to find the correct solution based only
on motion (assuming similar appearance) since the targets
are close in the highlighted region. Figure 3(b) shows the
relationship between the log-distances and the observed
RSSI measurements from 2 APs for all possible solutions
(2 devices × 4 possible trajectories), where only the two
solutions: a) T1+T3 with device 1 and b) T2+T4 with
device 2 are correct (also indicated by the higher log-
likelihood (LL)). Note that the same technique can also be
used to deal with occlusions (suppose no trajectory was in
the highlighted box in Fig. 3(a)), since WiFi measurements
can correctly connect the tracklets to fill the gap. Our
initial results in a real setting (a museum) indicate that
the proposed technique can be used to resolve motion and
appearance ambiguities.
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IV. CONCLUSION

We propose a new positioning system that integrates
WiFi information with visual tracking. The novelty of our
approach is that it leverages WiFi measurements to improve
the performance of visual tracking, and offer accurate
localization and identification at the same time.
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