
University of Oxford

Representing Graph-based

Structures with Logic

by

Despoina Magka

Lincoln College

under joint supervision by Prof. Ian Horrocks and Dr. Boris Motik

Oxford University Computing Laboratory

November 2010

Contents

1 Introduction 1

1.1 General Background and Problem Statement 1
1.2 Structure of the Report . 2

2 Problem Description and Motivation 3

2.1 The Cycle Modeling Problem 3
2.2 Modeling Cycles in Various Domains 6

2.2.1 Scienti�c work�ows . 6
2.2.2 Engineering . 6
2.2.3 Event recognition . 7
2.2.4 Law . 8
2.2.5 Chemistry . 9

2.3 Key Requirements of the Solution 10

3 KR Formalisms Surveyed 11

3.1 Monotonic Languages . 11
3.1.1 First-order Logic . 11
3.1.2 Common Logic (CL) 12
3.1.3 HiLog . 12
3.1.4 Description Logics (DL) 13
3.1.5 DL-Safe rules . 16
3.1.6 Description Graphs (DG) 17

3.2 Non-monotonic Languages . 18
3.2.1 Logic Programming (LP) 19
3.2.2 Datalog . 20

3.3 Hybrid Approaches . 21
3.3.1 Knowledge Interchange Format (KIF) 22
3.3.2 F-Logic . 22
3.3.3 Minimal Knowledge Negation Failure (MKNF) 23

3.4 Query Languages . 23
3.4.1 EQL-Lite . 23
3.4.2 nRQL Queries . 24

ii

4 Preliminary Research 25

4.1 Two Essential Requirements 25
4.1.1 Concept recognition 25
4.1.2 Graph composition . 26

4.2 Graph Notation . 27
4.2.1 De�nition . 27
4.2.2 Examples . 28

4.3 Graph Logic . 29
4.3.1 Syntax . 30
4.3.2 Semantics . 31
4.3.3 Examples . 33

4.4 Linking Graph Notation and Graph Logic 38

5 Completed and Future Work 39

5.1 Research So Far . 39
5.2 Future Plan . 39
5.3 Time schedule . 41

iii

Chapter 1

Introduction

1.1 General Background and Problem Statement

Knowledge representation and reasoning is a branch of Arti�cial Intelligence
that studies ways to encode knowledge so that inference of new knowledge
is done in an automatic and e�cient way. In order to achieve this goal,
a knowledge representation language and a reasoning procedure need to be
designed; the purpose of the reasoning procedure is to manipulate and derive
new knowledge from the existing �represented by the language� knowledge.
Unfortunately, the more expressive is a language, the less e�cient is the
associated reasoning algorithm. Very expressive representation languages
usually have high (e.g. exponential) complexity reasoning algorithms or fail
to have a reasoning procedure because the reasoning problem for them is
not decidable. As a consequence, the trade-o� between the expressivity of
the representation language and the computational cost or existence of the
corresponding algorithm is one of the main objects of research.

Complex objects with tree-shaped structure can be described using a
variety of knowledge representation formalisms. For instance, Description
Logics is a family of logic-based languages with highly optimised reasoning
algorithms, that can successfully represent tree-like structures. The tree-
model property of description logics, which accounts for their decidability,
ensures that the structure of the objects that description logics represent is
interpreted by at least one cycle-free model. As a consequence, Description
Logics are not able to precisely describe cyclic structures. Nevertheless, there
are numerous cases where objects with complex structure that involves cycles
(such as chemical molecules that contain atom rings) need to be encoded.
Therefore, formalisms that represent and reason about cyclic structures need
to be investigated.

Since arbitrarily complex objects with cycles can be abstracted using
graphs, it is reasonable to assume that a graph-based knowledge represen-
tation formalism is a suitable approach. In order to address the problem

1

Chapter 1. Introduction

of modeling non-tree structures, we need, initially, to outline the required
features of an appropriate solution. Subsequently, we have to investigate
existing knowledge representation formalisms and analyse their suitability
to the problem according to the requirements. Unless a satisfactory solution
is found, a knowledge representation language and an e�cient proof proce-
dure need to be designed in accordance to the speci�ed requirements. The
development of a suitable graph-based language with a reasoning algorithm
as well as the implementation and evaluation of a prototype system based
on the language are the main goals of our project.

1.2 Structure of the Report

The current report is structured as follows:

• Chapter 1 provides general background and a high-level description of
the problem which we are interested in.

• In Chapter 2, we describe in detail the problem that concerns us by
using an example taken from the human anatomy domain. Next, we
discuss problems analogous to the initially presented one; at the end
of the chapter we summarise the requirements of an adequate to the
problem solution.

• In Chapter 3, we explore a number of knowledge representation for-
malism and identify which are these features that make them an inap-
propriate to our problem solution.

• In Chapter 4, we explain in more detail two of the key requirements
that our solution should conform to; subsequently, we present a high-
level language that can be used to represent objects with arbitrarily
complex structure. Next, we present the syntax and semantics of a
logic-based language that can be used to describe the same objects
and discuss the purposes of each language and the relation between
them.

• Chapter 5 concludes the report with an account of the completed tasks
as well as of the work that we plan to undertake in the future; �nally,
it provides a time schedule that includes past and planned activities.

2

Chapter 2

Problem Description and

Motivation

We begin the core part of our document with a detailed description of the
cycle modeling problem, which is the problem we are interested in. The prob-
lem is presented by means of a motivating example, inspired by the human
anatomy domain. Subsequently, we refer to a number of problems analogous
to the initially presented one. The problems are taken from various and
diverse knowledge domains, which shows that the cycle modeling problem
is frequently encountered and, thus, of signi�cant importance. At the end
of the chapter, we sum up the essential features of what would constitute a
solution to the cycle modeling problem.

2.1 The Cycle Modeling Problem

The problem we are concerned with is how to represent cyclic structures and
reason about them. In particular, we are interested in designing a logic-based
formalism and an inference algorithm which allow the user to (i) encode the
(possibly cyclic) structure of a complex object and its properties and (ii) use
the reasoning algorithm to derive logical inferences based on the structure
of the object and its properties.

Logic-based languages use axioms in order to encode information; they
also use models in order to interpret the meaning of the axioms. A model
satis�es an axiom when it successfully interprets its meaning. In order to
derive an inference from a set of axioms, every model that satis�es the set
of axioms should also satisfy the inference. As a consequence, the inferences
that a reasoning algorithm derives from a set of axioms, depend on the
precision of the models that satisfy the axioms. In our setting, in order to
derive inferences which depend on the cyclic structure of the objects, we
need to ensure that the de�ned models faithfully represent the cycles.

We describe the cycle modeling problem in more detail with the help of

3

Chapter 2. Problem Description and Motivation

Heart

hasComponent hasComponent

LeftSideOfHeart

hasDivision hasDivision

LeftVentricle

InterVentricularSeptum

hasLayer hasLayer

RightVentricle

RightSideOfHeart

Figure 2.1: Structure of part of the heart

an example taken from the life sciences domain. Assume that we want to
encode the structure of (part of) the human heart, which is depicted in Figure
2.1. The human heart has the left and the right side components, which
contain the left and the right ventricle, respectively. The two ventricles are
separated by a layer, the interventricular septum. The user needs a language
that allows him or her to encode the human heart structure with a set of
axioms. The models that satisfy these axioms should be consistent with the
following facts:

(i) The heart has two components: the left side and the right side.

(ii) The left (right) side has a division which is the left (right) ventricle.

(iii) The left (right) ventricle has a layer which is the interventricular sep-
tum.

(iv) The interventricular septum is the same for both the left and the right
ventricle.

Moreover, the user might want to specify additional information for the
human heart. The language should enable him or her to add axioms, such
as the following:

Axiom 1 The left side of the heart has a division with a perforated septum.

Axiom 2 If something has a division with a perforated septum, then it has
VSD (ventricular septum defect).

Given the above information, the reasoning algorithm should be able to
derive the following two inferences:

4

Chapter 2. Problem Description and Motivation

(a) The left side of the heart has VSD.

(b) The right side of the heart has VSD (since the right ventricle also has
a perforated septum).

Heart

hasComponent hasComponent

LeftSideOfHeart

hasDivision hasDivision

LeftVentricle

InterVentricularSeptum (1)

hasLayer hasLayer

RightVentricle

RightSideOfHeart

InterVentricularSeptum (2)

Figure 2.2: Model that satis�es (i)�(iv)

We now discuss why it is important that the models accurately represent
the cyclic structure of the heart. If the language allows only for tree-shaped
models (such as e.g. description logics), then the models will be consistent
only with facts (i)-(iii); in this case, models such as the one depicted in
Figure 2.2 are allowed and inference (b) is not derived because there exists
at least one model where there are two di�erent septa and only the left one
is perforated. On the contrary, if all the models of the language specify that
the septum is common to the two sides (fact (iv)), then both (a) and (b)
are inferred.

The aforementioned example shows that the models of a language �which
are determined by its semantics� in�uence the inferences that the proof pro-
cedure of the language derives. In other words, if the models which do not
precisely describe the modeled structure are not excluded, then inferences
that are expected to be derived are lost.

The cycle modeling problem can be summed up as the investigation of
a formalism with suitable syntax, semantics and reasoning algorithm, such
that reasoning tasks similar to the one previously described can be executed.
Note that reasoning tasks of this type refer to the structure of the object
described (e.g. components of the heart) and not to speci�c instances of
this structure (e.g. the heart of a speci�c person). Therefore, this is a case
of schema-level reasoning, where the derivation of new axioms concerns the
generic structure (schema) of the object and not instantiations of the object.

5

Chapter 2. Problem Description and Motivation

2.2 Modeling Cycles in Various Domains

Ontology engineers frequently need to model knowledge domains that involve
cycles. There is a variety of di�erent areas with concrete use cases similar
to the ones described in Section 2.1. We already analysed a life sciences
example in detail. Next, we present a few more practical cases of the same
nature, encountered in �elds such as engineering, law, chemistry and so on.

2.2.1 Scienti�c work�ows

SimpleBiologyWF

hasPart hasPart

RemRedDNA BLAST
hasDirectSuccessor

Figure 2.3: Work�ow that contains loops

Scienti�c work�ows are directed graphs that describe scienti�c experiments.
The nodes correspond to processes, which form part of the experiments, and
the edges indicate the time sequence between the processes. Work�ows are
di�cult to build and, thus, it is important to be able to reuse them. De-
scription logics have been used to formally describe experimental work�ows
and, thus, to enable work�ow reuse [18]. Nevertheless, description logics are
not able to handle work�ows that contain loops, such as the one depicted
in Figure 2.3. Figure 2.3 shows a simple biological work�ow which consists
of two processes: in the �rst process the redundant DNA sequences are re-
moved (RemRedDNA) and in the second a sequence-comparing algorithm is
executed (BLAST). The problem is analogous to the one described in Sec-
tion 2.1 and, thus, a solution for the heart anatomy problem would apply to
work�ow modeling, too.

2.2.2 Engineering

Engineering is an area which, among other things, deals with the manip-
ulation of objects with a highly complicated structure. Various knowledge
representation techniques have been adopted by engineers to formally de-
scribe these objects.

Consider the problem of representing the design of a product and check-
ing whether a speci�c implementation complies with certain requirements
[19, 20]. The design is very probable to contain cycles, such as the vehicle
structure shown in Figure 2.4. SysML [13] is a formal graphical language

6

Chapter 2. Problem Description and Motivation

Vehicle

hasPart hasPart hasPart

Engine FuelSystem Frame
isConnectedTo isConnectedTo

Figure 2.4: Product design with cyclic structure

accept

visitor visit concrete-host

concrete-visitor c-visit

hasInputType hasInstanceMethod

hasSuperType methodOverrides

invokesMethod

hasAbstractMethod hasInputType

hasInstanceMethod

Figure 2.5: The Visitor design pattern

designed for systems engineering; however, SysML is not appropriate for this
case as it has no formal semantics. Another problem, encountered in soft-
ware engineering, is the recognition of design patterns from source code [2].
Some patterns have intricate non-tree structure, such as the Visitor design
pattern pattern which is depicted in Figure 2.5. Both problems are, due to
their cyclic structure, similar to the problem of Section 2.1

2.2.3 Event recognition

Event recognition deals with deriving events from facts, temporal relations
and event-de�ning rules [49]. It is quite usual for the antecedent facts to be
connected in a cycle-like pattern. One of these cases is depicted in Figure 2.6
and is taken from an event recognition application. Figure 2.6 shows when
the event of a stressful o�ce day is recognised. The problem is analogous to
the one presented in the beginning of the chapter and, thus, a solution to
the initially presented problem would apply here, too.

7

Chapter 2. Problem Description and Motivation

stressfulO�ceDay

inO�ce meetingBoss meetingCustomer

hasPart hasPart hasPart

during

during

rightAfter

Figure 2.6: Recognizing a stressful o�ce day

2.2.4 Law

Knowledge representation techniques have extensively been used in order to
manipulate legal texts. OWL DL ontologies play a central role in this e�ort
[23]. As a consequence, the limitations of OWL DL also restrict the variety
of law concepts that can be modeled.

Transaction is an important notion in law because it encodes the pattern
of exchange, which often characterizes the actions of people as e.g. it is
the case for a sales transaction or a contract [25, 24]. A transaction has
two participants: the �rst one provides an object which is received by the
second, whilst the second one provides in exchange another object which is
received by the �rst. A similar structure corresponds to the complementarity
of rights and duties. Figure 2.7 illustrates the diamond-shaped structure of
transaction. In order to successfully model the structure of the transaction,
the actor of the �rst transfer and the recipient of the second transfer should
be the same (similarly for the other agent). OWL DL fails to precisely
describe this identi�cation, which is similar to the one encountered in the
heart anatomy example.

Object1

Transfer1

Agent2

Agent1

Transfer2

Object2

actor recipient

recipient actor
object object

Figure 2.7: Structure of a transaction

8

Chapter 2. Problem Description and Motivation

Another case where OWL ontologies have been employed in the area of
law is the task of legal assessment [46]. The system described accepts as input
a set of norms and a case description and, after performing Description Logics
reasoning, replies whether the case of the input is allowed or prohibited. Van
de Ven et al. [46] present a worked-out example which is based on an ontology
that models university library regulations. The system described covers a
wide range of use cases. However, there are still situations that cannot be
described: if we want to model the case where a student checks out a book
belonging to a course he or she is enrolled in, the problem of identi�cation
prevents us from doing so. This is an instance of the cycle modeling problem
described in Section 2.1.

2.2.5 Chemistry

In the same sense that knowledge representation techniques have been used
to model the life sciences domain, they have also been used to describe
chemical information. Various OWL ontologies have been built for the rep-
resentation and classi�cation of chemical molecules [30, 22].

A key reasoning service that a KR system about chemical ontologies
needs to o�er is the recognition �and, thus, classi�cation� of molecules in
the basis of the functional groups they contain. A functional group that
a molecule contains is a set of speci�c atoms appropriately connected with
each other; functional groups are a powerful tool because they de�ne how
molecules interact with each other. As a consequence, it is crucial for a KR
language to be able to recognise functional groups. However, as Figure 2.8
suggests, functional groups may contain rings in their structure and since
OWL can concisely represent only cycle-free structures it is not a suitable
formalism [48]. Notably, the capability to describe rings seems to be the
only expressive feature not satis�ed by OWL 1.1 (OWL 2) in the list of
features required to classify compounds from functional groups. The problem
is similar to that of representing the cyclic structure of human heart.

ChEBI [9] is a database and ontology that describes chemical entities
of biological interest. ChEBI currently contains nearly 22,500 entities;1 it
is estimated that the number of entities which are considered �biologically
interesting� can reach 1,000,000. Given that the majority of entities is man-
ually inserted in the ontology at a rate of around 1,500 per person per year,
there is a lot of potential for the ontology to grow if processes become auto-
matic [26]. A key service that ChEBI should o�er is searching for chemical
structures. Furthermore, an essential requirement for searching is the ability
to represent and reason about circular structures. As a consequence, the de-
velopment of a logic language that can handle such structures is signi�cant
for the ChEBI ontology.

1http://www.ebi.ac.uk/chebi/statisticsForward.do

9

Chapter 2. Problem Description and Motivation

H

H

C

R

C

H

C

C

H

H

C

C

H

C H

Figure 2.8: The benzyl functional group.

2.3 Key Requirements of the Solution

In order to be able to resolve the problem described in Section 2.1, as well as
the similar problems of Section 2.2, we need to design a suitable graph-based
language, where complex structures are naturally represented by graphs. We
also need to ensure that the suggested formalism complies with the following
essential requirements:

• The language should admit a sound, complete and terminating proof
procedure, that is the main reasoning problem for the language (e.g.
satis�ability) should be decidable. Additionally, the decision procedure
should be e�cient enough, so that implementation is feasible.

• The language should allow for schema-level reasoning, that is for deriva-
tion of axioms that refer to the structure of the objects and not to
instances of their structure.

• The language should guarantee that concepts which are described by
(possibly cyclic) structures are recognised (e.g. the benzyl functional
group).

• Finally, it is a requisite for the language to permit the composition of
several graphs to a single graph (e.g. the circulatory system consists
of the heart, veins, arteries and so on). The language should ensure
that a graph described as a composition of smaller graphs is logically
equivalent with a graph described by the nodes and edges that the
smaller graphs consist of and by some additional edges.

10

Chapter 3

KR Formalisms Surveyed

In the current Chapter, we investigate a number of knowledge representa-
tion (KR) languages as a solution to the cycle modeling problems described
in Chapter 2. We provide a high-level description of the features of each
language and examine their suitability as a solution to the cycle modeling
problem. Section 3.1 discusses monotonic languages that employ the open-
world assumption, whereas Section 3.2 deals with non-monotonic formalisms.
Subsequently, Section 3.3 considers languages that combine monotonic and
non-monotonic characteristics and, �nally, Section 3.4 investigates query lan-
guages.

3.1 Monotonic Languages

A logic language is monotone, when, given a set of axioms A and the set
of derived axioms D(A), extending A to A′ (A ⊆ A′) results to the equally
many or more derived axioms D(A) ⊆ D(A′). In the current section, we
investigate several prominent examples of monotonic KR formalisms which
are relevant to the previously described problem. For every formalism, we
examine whether it is appropriate for the aforementioned problem and if not
we point out the drawbacks that cause it to be inappropriate.

3.1.1 First-order Logic

First-order logic [12] is one of the most well-known formal logic systems; it
is of great importance to the foundations of mathematics and has inspired
numerous KR formalisms. Syntactically, �rst-order logic allows for variables,
constants, predicates, functions as well as for formulas built using existential
and universal quanti�ers, conjunction, disjunction and negation. The seman-
tics of �rst-order logic is set-theoretic. The de�nition of a model requires the
de�nition of a non-empty set, the domain; constants, predicates and func-
tions are interpreted through an interpretation function, which also de�nes

11

Chapter 3. KR Formalisms Surveyed

satisfaction of �rst-order formulas. A domain combined with an interpre-
tation function form a model, which is an important structure as in many
cases it re�ects properties of the formulas it satis�es. In �rst-order logic,
quanti�ed variables range over terms and not over predicates or functions.

Proof procedures for �rst-order logic decide whether a set of �rst-order
formulas is satis�able �that is, whether a model that satis�es the formulas
exist. The two predominant proof procedures are tableau and resolution;
both are sound and complete. Given a set of formulas, tableaux algorithms
try to construct a model that satis�es them, while resolution algorithms
try to derive a contradiction, which implies that no model of the formulas
exist. The fact that in�nitely many terms can be constructed with the
use of function symbols is one of the reasons why tableau and resolution
algorithms are non-terminating. In fact, there exists an algorithm that given
a formula, outputs �yes� if the formula is valid, but �no� or does not give
an answer at all (in�nitely runs) if the formula is not valid. Given that
satis�ability can be reduced to validity, satis�ability of �rst-order formulas
is a semidecidable problem and, thus, �rst-order logic does not meet the
decidability requirement mentioned in Section 2.3. As a consequence, it is
not an appropriate formalism for the cycle modeling problem.

3.1.2 Common Logic (CL)

Common Logic (CL) de�nes a family of logic languages, whose purpose is
to act as a medium of transmitting logical content between computer-based
agents [27]. CL has an abstract signature-free syntax and allows for higher-
order constructions, such as expressions where quanti�ers range over rela-
tions or functions. Moreover, CL has a model theoretic �rst-order seman-
tics which is appropriately adapted according to the presence or absence of
higher-order expressions.

It is beyond the scope of CL to specify inference algorithms that check
consistency of or derive new CL expressions. Consequently, CL is not a
suitable solution for problems, such as modeling the anatomy of the human
heart.

3.1.3 HiLog

HiLog is a logical formalism that syntactically subsumes �rst-order logic and
allows for higher-order logic expressions [8]. The syntax of HiLog permits
the use of a symbol as a constant, function or predicate symbol with non-
�xed arity in the same expression. E.g. in p(a, b) ∧ q(p(a), b)→ q(p, a, b),
the symbol p is used as a binary predicate, an one-argument function and a
constant, while q is used as both a binary and ternary predicate. In spite of
that, the semantics of HiLog is not the same as the semantics of second-order
logic; in HiLog semantics two predicates are equal only when their symbols

12

Chapter 3. KR Formalisms Surveyed

are explicitly made equal (e.g. p = q), whereas in second-order semantics
two predicates are equal if they are interpreted by the same set of object
tuples.

HiLog admits a sound and complete proof procedure. It is proved that all
formulae produced by the HiLog syntax have an equisatis�able translation
to �rst-order logic. However, not all �rst-order formulae which are satis�able
under �rst-order semantics are necessarily satis�able under HiLog semantics.
Nonetheless, the equality-free �rst-order formulae enjoy the property of being
valid under �rst-order semantics i� they are valid under HiLog semantics.

The higher order expressivity of HiLog enables HiLog to address the
representational aspects of the cycle modeling problem. In particular, in
Section 4.3 we present a HiLog-style language which satis�es the concept
recognition and graph composition requirements. Similarly to �rst-order
logic, the validity problem for HiLog expressions is not decidable. As a
consequence, HiLog is not an appropriate solution for the discussed cycle
modeling problem.

3.1.4 Description Logics (DL)

Description Logics [4, 5] (DL) are a family of logic-based languages used for
the formulation and manipulation of axioms that model knowledge domains.
The DL syntax de�nes axioms with the help of concepts, roles and individu-
als. Individuals are similar to constants�they are names for elements of the
domain. Concepts, like unary predicates, describe common characteristics
shared by a set of individuals. Roles, in the same way as binary predicates,
describe links between pairs of individuals. The expressivity of a Descrip-
tion Logic is determined by the constructors that are available in the logic,
such as conjunction, negation and existential (or universal) restrictions. DL
axioms are (usually) of two kinds: the TBox axioms, which form constraints
about concepts and roles, and the ABox axioms, where facts about individ-
uals are stated. DLs have a �rst-order logic semantics and, thus, employ the
open-world assumption.

DL languages have terminating, sound and complete inference algorithms;
for expressive logics the algorithms are of exponential complexity but behave
well in practice because they are highly optimised. Decidability of DLs is en-
sured by the tree model property, according to which, every set of satis�able
axioms has at least one tree-shaped model.

We now show how the tree-model property a�ects the ability of DLs to
precisely describe cyclic structures. Several biomedical DL ontologies have
been developed [44, 45], such as Galen1 and FMA.2 DL ontologies consist of
DL axioms, which can be used e.g. to model the anatomy of human organs

1http://www.opengalen.org/
2http://sig.biostr.washington.edu/projects/fm/index.html

13

Chapter 3. KR Formalisms Surveyed

[37], such as (a part of) the human heart (Figure 3.1) which was examined
in Section2.1.

Heart

hasComponent hasComponent

LeftSideOfHeart

hasDivision hasDivision

LeftVentricle

InterVentricularSeptum

hasLayer hasLayer

RightVentricle

RightSideOfHeart

Figure 3.1: Structure of part of the heart

The following DL axioms could be used to describe the structure of the
human heart:

Heart v ∃hasComponent.LeftSideOfHeart (3.1)

Heart v ∃hasComponent.RightSideOfHeart (3.2)

LeftSideOfHeart v ∃hasDivision.LeftV entricle (3.3)

RightSideOfHeart v ∃hasDivision.RightV entricle (3.4)

LeftV entricle v ∃hasLayer.IntraventricularSeptum (3.5)

RightV entricle v ∃hasLayer.IntraventricularSeptum (3.6)

If we view Figure 3.1 as a DL model (by mapping appropriately nodes to
objects, node labels to concept interpretations and edge labels to role inter-
pretations), we note that the model satis�es the axioms (3.1)�(3.6). However,
the model that corresponds to Figure 3.2, satis�es the axioms (3.1)�(3.6),
too. The second model is more general than the �rst one, as it represents the
least amount of information derivable from the DL axioms (e.g. existential
constraints). In the contrary, the �rst model requires the septum of left and

14

Chapter 3. KR Formalisms Surveyed

Heart

hasComponent hasComponent

LeftSideOfHeart

hasDivision hasDivision

LeftVentricle

InterVentricularSeptum (1)

hasLayer hasLayer

RightVentricle

RightSideOfHeart

InterVentricularSeptum (2)

Figure 3.2: Model that satis�es axioms (3.1)�(3.6)

right ventricle to be the same, which might be the intention of the modeller
but is not stated by the DL axioms. As we see next, the two models also
satisfy di�erent DL axioms. Let us assume that we add axioms (3.7) and
(3.8). Axiom (3.7) says that the left side of the heart has a division with
a perforated septum and Axiom (3.8) says that, if something has a division
with a perforated septum, then it has ventricular septum defect (VSD).

LeftSideOfHeart

v ∃hasDivision.∃hasLayer.PerforatedSeptum (3.7)

∃hasDivision.∃hasLayer.PerforatedSeptum
v hasV SD (3.8)

Suppose that I1 is the model corresponding to Figure 3.1, I2 the model
corresponding to Figure 3.2 and K includes axioms (3.7)�(3.8). Let A be
the axiom RightSideOfHeart v hasV SD. We have that if I1 |= K, then
I1 |= A, because there is only one septum, which causes the right side of the
heart to have VSD, too. Nevertheless, if I2 |= K, then I2 6|= A, because there
are now two di�erent septa in the model and only the left one is perforated.
As a consequence, K 6|= A, which is contrary to what we would expect: if the
left side of the heart has a division that has a perforated septum, then the
right side of the heart has a division with a perforated septum too (as the
septum is common to the two sides) and, thus, has VSD. DL axioms fail to
express that the two septa are the same, due to the tree-model property [47],
which requires at least one of the models satisfying the axioms (3.1)�(3.8)
to be tree-shaped.

15

Chapter 3. KR Formalisms Surveyed

One could use ABox axioms to specify the cyclic structure of the heart.
This is not an appropriate solution though. In this case we would de�ne an
instance of the heart �that is, one particular heart� instead of encoding the
structure of the heart and instantiating it, e.g. for each patient, separately.

As we saw, description logics can represent only cycle-free structures in
a su�ciently precise way; so, they are not a suitable solution for the cycle
modeling problem.

3.1.5 DL-Safe rules

DL-safe rules is a monotonic and decidable rule formalism that extends de-
scription logics. DL-safe rules can be used to describe arbitrary, and not
necessarily tree-shaped, structures. A hybrid language has been presented
that combines DL axioms and DL-safe rules in order to perform reasoning
over knowledge bases that contain both [41].

The syntactic form of a DL-safe rule is:

A1 ∨ . . . ∨Am ← B1 ∧ . . . ∧Bn
where A1, . . . , Am, B1, . . . , Bn are atoms of the form P (s1, . . . , sk) (P is
a predicate and si are terms). A DL-atom is an atom P (s1, . . . , sk), where
P is a concept or a simple role that occurs in a DL axiom. The DL-safety
restriction requires every variable of the rule to occur in at least one non-DL-
atom in the body of the rule. DL-safety is dealt with by introducing a trivial
non-DL unary predicate, O(x), and add empty-bodied rules (facts) for all
known individuals of the knowledge base (e.g. O(a) for a). DL-safe rules are
interpreted under �rst-order semantics. A query-answering resolution-based
algorithm has been developed for knowledge bases with DL SHIQ axioms
and DL-safe rules that runs in deterministic exponential time.

In order to secure decidability for description logics and function-free
rules di�erent restrictions need to be imposed in each of the two cases;
as a consequence if we want to have a knowledge base that combines de-
scription logics axioms and function-free rules we should impose appropriate
restrictions that guarantee decidability for both formalisms. In the case
of description logics, decidability is ensured by restricting our attention to
tree-like �nite models; in the other case, rules are grounded in all possible
ways with the constants of the knowledge base and propositional reasoning is
performed, which is decidable. The grounding accounts for the DL-safety re-
striction, which limits the reasoning to the known objects. Consequently, no
inferences are derived for unknown or implied by existential quanti�ers ob-
jects and the conceptual reasoning requirement is not met. We demonstrate
this limitation by means of an example. Assume that we have a knowledge
base that contains the DL-axiom (3.9) and the DL-safe rule (3.10):

NieceWithAunt v Female u ∃hasParent.∃hasSister.> (3.9)

16

Chapter 3. KR Formalisms Surveyed

hasAunt(x, y)←hasParent(x, z) ∧ hasSister(z, y)
∧O(x) ∧O(y) ∧O(z)

(3.10)

Assume also that the ABox contains the following assertions:

Niece(claire), hasParent(claire, bob), hasSister(bob, alice)
O(claire), O(bob), O(alice)

The DL-safe rule manages to encode the cyclic structure which underlies
auntness and, thus, derives hasAunt(claire, alice). Nevertheless, due to the
predicates O(x), O(y) and O(z) the rule is applicable only to the named
individuals (claire, bob, alice) and not to the ones implied by existential re-
strictions. Therefore, inspite of the fact that every niece with an aunt n has a
parent p with a female sibling s, the axiom NieceWithAunt v ∃hasAunt.>
is not derived. As a consequence, DL-safe rules do not support schema-level
reasoning and, thus, do not match the requirements of our problem.

3.1.6 Description Graphs (DG)

Description graphs (DG) are knowledge modeling constructs, which in com-
bination with description logics and rules can provide a faithful schema-
level description of structured objects, whose components are arbitrarily
connected [35, 34, 33, 38, 36]. Additionally, when suitable syntactic restric-
tions are applied to the logic, the reasoning problems for description graphs
become decidable.

Description graphs are directed graphs, whose nodes are labeled by unary
predicates (concepts) and edges by binary predicates (roles). The knowledge
bases that contain description graphs, may also contain description logic
axioms and rules, i.e. function-free implications. The interactions between
DGs, DL axioms and rules causes the satis�ability problem to be very easily
undecidable. In order to regain decidability, syntactic restrictions are im-
posed; for instance, the roles used in the rules and description graphs are
di�erent from the roles used in the description logic axioms. Additionally,
an acyclicity condition for the graphs is required in order to ensure that ev-
ery complex object, which is modeled by a DG, is described up to a certain
degree of granularity; the acyclicity condition prevents the language from
encoding in�nite hierarchical structures with graphs. Moreover, it is proved
that for a knowledge base that contains DGs, DL axioms and rules, when the
DL used is SHIQ+ or SHOQ+ and the appropriate syntactic restrictions
apply, the satis�ability problem is NEXPTIME-complete. In addition to
that, a prototypical implementation of the formalism reveals that it behaves
well in practice, as there is no signi�cant deviation of the classi�cation time
for OWL ontologies; furthermore, domain experts state that the models con-
structed for the description graphs formalism correspond better to intuition
than models that satisfy DL axioms.

17

Chapter 3. KR Formalisms Surveyed

H O H

Figure 3.3: Molecule of water.

The formalism described manages to address the lost inference prob-
lem of the human heart example: the expected axioms are now entailed
as all the non-intended models that have a tree-like structure are excluded.
Nevertheless, the description graphs formalism does not satisfy the concept
recognition requirement outlined at the end of Chapter 2. For instance, as-
sume that the water molecule which is depicted in Figure 3.3 is encoded
by a description graph. Assume also that the ABox contains the following
assertions:

hasAtom(m, o) Oxygen(o)
hasAtom(m,h1) Hydrogen(h1) bond(o, h1)
hasAtom(m,h2) Hydrogen(h2) bond(o, h2)

Unless a rule of the form:

Hydrogen(x1) ∧Hydrogen(x2) ∧Oxygen(x3) ∧ bond(x3, x1)

∧ bond(x3, x2) ∧
∧

1≤i≤3

hasAtom(x3, xi)→Water(x3) (3.11)

is added to the knowledge base m is not recognised as a water molecule and
Water(m) is not inferred. Moreover, if rule (3.11) is included to the knowl-
edge base and the assertions hasAtom(m,h3),Hydrogen(h3) and bond(o, h3)
are added (where h3 6≈ h1, h3 6≈ h2), then Water(m) is still derived, which
should not happen sincem has now additional structure. The example shows
why the description graphs formalism fails to meet the concept recognition
requirement; as a consequence it is an inappropriate for our setting solution.

3.2 Non-monotonic Languages

For monotonic languages adding new information to some existing knowledge
never cancels any of the conclusions already drawn. Nevertheless, this is not
usually the case for real world scenarios, where the add of new facts might
cause some of the derived facts to become false. As a consequence, various
non-monotonic KR formalisms have been developed. In order to investigate
whether non-monotonic formalisms are useful for our case, we explore two of
them: logic programming and datalog. We give a brief overview of the fea-
tures of the languages and investigate their suitability for the cycle modeling
problem.

18

Chapter 3. KR Formalisms Surveyed

3.2.1 Logic Programming (LP)

Logic programming (LP) emerged as a new declarative programming lan-
guage with a syntax that strongly resembles �rst-order logic. Unlike �rst-
order logic, LP is a non-monotonic language and, thus, can be used to faith-
fully represent facts of non-monotonic worlds.

We discuss the most well-known LP formalisms; we begin with the sim-
plest and move on to the more complicated ones. We adopt the same logic
programs naming as Baral and Gelfond do [6] and use some standard �rst-
order logic terminology. A General Logic program P is a set of rules of the
form:

A0 ← A1 ∧ . . . ∧Am ∧ not Am+1 ∧ . . . ∧ not An (3.12)

where Ai, 0 ≤ i ≤ n, are atoms of the form p(t1, . . . , tk), p is a predicate
of arity n and t1, . . . , tk are terms. We call the part on the right of the
arrow the body of the rule and the part on the left the head of the rule.
The connective not, which is used in (3.12), is a form of negation which
is known as negation-as-failure and is di�erent from the negation (¬) of
�rst-order logic. Intuitively, not is used to state that a fact is false, when
the fact is not entailed (failed to be derived) by the program. Formally,
the use of not is de�ned by the stable model semantics [15, 3], which are
the semantics of the general logic programs. The stable model of a logic
program P speci�es which are the correct answers to queries over P . The
intuition behind stable models of a logic program is to identify a set of facts
that a rational agent assumes that hold. For the simpli�ed case where Ai,
0 ≤ i ≤ n, are propositional variables, a stable model of a logic program P
is the minimal w.r.t set inclusion model M of PM , where PM is P after
substituting every Ai, m+ 1 ≤ i ≤ n, with its value in M . A logic program
can have one, many or none stable models. For instance the logic program
that consists of the clauses s ← p, p and notq has one stable model ({p :
True, s : True, q : False}), the program with p ← notq and q ← notp has
two ({p : True, q : False} and {q : True, p : False}) and the program with
p ← notp has none. The decision problem for general logic programs under
stable model semantics is coNP-complete [32].

An important property of logic programs, which is related to its compu-
tational properties, is whether they are strati�ed or not. A logic program P
with rules of the form (3.12) is strati�ed if there is a function s : Pr → N,
where Pr is the set of predicate symbols of P , such that for each rule (i)
s(A0) ≥ s(Ai), for i = 1, . . . ,m and (ii) s(A0) > s(Ai), for i = m+ 1, . . . , n.
Strati�ed programs have a unique (stable) model. The complexity of evalu-
ating queries over strati�ed programs is lower than over non-strati�ed pro-
grams.

An extended logic program P is a set of rules of the form:

L0 ← L1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln (3.13)

19

Chapter 3. KR Formalisms Surveyed

where Li, 0 ≤ i ≤ n, are of the form p(t1, . . . , tk) or ¬p(t1, . . . , tk). Extended
logic programs may contain two forms of negation: (i) negation-as-failure
(denoted by not) which is the same as for general logic programs and (ii)
strong negation (denoted by ¬), where ¬A holds when it is entailed by the
program. The satis�ability of extended logic programs is de�ned through
answer set semantics, which appropriately extend stable model semantics[14].
The existence of two kinds of negation enables an extended logic program
to adopt for each predicate q the closed world assumption by including a
rule of the form ¬q ← not q; if no rule is added the open-world assumption
is adopted by default. As a consequence, an extended logic program can
choose between the closed and the open world assumption for each predicate,
depending on whether it has complete or incomplete information about it,
respectively [31].

Logic programming with answer set semantics is known as Answer Set
Programming (ASP) and, among other things, is particularly e�cient in
solving NP-hard search problems [11]. In order to solve a search problem,
the problem is initially encoded with program clauses. Subsequently, the
program is grounded, that is the variables are replaced by the constants of
the program, in all possible ways. Next, the search process is reduced to
�nding the stable models of the program. Finally, the constraints of the
program (which are clauses with empty heads) further restrict the set of
models and the solution is the remaining stable models.

Logic programs can be further extended by allowing a disjunction of
literals in the head of the rule. A disjunctive logic program P is a set of
rules of the form:

L0 ∨ . . . ∨ Lk ← Lk+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln

where Li, 0 ≤ i ≤ n, are literals de�ned as before. A new semantics of
disjunctive logic programs has been de�ned that also takes into account the
disjunction. The decision problem for disjunctive logic programs under total
disjunctive stable model semantics is ΠP

2 -complete (co−NPNPP
-complete)

[43].
As far as our problem is concerned (Section 2.1), Logic Programming is

not a suitable formalism, because, due to the grounding phase, it performs
reasoning only over constants �that is, known objects of the knowledge base�
which is not su�cient for schema-level reasoning.

3.2.2 Datalog

Datalog is a rule language, which is strongly in�uenced by logic program-
ming, but designed to be used in deductive databases applications [1]. In this
context, the predicates correspond to relation names, the rules with empty
body to database facts and the constants to data that populate the database.

20

Chapter 3. KR Formalisms Surveyed

In its simplest form, the syntax of datalog is a function-free version of
general logic programs syntax (3.12) without negation (n = m) and where
all variables of A0 occur in some Ai, 1 ≤ i ≤ m. Various semantics have
been suggested for this version of datalog, such as model-theoretic semantics
(minimal model w.r.t. set inclusion), �xpoint semantics (use of �xpoint op-
erator) or proof-theoretic semantics (involve SLD resolution). The decision
problem for this case is EXPTIME-complete w.r.t. program complexity.

If we allow for negation in the body of the rule (that is n > m) and in the
body or the head of the rule, datalog is extended to datalog¬ and datalog¬¬,
respectively. Datalog¬ and datalog¬¬ are interpreted under strati�ed and
well-founded semantics correspondingly. The decision problem for the strat-
i�ed semantics is EXPTIME-complete w.r.t program complexity.

If the head of the rule is permitted to contain a disjunction of atoms, the
language is called disjunctive datalog. Several semantics have been proposed
for disjunctive datalog, such as perfect model semantics and appropriately
extended versions of minimal model and stable model semantics. The de-
cision problem for this case is proved to be NEXPTIMENP-complete [10],
w.r.t. program complexity.

Various other versions of datalog have been suggested, which are less or
more expressive than the ones described above. A wide range of optimiza-
tions has also been investigated for datalog reasoning algorithms.

Although the datalog is substantially based on logic programming, there
exist some di�erences between the two formalisms. Unlike LP, datalog does
not allow function symbols and requires all the variables of the head to
appear in the body of the rule. Due to the absence of functions, datalog
programs always have �nite models as opposed to LP models that may be
in�nite. Moreover, in datalog programs �and not in LP�- variables that
occur in the head of the rule have to occur in the body of the rule. As a
consequence reasoning is restricted only to explicitly named objects of the
knowledge base and has the same limitations as for the case of DL-safe rules.
As a consequence, datalog does not satisfy the schema reasoning requirement
outlined at the end of Chapter 2 and cannot be used to satisfyingly solve the
cycle modeling problem.

3.3 Hybrid Approaches

Subsequently, we present some KR formalisms which combine both mono-
tonic and non-monotonic features. Similarly to Sections 3.1 and 3.2, we
overview the features of the language and examine whether the language
suits the problem discussed in Chapter 2.

21

Chapter 3. KR Formalisms Surveyed

3.3.1 Knowledge Interchange Format (KIF)

Knowledge Interchange Format (KIF) was created to facilitate the inter-
change of knowledge between computer systems that do not share a common
language [16]. KIF was developed as part of the DARPA Knowledge Shar-
ing E�ort project, whose objective was to design a computer interlingua for
communication and, thus, knowledge sharing.

KIF is equipped with a wide range of expressive features; all expressions
that are syntactically conformant to �rst-order logic can be encoded using
KIF. Additionally, KIF allows for quanti�cation over logical expressions,
functions and relations. It is also acceptable in KIF to use the same name
for individuals, functions or relations of di�erent arity. In addition to that, it
o�ers support for numbers, non-monotonic rules and the modeling of beliefs.

Since all FOL expressions can be encoded in KIF and, as we already
discussed, FOL is a semidecidable formalism, it is not possible to suggest
a terminating reasoning algorithm for KIF. The lack of reasoning services
makes KIF an inappropriate solution for the cycle modeling problem.

3.3.2 F-Logic

F-Logic was devised with the objective of providing a theoretically robust
framework for object-oriented databases [29]. F-Logic semantics is de�ned
in such a way that basic object-oriented notions are incorporated in the lan-
guage, such as inheritance, typing, methods, encapsulation and description
of complex objects. Additionally, it is capable of representing higher-order
concepts but without adopting higher-order semantics: this means that vari-
ables do not range over domains of relations or domains of functions but
they range over �special� objects of the domains (intensions), which have
relations and functions attached to them.

As far as reasoning is concerned, the monotonic part of the language has
a sound and complete proof procedure and it, also, has a direct translation
to �rst-order logic [28]. There is also a non-monotonic part of the language
which admits a sound, albeit an incomplete, reasoning algorithm. F-Logic
can be used to adequately de�ne, query and manipulate database schemas.
Apart from that, it �nds applications in the area of Arti�cial Intelligence and
speci�cally in frame-based languages, from which it also derives its name.

F-Logic is generally undecidable. The syntax of an implemented (and,
thus, decidable) version of F-Logic [42] requires that every variable in the
head of the rule must also occur in a positive atom in the body of the rule.
This restriction prevents us from reasoning about unknown objects, as we
cannot e.g. express the fact that every patient has an (unknown) heart. As
a consequence, F-Logic is not an appropriate formalism for the considered
problem.

22

Chapter 3. KR Formalisms Surveyed

3.3.3 Minimal Knowledge Negation Failure (MKNF)

Logic programming has been combined with description logics to a hy-
brid logic, Minimal Knowledge Negation Failure (MKNF) [39], which is
a function-free language that inherits characteristics from both languages.
Description Logics adopt the open-world assumption: a fact which is not
explicitly negated in the knowledge base is not considered to be false. The
objective of MKNF is to create a logic that handles cases where both, closed-
world querying and modeling with description logics, are required. In order
to address this problem, MKNF seamlessly integrates open and closed world
reasoning in a single language. Additionally, MKNF has a computational ad-
vantage, as the data complexity of MKNF does not exceed the corresponding
complexity of logic programming used separately [40]. Nevertheless, it can-
not be used to satisfyingly solve the cycle modeling problem, as MKNF uses
rules that are applicable only to named objects of the ontology and not to
unknown objects, e.g. objects implied by an existential quanti�er.

3.4 Query Languages

In the current section, we examine two query languages and their appropri-
ateness for the cycle modeling problem. The reason for focusing on query
languages is that one of them (nRQL) has been used to tackle one of the
problems presented in Chapter 2 [49].

3.4.1 EQL-Lite

EQL-Lite [7] is a query language for description logics which allows to for-
mulate �rst-order logic queries over DL knowledge bases. Unlike databases,
query answering with �rst-order logic queries is a di�cult task due to in-
complete information, which is a consequence of the open-world assumption
adopted by description logics.

Calvanese et al. [7] suggest the use of a nonmonotonic epistemic FOL
query language, EQL-Lite, in order to address the FOL queries problem.
In particular, a query in EQL-Lite(Q) is a formula of �rst-order logic with
equality, where atoms are of the form Kρ and ρ is a query in language Q.
Intuitively, Kρ can be perceived as �it is known that ρ�. With the appro-
priate use of the modality operator K, queries can be evaluated under the
closed-world assumption. It is proved that an EQL-Lite(Q) query q over a
DL knowledge base Σ retrieves the same answers as when qFOL is evaluated
over ΣFOL, where qFOL and ΣFOL are appropriate FOL translations of q and
Σ. Moreover, EQL-Lite(Q) does not insert additional computational cost:
queries written in EQL-Lite(Q) can be evaluated with the same data com-
plexity as queries expressed in Q. As a consequence, EQL-Lite(Q) provides
a powerful mechanism for querying DL knowledge bases. Since EQL-Lite(Q)

23

Chapter 3. KR Formalisms Surveyed

is used to query DL knowledge bases and DLs are not suitable for the rep-
resentation of cyclic structures (Section 3.1.4), EQL-Lite(Q) cannot be used
to solve the problem presented in Chapter 2.

3.4.2 nRQL Queries

New Racer Query Language (nRQL) is a practical-oriented query language
designed as a response to the request by the users of DL reasoner RacerPro
[17] for more expressive queries[50, 21]. nRQL queries allow for negative
literals, negation-as-failure and formulas built by Boolean connectives, in
the body of the queries. The allowance of negation-as-failure makes nRQL
a non-monotonic DL query language. nRQL queries may refer to unnamed
ABox individuals and, thus, query evaluation is not limited to the set of
known objects.

Queries are di�erent from rules, in the sense that they are not part of the
knowledge base but they are asked to a knowledge base in order to retrieve
answers. However, nRQL allows for de�ned acyclic queries. For instance, let
us consider the following query:

MarriedMother(x)←Mother(x) ∧ hasSpouse(x, y) (3.14)

If the following query is de�ned in the knowledge base

Mother(x)←Woman(x) ∧ hasChild(x, y)

then the query (3.14) can be rewritten as:

MarriedMother(x)←Woman(x) ∧ hasChild(x, y) ∧ hasSpouse(x, z)

In spite of the de�ned queries feature, which is essentially a macro mech-
anism, nRQL is a query language and not a KR formalism for modeling
domains. As a consequence, it is not a language applicable to the problem
presented in Section 2.1.

24

Chapter 4

Preliminary Research

As we already saw, our goal is to �nd a KR formalism that resolves the
problems described in Chapter 2 and satis�es the outlined requirements. In
Chapter 3, we examined a number of formalisms and argued that they are
not suitable for the discussed problem. In the current chapter, we present a
formalism, which is work-in-progress and aims to address the aforementioned
problem. First, we explain the concept recognition and graph composition
problems in more detail; we use two examples involving chemical molecules
for this purpose. Subsequently, we present a high-level graphical notation,
which can be used to represent structured objects in a graph-theoretical
way. Later on, we present a logic-based language that represents the same
structures with the help of FOL-style formulas; we also show how the re-
quirements described in Section 4.1 are satis�ed by the presented formalism.
Finally, we discuss what purposes the graphical notation and the logic-based
language serve and what is the connection between them.

4.1 Two Essential Requirements

As we mentioned at the end of Chapter 2, one indispensable feature of the
formalism we are aiming at is the ability to recognise concepts when their
structure is encoded in the knowledge base; another necessary feature is
the possibility to compose graphs, which represent objects with arbitrary
complex structure. In the present section, we explain these two features using
an example taken from the chemistry domain. In speci�c, we use molecules,
which have the form of graphs because atoms correspond to vertices and
bonds between atoms to edges.

4.1.1 Concept recognition

Figure 4.1 depicts the molecular structure of methane: a carbon atom con-
nected through four bonds to four hydrogen atoms. As this is a typical ex-

25

Chapter 4. Preliminary Research

H

H C H

H

Figure 4.1: Molecule of methane.

ample of the kind of information we want to represent; the formalism should
be able to encode the structure of Figure 4.1. Assume that the knowledge
base contains this encoding; assume also that the knowledge base contains
that there exists a molecule m with four hydrogen atoms, one carbon atom
and four bonds between the carbon atom and the hydrogen atoms. The for-
malism should be designed in such a way that the knowledge base entails the
fact that m is methane. In other words, we want methane to be recognised,
when all the concept and role assertions that describe the methane structure
are in the knowledge base. Furthermore, we require the methane concept
to be recognised, only when the assertions correspond to methane and not
when they correspond to a molecule with additional structure. E.g. if it is
added to the knowledge base that the molecule m has one more hydrogen
atom connected through a bond with the carbon atom (�ve hydrogen atoms
in total), then the fact that m is methane should no longer be entailed.

4.1.2 Graph composition

Hydroxyl

Methyl

HO

H C H

H

Figure 4.2: Molecule of methanole.

Figure 4.2 shows the inner structure of the methanole molecule: it con-
sists of methyl (one carbon with three hydrogen atoms) and hydroxyl (oxygen
with hydrogen) connected with a bond between the carbon and the oxygen
atom. In a suitable formalism, we should be able to de�ne a graph structure
that encodes methanole not by referring to its atoms (hydrogen, carbon, oxy-
gen) but by referring to its compounds (methyl, hydroxyl) which are already

26

Chapter 4. Preliminary Research

encoded by a graph structure. That is, we need our language to permit
us to formally de�ne composition of graphs. Several complications should
be taken into account in the de�nition of an appropriate formalism, e.g. a
graph may contain several instances of the same graph, self-reference should
be avoided etc.

4.2 Graph Notation

We now present a notation which can be used to encode objects with graph
structure. The objects are described with the help of special graphs, which
are inductively de�ned graph structures. Special graphs can either be simply
graphs that consist of nodes and edges or graphs that use other special
graphs as its structural components. Given that one graph might use several
instances of the same graph as its components, we assign a di�erent name to
each graph instance so that we can distinguish between them. In the special
graph de�nition, the set GI is the set of the graph instances names. The
mapping µ from the set GI to the set of special graphs, is used to indicate
for each graph instance, the special graph which it is an instance of. We
call the notation graph notation; the purpose of graph notation is a language
aiming to represent graph structures without the need of logical formulas,
which are usually lengthy and illegible.

4.2.1 De�nition

Let NU and NB be two countable in�nite sets of unary and binary predicates.
The set of special graphs is the smallest set, such that:

• Induction base: (V,E, ∅, ∅, λ) is in the set of special graphs, where V
is a �nite set of natural numbers that denote vertices, E is a set of
edges, such that E ⊆ V × V and λ is a labeling function, such that
λ : V → P(NU \ ∅) and λ : E → P(NB \ ∅).

• Induction step: If Gi = (Vi, Ei, GIi, µi, λ), where 1 ≤ i ≤ n, are spe-
cial graphs, NGI is a countably in�nite set of graph instance names,
GI ⊆ NGI and µ : GI → {G1, . . . , Gn}, then G is in the set of special
graphs, where G = (VN ∪ VGI , EN ∪ EGI , GI, µ, λ) and:

� VN is a �nite set of natural numbers

� VGI =
⋃
Ĝ∈GI

{(Ĝ, v) | µ(Ĝ) = (V ′, E′, GI ′, µ′, λ′) ∧ v ∈ V ′}

� EN ⊆ (VN ∪ VGI)× (VN ∪ VGI)

27

Chapter 4. Preliminary Research

�

EGI =
⋃
Ĝ∈GI

{((Ĝ, v1), (Ĝ, v2)) |µ(Ĝ) = (V ′, E′, GI ′, µ′, λ′)

∧ (v1, v2) ∈ E′}

� λ : VN ∪ VGI → P(NU \ ∅) and λ : EN ∪ EGI → P(NB \ ∅).

4.2.2 Examples

Next, we use the graph notation to represent the molecules of methane and
methanole. The methane molecule simply consists of atoms and bonds,
whereas the methanole molecule comprises one methyl compound and one
hydroxyl compound connected with a bond between them.

• The methane molecule is depicted in Figure 4.1:

G = (V,E,GI, µ, λ)

V = {1, 2, 3, 4, 5}
E =

⋃
2≤i≤5{(1, i), (i, 1)}

GI = ∅
µ = ∅
λ(1) = Carbon

λ(i) = Hydrogen, 2 ≤ i ≤ 5

λ((1, i)) = λ((i, 1)) = Bond, 2 ≤ i ≤ 5

• The methanole molecule is depicted in Figure 4.2. First, we represent
the methyl and hydroxyl as special graphs and, then, the methanole
molecule as a special graph that uses a graph instance of methyl and
a graph instance of hydroxyl for its de�nition.

� Methyl

� Gmyl = (Vmyl, Emyl, ∅, ∅, λmyl)
Vmyl = {1, 2, 3, 4}
Emyl =

⋃
2≤i≤4{(1, i), (i, 1)}

λmyl(1) = Carbon

λmyl(i) = Hydrogen, 2 ≤ i ≤ 4
λmyl((1, i)) = λmyl((i, 1)) = Bond, 2 ≤ i ≤ 4

� Hydroxyl
Ghxl = (Vhxl, Ehxl, ∅, ∅, λhxl)
Vhxl = {1, 2}
Ehxl = {(1, 2), (2, 1)}

28

Chapter 4. Preliminary Research

λhxl(1) = Oxygen

λhxl(2) = Hydrogen

λhxl((1, 2)) = λhxl((2, 1)) = Bond

� Methanole
G = (V,E,GI, µ, λ)
V =

⋃
1≤i≤4,j=1,2{(GImyl, i), (GIhxl, j)}

E =
⋃

2≤i≤4{((GImyl, 1), (GImyl, i)), ((GImyl, i), (GImyl, 1))}∪
{((GIhxl, 1), (GIhxl, 2)), ((GIhxl, 2), (GIhxl, 1))}∪
{((GIhxl, 1), (GImyl, 1)), ((GImyl, 1), (GIhxl, 1))}
GI = {GImyl, GIhxl}
µ(GImyl) = Gmyl, µ(GIhxl) = Ghxl

λ((GImyl, 1)) = Carbon

λ((GImyl, 2)) = λ((GImyl, 3)) = λ((GImyl, 4)) = λ((GIhxl, 2)) =
Hydrogen

λ((GIhxl, 1)) = Oxygen

λ(((GIhxl, 1), (GIhxl, 2))) = λ(((GIhxl, 2), (GIhxl, 1))) =
λ(((GImyl, 1), (GImyl, j))) = λ(((GImyl, j), (GImyl, 1))) =
λ(((GImyl, 1), (GIhxl, 1))) = λ(((GIhxl, 1), (GImyl, 1)))
= Bond, 2 ≤ j ≤ 4

4.3 Graph Logic

We now present a language that allows us to encode graph structures with
the help of logical formulas. We call this language graph logic; its purpose
is to describe the same graph structures that graph notation is representing
but in a more low-level way, which is based on FOL.

The language has a FOL with equality syntax style, but it is function-
free and only unary and binary predicates are allowed. In order to rep-
resent a labeled graph using logical formulas, we need to encode both the
membership of nodes and edges to the graph, as well the labels that the
nodes and edges bear. We can use a binary predicate to express member-
ship of nodes to a graph (e.g. hasNode(graph, c), hasNode(graph, h)) and
unary (binary) predicates for the labels of nodes (edges) (e.g. Carbon(c),
Hydrogen(h), Bond(c, h)). Nevertheless, it is not clear how we can express
membership of an edge to a graph; we could use an expression of the form
hasEdge(graph, c, h) but our logic is limited to unary and binary predicates.
In order to overcome this di�culty, we decide to consider a graph as a set of
assertions about its nodes and edges and use a special predicate that indi-
cates when a graph contains an assertion. We call this predicate GC (from
graph contains); the expression GC(g, a), where g is a term and a is an as-
sertion intuitively means that g is a graph which contains the assertion a.

29

Chapter 4. Preliminary Research

An assertion is a unary (binary) predicate atom about a node (edge) of the
graph. GC encodes both the membership of a node (edge) to a graph, as well
the label of the node (edge). With the help of GC, the graph mentioned ear-
lier in the paragraph can be described by specifying the three assertions that
the graph contains, i.e. GC(graph,Carbon(c)), GC(graph,Hydrogen(h))
and GC(graph,Bond(c, h)).

Another expressive feature that our logic should be equipped with is the
ability to quantify over predicates and assertions; for instance we would like
to quantify over the assertions that the graph contains or check whether a
node belongs to a graph (e.g. equations (4.1) and (4.8) of Section 4.3.3).
Nevertheless, we prefer to avoid second-order semantic structures in which
variables range over domains of predicates and assertions constructed out of
the domain of individuals; as it is explained by Chen et al. [8] second-order
semantics is much more di�cult to handle. Instead, we want the variables to
range over names of predicates and names of assertions. To resolve this is-
sue, we adopt HiLog-style semantics and instead of having a single domain of
interpretation ∆I , we distinguish three di�erent sorts ∆C

I , ∆P
I , ∆A

I , the
elements of which interpret terms, predicates and assertions, respectively.
Additionally, we do not evaluate assertions by checking membership of ele-
ments to predicate interpretations; instead, we de�ne mappings of assertions
to members of ∆A

I and, subsequently, de�ne a subset of ∆A
I as the set

of �true� objects. A bene�t of having a multi-sorted domain is that when
we quantify e.g. over predicates we only consider members of ∆P

I and not
elements of the domain that intepret terms or assertions. Moreover, when
the special predicate GC is interpreted, we avoid considering terms contain-
ing terms or assertions containing assertions, but we only consider terms
(graphs) containing assertions, which is the only sensible combination that
should be considered for the GC predicate.

4.3.1 Syntax

A Graph-logic signature is a tuple L = (NU , NB, NC , {GC}), where NU , NB,
NC and {GC} are countable and pairwise disjoint sets. We use the abbrevia-
tion S(L) = NU ∪NB∪NC∪{GC}. NU and NB are the sets of unary and bi-
nary predicates respectively, NC is the set of constants and {GC} is a single-
ton set, where GC is the graph containment predicate. Let also NV be a non-
empty set of variables disjoint with S(L) such that NV = NVC

∪NVA
∪NVP

and NVC
∩NVA

= NVC
∩NVP

= NVA
∩NVP

= ∅.
A term of L (or simply a term) is either a variable v (v ∈ VNC

) or a
constant c (c ∈ VC). An assertion of L (or simply an assertion) is either
a variable v (v ∈ VNA

) or an expression of the form U(t), B(t, t′), P (t) or
P (t, t′) where U ∈ NU , B ∈ NB, t, t′ are terms and P ∈ VNP

. An atomic
formula of L (or simply an atomic formula) is either an assertion or an
expression of the form x ≈ y, where x and y are terms or assertions.

30

Chapter 4. Preliminary Research

The set of formulas of L is the smallest set meeting the following condi-
tions:

1. Any atomic formula of L is a formula of L.

2. If φ is a formula of L so is ¬φ.

3. If φ and ψ are formulas L so are φ ∧ ψ.

4. If t is a term of L and A is an assertion of L then GC(t, A) is a formula
of L.

5. If φ is a formula of L and x ∈ NVC
, then (∀Cx : φ) and (∃Cx : φ) are

formulas of L.

6. If φ is a formula of L and x ∈ NVA
, then (∀Ax : φ) and (∃Ax : φ) are

formulas of L.

7. If φ is a formula of L and x ∈ NVP
, then (∀Px : φ) and (∃Px : φ) are

formulas of L.

Lastly, a theory T of L is a set of formulas of L. We use the connectives
∨, 6≈, ←, → and↔ as an abbreviation. We also omit the indices of the exis-
tential and universal quanti�ers, when it is straightforward from the context
whether they quantify over constants, predicates or assertions. Addition-
ally, we abbreviate ∀x1 : ∀x2 : . . . ∀xn to ∀x1, x2, . . . , xn : (same for ∃) and
we write t1 6≈ t2 6≈ . . . 6≈ tn when the terms of a set {ti}1≤i≤n are mutually
unequal to each other.

4.3.2 Semantics

An interpretation for a Graph Logic signature L = (NU , NB, NC , {GC}) is
a tuple I = (∆I , ·I , fUI , fBI , GCI , TRUEI), where ∆I = ∆C

I ∪∆P
I ∪∆A

I

and ∆C
I ∩∆P

I = ∆P
I ∩∆A

I = ∆C
I ∩∆A

I = ∅. ∆C
I , ∆P

I , ∆A
I are non-

empty sets and are called domain of constants, predicates and assertions
respectively. The interpretation function assigns an element cI ∈ ∆C

I to
each constant c ∈ NC and an element P I ∈ ∆P

I to each (unary or binary)
predicate P ∈ NU ∪ NB. The functions fUI : ∆P

I × ∆C
I → ∆A

I and
fB

I : ∆P
I × ∆C

I × ∆C
I → ∆A

I return an element a ∈ ∆A
I for each

assertion of the form U(c) or B(c, c′) respectively, where U I , BI ∈ ∆P
I and

cI , c′I ∈ ∆C
I . We also have that GCI ⊆ ∆C

I ×∆A
I and TRUEI ⊆ ∆A

I .
Let also µC : NVC

→ ∆C
I , µP : NVP

→ ∆P
I and µA : NVA

→ ∆A
I be the

mappings that assign members of ∆I to each variable. We denote with µ all
the three mappings. If v ∈ NV , we say that the mapping µ′ is v-variant of
the mapping µ i� µ and µ′ assign the same elements of the domain to every
variable except possibly v.

Let t be a term. We de�ne:

31

Chapter 4. Preliminary Research

Table 4.1: Satisfaction of Formulas for Graph Logic
I, µ |= U(x) i� U(x)µ,I ∈ TRUEI
I, µ |= B(x, y) i� B(x, y)µ,I ∈ TRUEI
I, µ |= x ≈ y i� xµ,I = yµ,I

I, µ |= GC(t, A) i� (tµ,I , Aµ,I) ∈ GCI
I, µ |= ∀Cx : φ i� I, µ′ |= φ for every mapping µ′ which is an x-

variant of µ
I, µ |= ∃Cx : φ i� I, µ′ |= φ for some mapping µ′ which is an x-

variant of µ
I, µ |= ∀Px : φ i� I, µ′ |= φ for every mapping µ′ which is an x-

variant of µ
I, µ |= ∃Px : φ i� I, µ′ |= φ for some mapping µ′ which is an x-

variant of µ
I, µ |= ∀Ax : φ i� I, µ′ |= φ for every mapping µ′ which is an x-

variant of µ
I, µ |= ∃Ax : φ i� I, µ′ |= φ for some mapping µ′ which is an x-

variant of µ
I, µ |= ¬φ i� I, µ 6|= φ
I, µ |= φ ∧ ψ i� I, µ |= φ and I, µ |= ψ
I |= φ i� I, µ |= φ for all mappings µ
I |= T i� I |= φ for all φ ∈ T
T |= φ i� for all interpretations I, if I |= T , then I |= φ

• If t ∈ NC , then tµ,I = tI .

• If t ∈ NVC
, then tµ,I = µC(t).

Let A be an assertion. We de�ne:

• If A ∈ NVA
, then Aµ,I = µA(A).

• If A = U(x), U ∈ NU and x is a term, then U(x)µ,I = fU
I(U I , xµ,I).

• If A = B(x, y), B ∈ NB and x, y are terms, then we have that
B(x, y)µ,I = fB

I(BI , xµ,I , yµ,I).

• If A = P (x), P ∈ NVP
and x is a term, P (x)µ,I = fU

I(µP (P), xµ,I).

• If A = P (x, y), P ∈ NVP
and x, y are terms, then we have that

P (x, y)µ,I = fB
I(µP (P), xµ,I , yµ,I).

We de�ne satisfaction of formulas in an interpretation (and a mapping) in
Table 4.1.

32

Chapter 4. Preliminary Research

4.3.3 Examples

Subsequently, we use the graph logic to represent the methane and methanole
molecules, which where previously described with our graph notation.

Molecules with atoms and bonds

H

H C H

H

Figure 4.3: Molecule of methane.

Figure 4.3 depicts the molecule of methane: a carbon atom is connected
through four single bonds to four hydrogen atoms. Formula (4.1) describes
the methane structure as a graph which contains �ve atom assertions, four
bond assertions and for which the constants which serve as atoms are pair-
wise unequal. Formula (4.2) says that SingleBond is a symmetric binary
predicate.

∀x : Methane(x)↔ ∃c, h1, h2, h3, h4 : c 6≈ h1 6≈ h2 6≈ h3 6≈ h4 ∧

∀w : GC(x,w)↔
∨

i=1,...,4

(w ≈ Hydrogen(hi)) ∨ (w ≈ Carbon(c))

∨
∨

i=1,...,4

(w = Bond(c, hi))

(4.1)

∀x, y : Bond(x, y)↔ Bond(y, x) (4.2)

Formula (4.1) addresses the concept recognition problem: if m contains
the �ve atom and the four bond assertions the fact Methane(m) is true.
Note that if we add further structure to the methane molecule and consider
the assertions that correspond to the structure (e.g. Figure 4.4) the fact
Methane(m) is no longer true. The reason is that the right-hand side of
Formula (4.1) is no longer true. There exists an assertion a (e.g. a ≈
Hydrogen(h5)) such that GC(x, a) is true but a does not match any of the
right-hand side disjuncts (Hydrogen(h5) 6≈ Carbon(c) and for 1 ≤ i ≤ 4,
Hydrogen(h5) 6≈ Hydrogen(hi) and Hydrogen(h5) 6≈ SingleBond(c, hi)).

Similarly, if some of the existing structure of the molecule is removed
(e.g. Figure 4.5) the graph is not recognised as methane. Again, the double
implication is false, because there exists an assertion (e.g. Hydrogen(h4),

33

Chapter 4. Preliminary Research

Hh1

H

h2

C
c

H

h3

H

h4

H

h5

Figure 4.4: Methane molecule with more structure.

where h1 6≈ h2 6≈ h3 6≈ h4) that satis�es the disjunction (since the disjunct
Hydrogen(h4) ≈ Hydrogen(h4) is satis�ed) but which is not contained by
the graph (GC(x,Hydrogen(h4)) is false).

Hh1

H

h2

C

c

H

h3

Figure 4.5: Methane molecule with less structure.

Molecules with inner structure

The methanole molecule is illustrated by Figure 4.6: it consists of a hydroxyl
compound connected to a methyl compound through a bond which connects
hydroxyl's oxygen with methyl's carbon. Formula (4.3) describes methanole
as the disjoint union of two graphs (the graph that represents hydroxyl and
the graph that represents methyl) plus the single bond that links hydroxyl's
oxygen with methyl's carbon.

Hydroxyl

Methyl

HO

H C H

H

Figure 4.6: Molecule of methanole.

34

Chapter 4. Preliminary Research

∀x : Methanole(x)↔ ∃h,m : h 6≈ m ∧Hydroxyl(h) ∧
Methyl(m) ∧Disjoint(h,m) ∧

∀w : GC(x,w)↔ GC(h,w) ∨GC(m,w) ∨
(∃o, c : FreeOxygen(h, o) ∧ FreeCarbon(m, c)
∧ o 6≈ c ∧ (w ≈ SingleBond(o, c)))

(4.3)

Hydroxyl and methyl are de�ned in the same way as methane was de�ned: a
set of assertions about the nodes and the edges that the corresponding graph
contains.

∀x : Hydroxyl(x)↔ ∃o, h : o 6≈ h ∧
∀w : GC(x,w)↔ (w ≈ Hydrogen(h)) ∨ (w ≈ Oxygen(o))

∨ (w ≈ SingleBond(h, o))
(4.4)

∀x : Methyl(x)↔ ∃c, h1, h2, h3 : c 6≈ h1 6≈ h2 6≈ h3 ∧

∀w : GC(x,w)↔
∨

i=1,...,3

(w ≈ Hydrogen(hi)) ∨ (w ≈ Carbon(c))

∨
∨

i=1,...,3

(w ≈ SingleBond(c, hi))

(4.5)

We now need to de�ne the binary predicates FreeOxygen and FreeCarbon
which retrieve the suitable node from the hydroxyl and methyl graph respec-
tively. For this speci�c case, the de�nition of the predicates is straightforward
because hydroxyl (methyl) has only one oxygen (carbon) atom.

∀g, o : FreeOxygen(g, o)↔ GC(g,Oxygen(o)) ∧Hydroxyl(g) (4.6)

∀g, c : FreeCarbon(g, c)↔ GC(g, Carbon(c)) ∧Methyl(g) (4.7)

Finally, we need to make sure that there is no common node between the
two compounds, otherwise a structure with a common hydrogen atom (e.g.
Figure 4.7) is falsely recognized as methanole. In order to do so, we need
to de�ne a new predicate, VIG (vertex in graph), which indicates when a
vertex v is in a graph g.

35

Chapter 4. Preliminary Research

O

H C H

H

Figure 4.7: Molecule which is not methanole.

∀x, v : V IG(v, g)↔∃U : GC(g, U(v)) ∨
∃B, v′ : GC(g,B(v, v′)) ∨GC(g,B(v′, v)) (4.8)

Given the VIG predicate, we de�ne the disjointness of two graphs by requir-
ing for all vertices not to be in both graphs at the same time.

∀g1, g2 : Disjoint(g1, g2)↔ ∀v(¬V IG(v, g1) ∨ ¬V IG(v, g2)) (4.9)

Methanole could have been described in a similar way to methane. In
particular, an alternative de�nition for methanole would be:

∀x : Methanole′(x)↔ ∃c, o, h1, h2, h3, h4 : c 6≈ o 6≈ h1 6≈ h2 6≈ h3 6≈ h4 ∧
∀w : GC(x,w)↔ (w ≈ Oxygen(o)) ∨ (w ≈ Carbon(c)) ∨∨

i=1,...,4

(w ≈ Hydrogen(hi)) ∨∨
i=1,...,3

(w ≈ SingleBond(c, hi)) ∨

(w ≈ SingleBond(c, o)) ∨
(w ≈ SingleBond(o, h4))

(4.10)

If we compare the two approaches, there is a clear advantage in dealing
with compounds (e.g. hydroxyl, methyl) instead of atoms (e.g. hydrogen,
carbon): it is easier to describe molecules with tens or even hundreds of
atoms by using a hierarchical structure rather than enumerating every single
atom and bond. Nevertheless, we need to make sure that formulas (4.3) and
(4.10) describe the same graph structure. In particular, we need to show
that:

∀x : Methanole(x)↔Methanole′(x)

36

Chapter 4. Preliminary Research

In order to prove that, we need to add axioms such that for every pos-
sible subset of assertions (apart from the empty set) there exists a graph
which contains them. This is the only way to ensure that there are graphs
which contain those sets of assertions that are necessary to form a com-
pound such as hydroxyl (from the assertions Hydrogen(h), Oxygen(o) and
SingleBond(h, o)) or methyl (from the assertions Carbon(c), Hydrogen(hi)
and SingleBond(c, hi) for 1 ≤ i ≤ 3). We enforce this requirement by
introducing formulas (4.11) and (4.12):

∀wsingle : ∃gsingle : ∀w : GC(gsingle, w)↔ wsingle ≈ w (4.11)

∀ginit, wadd : ∃gadd : ∀w : GC(gadd, w)↔ (wadd ≈ w) ∨GC(ginit, w) (4.12)

Formula (4.11) makes sure that for every assertion wsingle there exists a
graph which contains that and only that assertion. Formula (4.12), on the
other hand, makes sure that for every graph ginit and for every assertion
wadd which is not contained by ginit there exists a new graph gadd which
contains the assertions of ginit plus the assertion wadd and nothing else than
that. The two formulas axiomatise the fact that for every set of assertions
(excluding the empty set) there exists a graph which contains those and only
those assertions.

After de�ning (4.11) and (4.12), the logical equivalence of the two dif-
ferent methanole representations can be proved by showing (4.13), where T
includes (4.2)-(4.12):

T |= ∀x : Methanole(x)↔Methanole′(x) (4.13)

Proof. (Sketch) (4.13) can be proved by showing that for every interpreta-
tion I that satis�es T , if f I1 (MethanoleI ,mI) ∈ TRUEI , then we will have
f I1 (Methanole′I ,mI) ∈ TRUEI (and the inverse). We prove that by consid-
ering a model I, such that, for mI ∈ ∆C

I , f I1 (MethanoleI ,mI) ∈ TRUEI .
Since I satis�es axiom (4.3) and f I1 (MethanoleI ,mI) ∈ TRUEI , I also sat-
is�es the right hand side of the axiom (4.3), when x is interpreted by mI .
From this and the axioms that T contains, we can prove that I satis�es
the right-hand side of the axiom (4.10), when x is interpreted by mI , and,
thus, that f I1 (Methanole′I ,mI) ∈ TRUEI . The inverse is proved in a similar
way.

Having proved that, we have shown that we can use graph logic to de�ne
complex objects (e.g. (4.5) and (4.4) for methyl and hyrdoxyl respectively)
and then reuse these de�nitions in order to de�ne more complex objects(e.g.
(4.3) uses methyl and hydroxyl which are previously de�ned). Therefore,
graph logic permits us to describe graph composition with the help of logic-
based formulas.

37

Chapter 4. Preliminary Research

4.4 Linking Graph Notation and Graph Logic

As we observe, graph notation and graph logic are two di�erent languages
that represent the same structures. The reason for introducing these two
distinct languages is that they serve di�erent purposes.

The objective of graph notation is to provide a high-level formal language,
such that it is relatively straightforward to map a graph structure to graph
notation not only for computer scientists but also for scientists of other areas,
such as chemists. Graph notation encodes graph structures without using
any burdensome �rst-order logic formulas and, it is an easier language to use
than graph logic.

Graph logic, on the other hand, represents graphs with the help of �rst-
order logic. Given that one of our major goals is to provide a proof procedure
for the language, it is clearly more feasible to develop an inference algorithm
for a logic-based language, rather than for the graph notation. Moreover,
a FOL-like formalism, such as graph logic, is easier to be combined with
other logic-based languages, such as description logics, and allow for hybrid
knowledge bases.

In order to make graph notation and graph logic useful in practice, we
need to de�ne a way that appropriately translates graph notation to graph
logic. The translation process is not presented in this report, because it has
not been fully speci�ed yet and it is ongoing work.

38

Chapter 5

Completed and Future Work

In the last chapter, we conclude our analysis by providing an account of the
undertaken and future research. We discuss what are the goals that we plan
to achieve in the future and we also suggest a time schedule that spans the
�rst year and the remaining time of the DPhil.

5.1 Research So Far

The tasks that have been completed so far include the following:

• We have speci�ed the problem that we are going to deal with and
identi�ed the most important requirements that a suggested solution
should satisfy.

• We have explored various domains of knowledge and come across use
cases which are analogous to the problem we are interested in. There-
fore, the problem is a frequently encountered and signi�cant one.

• We have conducted an extensive literature review of KR formalisms
that might be used to solve the examined problem and analysed why
they are not suitable for our setting.

• We have designed the syntax and semantics of a logic tailored to our
problem and its requirements. Additionally, we have shown how the
problems of graph recognition and composition are resolved with the
use of our logic.

• We have de�ned a graphical notation for the representation of graph
structures that allows for graph composition.

5.2 Future Plan

In the future, we will pursuit the following goals:

39

Chapter 5. Completed and Future Work

• Specify formally how the graph notation can be translated to formulas
of graph logic.

• Design an e�cient proof procedure for our logic, which is sound, com-
plete and terminating.

• Develop a system that implements the reasoning algorithm.

• Optimise and evaluate the system by choosing and applying appropri-
ate benchmarking methods.

We now describe an additional problem that, if there is adequate time,
we would like to deal with in the future. One of the features of graph logic
is that the encoded structures need to be of �xed size. The formalisms
presented in Chapter 4 aim to represent simple graphs or graphs which are
composed from instances of other graphs, but in both cases the size of the
graph is speci�ed upfront. In other words, neither graph logic nor graph
notation are suitable for graphs that include in their structure one or more
compounds such that the number of compounds is not known in advance.
We give an example of such a structure, taken from the chemistry domain.
Figure 5.1 depicts the molecule of monohydric alcohol, which is an arbitrarily
long chemical molecule: one or more H − C − H blocks are connected to
each other through a bond between the carbons and form a chain, while a
hydroxyl and a hydrogen are attached to the two extremes of the chain.

Hydroxyl

Middle Block chain

Middle Block

O H

CH H

CH H

CH H

H

Figure 5.1: Molecule of monohydric alcohol.

With graph logic in its current form it is not possible to represent mole-
cules, such as monohydric alcohol, because the number of H −C −H parts
in monohydric alcohol varies and is not known beforehand. However, it can
be investigated whether the language can be extended in such a way that un-
boundedly large (but �nite) structures can be expressed; the major di�culty
of this problem is that an arithmetic induction de�nition is needed and it is

40

Chapter 5. Completed and Future Work

not possible to axiomatise arithmetic induction in �rst-order logic. Instead
of that, an axiom schema is required that contains a separate axiom for each
possible predicate or, alternatively, a second-order formula that includes a
quanti�cation over predicates.

In the future, we will try to modify our graph logic language in order
to represent unbounded size graph structures. If we successfully tackle the
problem, we shall appropriately extend the proof procedure, implementation
and evaluation to also cover this case.

5.3 Time schedule

The following time schedule brie�y describes the ful�lled and planned tasks
from the starting date until the end of the DPhil. Some of them are not
directly related with the material discussed in this report but give an account
of what the �rst year was spent on.

Figure 5.2: Gantt chart of past and future tasks

41

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Awny Alnusair and Tian Zhao. Using Ontology Reasoning for Reverse
Engineering Design Patterns. In Sudipto Ghosh, editor,MoDELS Work-
shops, volume 6002 of Lecture Notes in Computer Science, pages 344�
358. Springer, 2009.

[3] Grigoris Antoniou. Non-monotonic reasoning, MIT Press, 1997, ISBN
0-262-01157-3.

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University
Press, 2nd edition, 2007.

[5] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics.
In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,
Handbook of Knowledge Representation. Elsevier, 2007.

[6] Chitta Baral and Michael Gelfond. Logic Programming and Knowledge
Representation. J. Log. Program., 19/20:73�148, 1994.

[7] Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Eql-lite: E�ective �rst-order query processing in description
logics. In In Proc. of IJCAI 2007, pages 274�279.

[8] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A
Foundation for Higher-Order Logic Programming. J. Log. Program.,
15(3):187�230, 1993.

[9] Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hastings,
Martin Zbinden, Alan McNaught, Rafael Alcántara, Michael Darsow,
Mickaël Guedj, and Michael Ashburner. ChEBI: a database and ontol-
ogy for chemical entities of biological interest. Nucleic Acids Research,
36(Database-Issue):344�350, 2008.

42

Chapter 5. Completed and Future Work

[10] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog.
ACM Trans. Database Syst., 22(3):364�418, 1997.

[11] Paolo Ferraris and Vladimir Lifschitz. Mathematical Foundations of
Answer Set Programming. In Sergei N. Artëmov, Howard Barringer,
Artur S. d'Avila Garcez, Luís C. Lamb, and John Woods, editors, We
Will Show Them! (1), pages 615�664. College Publications, 2005.

[12] Melvin Fitting. First-order logic and automated theorem proving (2nd
ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[13] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide
to SysML: The Systems Modeling Language. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008.

[14] Michael Gelfond. Answer Sets. In Frank van Harmelen, Vladimir Lif-
schitz, and Bruce Porter, editors, Handbook of Knowledge Representa-
tion, pages 285�310. Elsevier Science, 2007.

[15] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics
For Logic Programming. In Proceedings of the Fifth International Con-
ference on Logic Programming (ICLP), pages 1070�1080. MIT Press,
1988.

[16] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format,
Version 3.0 Reference Manual. Technical report, Stanford University,
Stanford, CA, USA, 1992.

[17] Racer Systems GmbH and Co. KG. RacerPro Userâ��s Guide, Decem-
ber 2005.

[18] Antoon Goderis, Ulrike Sattler, and Carole Goble. Applying descrip-
tions logics for work�ow reuse and repurposing. In International De-
scription Logics Workshop, Edinburgh, Scotland, 2005.

[19] Henson Graves. Representing Product Designs Using a Description
Graph Extension to OWL 2. In Catherine Dolbear, Alan Ruttenberg,
and Ulrike Sattler, editors, OWLED, volume 432 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[20] Henson Graves and Ian Horrocks. Application of OWL 1.1 to Systems
Engineering.

[21] Volker Haarslev, Ralf MÃ¶ller, and Michael Wessel. Querying the Se-
mantic Web with Racer + nRQL. In In Proceedings of the KI-2004 Inter-
national Workshop on Applications of Description Logics (ADLâ��04,
2004.

43

Chapter 5. Completed and Future Work

[22] Janna Hastings, Michel Dumontier, Duncan Hull1, Matthew Horridge,
Christoph Steinbeck, Ulrike Sattler, Robert Stevens, Tertia Hörne,
and Katarina Britz. Representing Chemicals using OWL, Description
Graphs and Rules. In OWLED, CEUR Workshop Proceedings. CEUR-
WS.org, 2010.

[23] Rinke Hoekstra. Use of OWL in the Legal Domain (Statement of Inter-
est). In Kendall Clark and Peter F. Patel-Schneider, editors, Proceedings
of OWL: Experiences and Directions (OWLED 2008 DC), Washington,
DC (metro), April 2008.

[24] Rinke Hoekstra. Ontology Representation - Design Patterns and On-
tologies that Make Sense, volume 197. IOS Press, 2009.

[25] Rinke Hoekstra and Joost Breuker. Polishing Diamonds in OWL2. In
Aldo Gangemi and Jérôme Euzenat, editors, Proceedings of the 16th In-
ternational Conference on Knowledge Engineering and Knowledge Man-
agement (EKAW 2008), LNAI/LNCS. Springer Verlag, October 2008.

[26] Duncan Hull. GO faster ChEBI with Reasonable Biochemistry. In
Catherine Dolbear, Alan Ruttenberg, and Ulrike Sattler, editors,
OWLED, volume 432 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[27] International Standards Organisation. ISO/IEC (2007) 'ISO/IEC
24707:2007 - Information technology - Common Logic (CL) - A frame-
work for a family of logic-based languages', 2007. Geneva,Switzerland.

[28] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42:741�843, 1995.

[29] Michael Kifer and Georg Lausen. F-Logic: A Higher-Order language
for Reasoning about Objects, Inheritance, and Scheme. In James Clif-
ford, Bruce G. Lindsay, and David Maier, editors, SIGMOD Conference,
pages 134�146. ACM Press, 1989.

[30] Mykola Konyk, Alexander De Leon Battista, and Michel Dumontier.
Chemical Knowledge for the Semantic Web. In Amos Bairoch, Sarah Co-
hen Boulakia, and Christine Froidevaux, editors, DILS, volume 5109 of
Lecture Notes in Computer Science, pages 169�176. Springer, 2008.

[31] Vladimir Lifschitz. What Is Answer Set Programming? In AAAI'08:
Proceedings of the 23rd national conference on Arti�cial intelligence,
pages 1594�1597. AAAI Press, 2008.

[32] Wiktor Marek and Miroslaw Truszczynski. Autoepistemic logic. J.
ACM, 38:587�618, July 1991.

44

Chapter 5. Completed and Future Work

[33] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulirke Sattler.
Representing Structured Objects using Description Graphs. In Gerhard
Brewka and Jérôme Lang, editors, Proc. of the 11th Int. Joint Conf.
on Principles of Knowledge Representation and Reasoning (KR 2008),
pages 296�306, Sydney, NSW, Australia, August 16�19 2008. AAAI
Press.

[34] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulrike Sattler.
Modeling Ontologies Using OWL, Description Graphs, and Rules. In
Alan Ruttenberg, Ulrile Sattler, and Cathy Dolbear, editors, Proc. of
the 5th Int. Workshop on OWL: Experiences and Directions (OWLED
2008 EU), Karlsruhe, Germany, October 26�27 2008.

[35] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulrike Sattler.
Representing Ontologies Using Description Logics, Description Graphs,
and Rules. Arti�cial Intelligence, 173(14):1275�1309, 2009.

[36] Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. Structured Ob-
jects in OWL: Representation and Reasoning. In Jinpeng Huai, Robin
Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins,
and Xiaodong Zhang, editors, Proc. of the 17th Int. World Wide Web
Conference (WWW 2008), pages 555�564, Beijing, China, April 21�25
2008. ACM Press.

[37] Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. The Repre-
sentation of Structured Objects in DLs using Description Graphs. In
Franz Baader, Carsten Lutz, and Boris Motik, editors, Proc. of the 21st
Int. Workshop on Description Logics (DL 2008), volume 353 of CEUR
Workshop Proceedings, Dresden, Germany, May 13�16 2008.

[38] Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. The Repre-
sentation of Structured Objects in DLs using Description Graphs. In
Franz Baader, Carsten Lutz, and Boris Motik, editors, Proc. of the 21st
Int. Workshop on Description Logics (DL 2008), volume 353 of CEUR
Workshop Proceedings, Dresden, Germany, May 13�16 2008.

[39] Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can
OWL and Logic Programming Live Together Happily Ever After? In
Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, Proc.
of the 5th Int. Semantic Web Conference (ISWC 2006), volume 4273 of
LNCS, pages 501�514, Athens, GA, USA, November 5�9 2006. Springer.

[40] Boris Motik and Riccardo Rosati. A Faithful Integration of Descrip-
tion Logics with Logic Programming. In Manuela M. Veloso, editor,
Proc. of the 20th Int. Joint Conference on Arti�cial Intelligence (IJCAI

45

Chapter 5. Completed and Future Work

2007), pages 477�482, Hyderabad, India, January 6�12 2007. Morgan
Kaufmann Publishers.

[41] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for
OWL-DL with Rules. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, 3(1):41�60, 2005.

[42] Ontoprise. How to write F-Logic Programs, September 2008.

[43] Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs.
New Generation Computing, 9:401�424, 1991.

[44] Kavitha Srinivas. OWL Reasoning in the Real World: Searching for
Godot. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ul-
rike Sattler, editors, Description Logics, volume 477 of CEUR Workshop
Proceedings. CEUR-WS.org, 2009.

[45] Holger Stenzhorn, Kavitha Srinivas, Matthias Samwald, and Alan Rut-
tenberg. Simplifying access to large-scale health care and life sciences
datasets. In ESWC'08: Proceedings of the 5th European semantic web
conference on The semantic web, pages 864�868, Berlin, Heidelberg,
2008. Springer-Verlag.

[46] Saskia van de Ven, Rinke Hoekstra, Joost Breuker, Lars Wortel, and
Abdallah El-Ali. Judging Amy: Automated Legal Assessment using
OWL 2. In Proceedings of OWL: Experiences and Directions (OWLED
2008 EU), October 2008.

[47] Moshe Y. Vardi. Why is modal logic so robustly decidable? In Neil Im-
merman and Phokion G. Kolaitis, editors, Descriptive Complexity and
Finite Models, volume 31 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 149�184. American Mathe-
matical Society, 1996.

[48] Natalia Villanueva-Rosales and Michel Dumontier. Describing Chemical
Functional Groups in OWL-DL for the Classi�cation of Chemical Com-
pounds. In Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia,
editors, OWLED, volume 258 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[49] Michael Wessel, Marko Luther, and Ralf Möller. What Happened to
Bob? Semantic Data Mining of Context Histories. In Bernardo Cuenca
Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, De-
scription Logics, volume 477 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009.

46

Chapter 5. Completed and Future Work

[50] Michael Wessel and Ralf Möller. A High Performance Semantic Web
Query Answering Engine. In Ian Horrocks, Ulrike Sattler, and Frank
Wolter, editors, Description Logics, volume 147 of CEUR Workshop
Proceedings. CEUR-WS.org, 2005.

47

	Introduction
	General Background and Problem Statement
	Structure of the Report

	Problem Description and Motivation
	The Cycle Modeling Problem
	Modeling Cycles in Various Domains
	Scientific workflows
	Engineering
	Event recognition
	Law
	Chemistry

	Key Requirements of the Solution

	KR Formalisms Surveyed
	Monotonic Languages
	First-order Logic
	Common Logic (CL)
	HiLog
	Description Logics (DL)
	DL-Safe rules
	Description Graphs (DG)

	Non-monotonic Languages
	Logic Programming (LP)
	Datalog

	Hybrid Approaches
	Knowledge Interchange Format (KIF)
	F-Logic
	Minimal Knowledge Negation Failure (MKNF)

	Query Languages
	EQL-Lite
	nRQL Queries

	Preliminary Research
	Two Essential Requirements
	Concept recognition
	Graph composition

	Graph Notation
	Definition
	Examples

	Graph Logic
	Syntax
	Semantics
	Examples

	Linking Graph Notation and Graph Logic

	Completed and Future Work
	Research So Far
	Future Plan
	Time schedule

