
Temporal signatures

A W Roscoe
Chieftin Lab, Shenzhen

and Oxford University Department of Computer Science

October 23, 2017

Abstract

We present a new way of constructing cryptographic signatures us-
ing the combination of simple hashing and reliable time-stamping as
provided, for example, by the blockchain. While achieving the conven-
tional objectives of cryptographic signature, its mode of operation is
so different (not being based on public and secret keys) that it does
not satisfy the formal definition. Therefore we name it Temporal Sig-
nature.

1 Introduction

At the time of writing (2017) we are seeing both challenges and opportuni-
ties in the world of cryptography and computer security. One of these is the
increasing focus on post-quantum cryptography thanks to the ever wider
awareness of the prospective problems caused by future quantum comput-
ers. A second is the emerging popularity of blockchains, a model with very
interesting timing and security properties.

The work in this paper was motivated by the desire to have an efficient
means of proving message authentication, integrity and repudiation that is
quantum resistant. Rather than following the route of devising new types
of public key cryptography we wanted to find something that depends only
on basic symmetric cryptography and hashing as there is a strong consensus
that these are quantum resistant.

While methods of hash-based signature, notably one-shot schemes such
as Lamport’s [?] and similar, which can be enhanced by Merkel trees, have
been known for a significant time, they are expensive and typically stateful,
in the sense that a given key pair is hard to distribute between different
instances of an identity.

1



Ours does not have this disadvantage, but it does make an additional
assumption about the availability of a service that can be provided by a
blockchain, as we will discuss later.

We present two variants of our scheme: in one each key is ab initio
associated with a future time, and another these times are created later.
We also demonstrate how analogues of PKI and Certification Authorities
(CAs) can work in our new space, including providing an analogue of zero-
knowledge proof.

This is one of a pair of papers introducing ideas in post-quantum cryp-
tography. In the second we will introduce an analogous idea for key exchange
which similarly relies on absolutely standard symmetric cryptography plus
an extra piece of technology.

The method we describe is extremely efficient in the amount of cryp-
tographic calculation required and therefore offer prospects of security to
applications such as IoT where asymmetric cryptography is barred on cost
grounds rather than because of the worry of future quantum computers.

Our schemes are both based on circumstances where A’s signature is
simply the hash of what is to be signed with a key or nonce that A knows
at that time but no-one else does, but which B will know later and further
more know it was uniquely associated with A. In that sense it resembles the
TESLA stream authentication protocol [] and the interactive authentication
scheme of []. However we are able to develop a related idea into a full
signature scheme complete with certification authorities primarily because
of the popularity of architectures such as the blockchain that establish an
unambiguous form of common knowledge and time stamping.

2 Time-based signature

In this section we show how to create a means of “cryptographic signature”
based only on hashing. It is not the first such, since there are well established
ones such as Lamport Signatures []. Ours is quite different and has the
advantages that there is no bound on how many times a given key can be
used, and that it is extremely cheap to use.

Our model of signature will work in blockchain systems and ones where
there is a trusted third party operating a bulletin board with time-stamps,
or indeed any structure that achieves the model of a universally writable
time-stamping database where all nodes get a consistent view and, given
any time-stamp t, can find a moment beyond which all future data will get
a time-stamp strictly greater than t.

2



We postulate the following model of the blockchain. It is a write-only
database to which any party can write and which is agreed in blocks. For
each block of data there is a point where it is agreed and becomes an irrevo-
cable part of history to which all parties agree. All events have a time-stamp
t (which may just be the block number) which strictly increases from one
block to the next.

In most blockchain models there is a notation of a transaction which
comprises all or most entries, and the parties making up the blocks (miners)
have to ensure consistency of transactions. That is not essential in our
world, though our mechanism can still be used in such contexts, and indeed
consistency checking can be used to support it as we will see later.

Indeed for our signature scheme to work we do not need a full consensus-
driven blockchain. What we require is a trustworthy write-only bulletin
board which assigns times monotonically to the items that are posted on it,
and where all parties can read what is posted on the board. When node
A posts a message it knows it is going to get a later time-stamp than any
presently published on the bulletin board or blockchain, and A knows an
upper bound on the time-stamp it will get relative to the present time.

In neither case do we require the central database to verify the writer
of data placed on it. We think of these as unsigned packets. However the
signature scheme proposed below would allow these to be verified shortly
after the writes.

We are all familiar with digital signature schemes based on one-way
functions to the extent that the very definition of a cryptographic signature
assumes the existence of private and public keys. Ours does not. Thus while
our scheme satisfies the requirements at the start of the Wikipedia article
on digital signatures [?]:

A digital signature is a mathematical scheme for demonstrating
the authenticity of digital messages or documents. A valid digital
signature gives a recipient reason to believe that the message
was created by a known sender (authentication), that the sender
cannot deny having sent the message (non-repudiation), and that
the message was not altered in transit (integrity).

We term this the extensional definition, since it sets out what has to be
achieved without being specific about how it is to be done.

Our method does not, however, operate in the way implied by the “formal
definition” given there:

Formally, a digital signature scheme is a triple of probabilis-
tic polynomial time algorithms, (G,S, V ), satisfying: G (key-

3



generator) generates a public key, pk, and a corresponding pri-
vate key, sk, on input 1n, where n is the security parameter. S
(signing) returns a tag, t, on the inputs: the private key, sk,
and a string, x. V (verifying) outputs accepted or rejected on
the inputs: the public key, pk, a string, x, and a tag, t. For
correctness, S and V must satisfy

Pr[(pk, sk) ∈ G(1n), V (pk, x, S(sk, x)) = accepted] = 1

A digital signature scheme is secure if for every non-uniform
probabilistic polynomial time adversary, A

Pr[(pk, sk) ∈ G(1n), (x, t) ∈ AS(sk,.)(pk, 1n), x 6∈ Q,V (pk, x, t) = accepted] < negl(n)

where AS(sk,.) denotes that A has access to the oracle, S(sk, .),
and Q denotes the set of the queries on S made by A, which
knows the public key, pk, and the security parameter, n.

Note that we require that any adversary cannot directly query
the string, x, on S.

We term this the intensional definition of a signature, since it strongly im-
plies how the objective represented by the extensional definition is to be
achieved. There is an interesting discussion in [?] of the relationship of a
similar form of signature to the intensional one.

We term this temporal signature: it is based on simple but completely
different ideas to the usually seen one.

We will couch this signature in terms of the blockchain or TTP running
a bulletin board, but it will apply to any situation where players can un-
ambiguously publish packets in a common medium where all get a common
view of what has been written and when, and the fact that this is so is
common knowledge.

We will assume that the time at the start of operation is 1, and that
the blockchain or bulletin board is initialised with a special block or data
written by some privileged initialisation or by the individual nodes at some
point where they are trusted. This information has time 0 which strictly
precedes all times of ordinary written data.

This initial block contains, for each node A, a finite set of key certificates
of the form1 (hash(k,A, t), t, A) where k are chosen at random from a large

1In using a standard cryptographic hash function here, we are assuming perfect cryp-
tography in the the forms of the terms used. It may well be wise to use different forms of
the terms (e.g. reordering or replicating components of the hashed terms) to counter weak-
nesses in specific (e.g. iterative) hash constructions. Of course careful and conservative
choices of the hash functions themselves is recommended.

4



set and t varies over future times. Thus each node will typically have keys
labelled by a spread of (initially) future times.

The fundamental idea is that the use of k (as opposed to hash(k,A, t)
by someone before time t proves that this someone is A, and that A will
release k at time t allowing anyone to check such uses, deducing they were
by A.

Thus to sign X with k we have A compute hash(k,A,X) and place it
on the blockchain or bulletin board before t and so it gets a stamp of less
than t.

Of course A can compromise her own signatures by releasing k early, but
this would be no different to her disclosing her conventional secret key. Doing
so would damage her in much the same way that disclosing her conventional
secret key. It is her duty to write k into the blockchain when she knows it
will get a stamp of at least t. (So in the case where the time stamp is the
index of the block, this could be when block t− 1 has appeared.)

Note that once the keys are established, signature only requires the com-
putation of a single cryptographic hash, and verification, where the key be-
longs to the initial set, requires at most two hashes. These are the hash of
the data with the now-revealed key, and the hash that verifies the same key
whose hash was initially published.

We have the option to save (at least then) one of these hashes by verifying
each key via the consensus mechanism at the point it is published openly. In
other words, when A places k openly in the blockchain, it should be apparent
to all that this is a reveal of a key, and those responsible for consensus and
block creation must verify k before publishing it.

3 Refreshing keys

Since signatures can only be checked once the appropriate time has been
reached, in most case it is desirable, when signing a message, to use a nearly
expired key. Given that each node is presumably only allowed a finite num-
ber of initial keys, such a key from that set is not always available. However
it is straightforward to allow A to add further keys.

Suppose A will shortly enter a time-frame where it has no keys or only a
few, but it still has a key (A, k, t) that will expire before this. Then she can
create as many new keys randomly (or perhaps pseudo-randomly) as she
wishes, choosing a future time for each, and sign their certificates (either
collectively or individually) as new keys for A, each with their own time
beyond t.

5



The strategy for doing this will depend on the expected time-frame of
the service being created, namely for how long will an agent wish to create
signatures. This might be for some finite period that can be divided up
into equal parts ab initio with this division and further subdivisions used to
structure the key space. Or is might be indefinite, in which case one can do
the same but, near the end of an initially chosen epoch, new keys are signed
for another. By (say) doubling the lengths of successive epochs, it is easy
to keep the chain required to check each key down to logarithmic length.

So for example each node could be initialised with keys that are revealed
at 2n for n ≤ N for some arbitrary M > 0. Note that initially the gap
between consecutive keys is a power of 2. We will maintain this as an
invariant and also the fact that the largest t is a power of 2,

At each time r =
∑n−1

i=0 δi2
i. When the current time is (say) one less

than the last time before a gap of length more than one (r, r+2s), it creates
new keys for the times r+1, r+2, . . . r+2s−1. as far as it has to to maintain
this invariant.

So it will create new keys as follows:

• at time 1 for 3,

• at time 3 for 5 and 6,

• at time 5 for 7,

• at time 7 for 9,10,12,

• and so on...

When it reaches 2N − 1 it adds a key key for 2N+1 at the end.
With this approach, every time a node uses a new key it can check it

by following a chain back to time 0 with length bounded by 2log2 t. To un-
derstand this, observe that every integer m greater than 0 can be expressed
uniquely in the binary form m = Sr =

∑p
r=0 2qr where the qr are a strictly

decreasing decreasing sequence. Notice that both q0 and p are no greater
than log2m. In general the key for time Sa =

∑a
r=0 qr (0 < a ≤ p) was

signed with the key for time Sa−1, and the key for 2b was created either at
time 0 or signed using time 2b−1. Thus the checking chain is composed of
two parts neither of which is longer than log m.

Of course we have the same option about checking keys as before: those
building a blockchain are responsible for ensuring that the public versions
of keys are consistent with their previously published hashes.

6



In other words if a new key (hash(A, k, t), A, t), ((hash(A, k, t), A, t, k′), ref(k′))
is published signed by A using k′ which is revealed at t′ < t then all ‘mining’
nodes should check this at t′ resulting in a certificate of agreement that k is
a good key for A to be revealed at t′.

when k is ultimately released at t, it should be checked as outlined above.
We could even extend the role of the blockchain to verifying all individual

signatures (rather than merely signatures on keys), but this is of less obvious
benefit.

4 Checking authorship

An interesting question is whether relying, as mooted here, on the blockchain
to check the accuracy or keys and signatures (as opposed to each node doing
it by themselves) creates any more risk than may be present because of
allowing the blockchain to arbitrate time.

In the description above, we have assumed that data placed in the system
is not authenticated to its author. Our signature mechanism provides the
means for a TTP or consensus protocol to check the authorship of any item
before it is openly published, thus providing such authentication. To do this
we partition the bulletin board or blockchain space into to two parts, that
we will describe as authenticated and provisional. An ordinary application
running in a node can only read authenticated, and write to provisional.
Such writes are accompanied by the temporal signature, for the next time
t, of the written data by its name. When the corresponding kA,t is released
at t, the TTP or consensus protocol can verify the signature and move the
write into authenticated.

Of course in such contexts there might still be the need for individual
nodes to be able to check other people’s signatures, for example when the
signed item is sent inside some other cryptographic construct such as en-
cryption.

5 An alternative approach

We have presented a model in which the time of each key is committed in
advance. An obvious alternative is for keys to be created and their hashes
bound to an identity without a fixed release time. The identity could then
sign one of more files with the key in the same way as above: placing the
signed document in the blockchain or bulletin board and only releasing the
key into the same medium once it has seem all the signed documents there.

7



Imagine the following scenario: Alice has created key k, signing the
key certificate (A, hash(A, k)) and placing it on the bulletin board. After
the signature of the certificate has been checked, she signs a number of
documents with k and places them (F1, . . . , Fn) on the bulletin board. Once
she has seen they are all there she places k on the bulletin board.

Eve can potentially delay the final write while learning k, and sign further
documents with it “on behalf of” Alice before finally releasing k. If it then
can block Alice from intervening (or if Alice does not notice quickly) the
signatures will be believed.

This model can be rescued: one solution is to have Alice use each such
keys only once. By checking that the signed document is on the blockchain
before releasing the key, making the blockchain consensus prevents “double
spending” of k appears to prevent attacks.

Extending this: Alice can count how many files she has signed with k
at the same time as checking they are all there. She then signs a specially
formatted message such as Alice has signed 23 files with hash(A, k) on the
blockchain – signed with k – and checks it is there before releasing k. The
consensus protocol only accepts k when the numbers tally. Here we are
using the properties of our blockchain/bulletin board in being immutable
and permanent once a write is made and agreed. As a further alternative
she can replace the count with the simple message No more signatures with
hash(A, k), again signing it with k. The consensus protocol only accepts
the release of k when this consistent. In both cases checking the signature
on the message ending k means that Eve cannot successfully end k early.

As an alternative to counting, she can observe the final time stamp t of
one of the files signed by k in the blockchain, and place a message on the
blockchain which associates this time with the key. Again Alice makes sure
this message is there before releasing k. To verify a signature it is verified
that the signature has a time stamp no later than t. Essentially here we
are replacing the original pre-committed time for each time, by one that is
post-committed.

Refreshing keys is now much simpler than in the earlier case.
This method has the advantage of using keys efficiently: no key gets

wasted if there is nothing to sign with it at the time it is released. It has the
disadvantage of only really working with a blockchain consensus algorithm
or something very like it. It also needs more bookkeeping and might not
work as well when a given identity has more than one instance generating
signatures with a given key.

8



6 Public signatures, private data

An essential feature of our models is that signatures are placed on a com-
monly write-able, commonly readable time-stamped database. This might
seem to limit their usability, since in many applications agents will wish to
sign data that is only meant to be seen by less than all agent, often only
one other.

Nevertheless we really everyone to be able to see all signatures and iden-
tify their time-stamps and link them to their signing keys. In cases where we
want to have signatures checked by external parties such as blockchain con-
sistency, those doing the checking apparently need access to what it being
signed.

We can, however, overcome these problems easily by adopting the prin-
ciple that, other than when signing the keys used in the signature scheme,
which have their own protocols, it is hash(X) that is actually signed in the
senses set out above.

So we can decide that the signature ofX by key k is actually (hash(X), hash(hash(X), k))
coupled perhaps with a key certificate for k. This allows the signature to
be checked by anyone without them knowing X. And of course anyone
who thinks they know X can hash it to check this equals the value in the
signature.

Thus we can maintain signatures in public without making the underly-
ing data public too.

Just as with public key signature, if we want to stop an attacker checking
a guess at X by hashing it, it may be necessary to add random bits as salt
to X to prevent this, naturally communicating such salt to those intended
to know X.

7 TKI or “PKI”

It is possible for one party to sign another’s keys as a token of validity in
our temporal setting just as much as it is with asymmetric signature.

A trusted third party can sign a certificate attesting that one or more
timed keys belonging to A are valid. Just as in an ordinary PKI such a
“Timed Key Infrastructure” can indicate limitations on the validity of the
keys it is signing. It can place a limit on how long or how many times it
permits A to refresh its own keys, or indeed ban such refreshing altogether.
Time is much more built into the core principles of a TKI than it is into a
PKI.

9



Note that the chain of trust in this case goes back to the start of time
through the keys of multiple parties.

• For a key k for A, it might have a chain of trust going back through
multiple A keys to one attested to A a time 0, or it might go back to
one attested to one signed at a later time by key kS0 of a key server
S0...

• Which is either attested back to time 0 by keys for S0, or eventually
back to one attested by a second server S1,

• and so on. All the key servers themselves must be certified in their
roles, just as in a regular PKI, and the chain of trust must get back
eventually to time 0.

As discussed above, the system or consensus mechanism can check sig-
natures and roles as time progresses.

In a PKI it is not the secret key but the public key that is signed, which
limits the potential mischief a compromised key server can cause. In a TKI
the same is true: all the key server has to do is to sign the key certificate
with the hashed key in, not the open key. [Of course the mechanism by
which the server comes to know which identity the certificate is for, and
that it is valid, remains application dependent much as with PKIs.]

In some cases where signatures are validated by the blockchain, it might
be appropriate to let the blockchain act like as a CA, in the sense that a
node can provide one or more unsigned key certificates and the blockchain
votes (presumably in receipt of evidence of some sort) to accept the keys
and place them in the valid area. That would be analogous to putting such
keys into an extension of block 0.

We have not addressed here the question of how a new node Alice proves
her authenticity to a CA. To some extent this is always going to be an ad
hoc process which assumes (rightly or wrongly) that at the moment of proof
Alice has an authentic channel to CA. One thing that is commonly done
with traditional CAs is for Alice to ask CA to sign her public key and at
the same to prove that she knows her secret key via a zero-knowledge proof.
The zero-knowledge proof approaches we are aware all use constructs in the
asymmetric cryptography domain such as exponentiation. The well-known
ones are vulnerable to quantum computers. Therefore we offer the following
hash-based alternative, which while not providing a proof of knowledge, at
least gives arbitrarily strong evidence that the intruder does not know the
secret key.

10



In the following Alice is trying to construct something that she can use
in our schemes or something similar.

1. Alice chooses some M , which for the sake of convenience is even, and
random nonces Ni for i ∈ {1, . . . ,M}.

2. She sends these to CA, all in the form hash(A,Ni, t) or hash(A,Ni)
depending on whether or not there is a time t attached to this key.

3. CA then picks M/2 indices at random from {1, . . . ,M}, and so has
C(M,M/2) choices, or approximately (2M

√
2)/

√
(πM). It informs

Alice of its choice as a challenge set C.

4. Alice then reveals to CA exactly the Ni for i ∈ C, and CA then verifies
this choice.

5. CA then signs the rest of the hashes sent in the second step as Alice’s
key.

6. To sign an item with this key, Alice forms the hash of the object being
signed with all the Ni not previously revealed.

In order to impersonate Alice by substituting his own choice of key, that
Alice has not picked and so does not know, he would have to guess correctly
at the set C. For M=16 this gives him a chance of one in 12,870 and for
M=32 one in 601,080,390. The protocol establishes that no intruder can
know all the precursors of the hashes not in the challenge except for this
small probability. It does not establish that Alice knows of these with the
compliment.

Alice can raise the probability to this by adding the following to the
above exchange: As well as answering the challenge she picks a new key kA
for herself and places the hash of the concatenation of Alice, hash(Alice, kA)
(and a time if appropriate) with all the Ni not included in the challenge
on the blockchain. When it sees this published it releases the set of Ni

(whose hashes have been signed by the CA). This does prove, to 1 minus the
probability above, that Alice knew all the Ni and establishes kA/hash(kA)
as a key for her. The CA can now sign hash(A, kA) safe in the knowledge
that it was created by Alice. (Note that more than one kA can be established
in the same message.)

We imagine that this approach to zero knowledge proof might be useful
in other quantum-resistant contexts.

11



8 Temporal signature in support of the blockchain

It is already clear how temporal signature can use the blockchain to establish
the temporal relationships required, and how items thus signed (including
key certificates, both self-signed and signed by certification authorities) can
be placed in it.

We need to maintain the integrity of the blockchain, so the commu-
nications that form and agree blocks need themselves to be signed. The
mechanisms already described can be used for such signatures so that the
integrity of the structure can be checked post hoc. However the inability a
node B to check A’s signature in the same time frame that it was created
is an obstacle to the active use of temporal signature in the formation of
blocks.

Fortunately nothing can make B accept a fraudulent signature, only have
to defer checking it. We see several possible approaches to coping with this,
including the following.

1. Where there is a secure distributed clock, separate out the release
times of keys from the individual blocks. In this way a key might be
released at a particular time, during the period where some block is
being created. Note that no strong security is required for the release
of unhashed keys, as they are already secured by the earlier releases
of their hashes. B will then be able to check any signature it has seen
before the release time of its key.

2. Ensure that all keys that are to be used in support of assembling a
block will be released immediately that block is agreed. When it is
agreed the formation can be checked. Ensure that any node performs
this check on the block formation before using its data.

3. Use a non-temporally bound method of hash-based signature such as
Lamport signatures for signing messages in this phase. The keys re-
quired for this can be signed by temporal signature provided this is
validated before the block in which it is required.

This topic is one for further research. Certainly our new type of signa-
ture should be extremely helpful in creating a variety of quantum-resistant
blockchains.

12



9 Conclusions

The mechanisms we have provided here give conclusive proof that the claimed
party has signed some data, on the following assumptions

• The blockchain or bulletin board provides a trustworthy service. Stan-
dard signature mechanisms do not require a TTP, though of course
PKIs do.

• The key structures that have been bootstrapped at time 0 are accurate.
Note that the possibility of a TKI means that we do not have to deal
with all identities at time 0.

• If it is not to be compromised, a node must obey the rules on when
and when not to release things, and the system or blockchain must
give reliable information on this.

• The hash function has strong collision freeness, to a high degree of
confidence.

• Nodes adequately refresh their own keys or use a TKI to do so.

We have shown how a TKI, the analogue of a PKI, works. Signing and
signature checking are now very easy, particularly if the provenance of keys
is checked as time progresses. We have shown that there are potentially
issues where this form of signature is used as part of the mechanism use in
building blocks in the blockchain.

To support this we have created a version of zero-knowledge proof that
can establish the relationship between an agent Alice and the key that a CA
signs for her.

It is fascinating that a completely different model of signature exists
which as far as we aware is new but so simple. We look forward to seeing
what effect this discovery has on practice.

Acknowledgements

This work has been improved by discussions with Cas Cremers, Bangdao
Chen, Wang Lei and Peter Ryan.

13


