TRACTABLE EXTENSIONS OF THE DESCRIPTION LOGIC \mathcal{EL} with Numerical Datatypes

Despoina Magka, Yevgeny Kazakov and Ian Horrocks

Oxford University Computing Laboratory

May 5, 2010

OUTLINE

1 \mathcal{EL} and Datatypes

2 Reasoning in $\mathcal{EL}^{\perp}(\mathcal{D})$

3 CONCLUSION

Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- *EL* family of DLs [Baader et al., IJCAI 2003, 2005]:

EXAMPLE

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- E C family of DLs [Baader et al., IJCAI 2003, 2005]:

EXAMPLE

YoungParent \equiv Human \square \exists hasChild.Human \square \exists hasAge.[< 20]

Conjuction

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- E C family of DLs [Baader et al., IJCAI 2003, 2005]:

EXAMPLE

- Conjuction
- Existential restriction

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- E C family of DLs [Baader et al., IJCAI 2003, 2005]:

EXAMPLE

- Conjuction
- Existential restriction
- • •
- Datatypes

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- E C family of DLs [Baader et al., IJCAI 2003, 2005]:

EXAMPLE

- Conjuction
- Existential restriction
- • •
- Datatypes
- Polynomial-time reasoning

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	СпD	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y : R(x, y) \land C(y)$
Datatype restriction	∃ F . <i>range</i>	$\exists v: F(x,v) \land v \in range$

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	СпD	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y : R(x, y) \land C(y)$
Datatype restriction	∃ F . <i>range</i>	$\exists v: F(x,v) \land v \in range$
$range = [< n] \mid [\le n] \mid [>$	$ n \geq n $	$[=n] \subseteq \mathcal{D} = \mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}$

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	СпD	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y: R(x, y) \land C(y)$
Datatype restriction	∃ F . <i>range</i>	$\exists v: F(x,v) \land v \in range$
$range = [< n] \mid [\le n] \mid [>$	$> n$] [$\geq n$]	$[=n]\subseteq\mathcal{D}=\mathbb{N},\mathbb{Z},\mathbb{R},\mathbb{Q}$
Axioms		

Concept inclusion
$$| C \sqsubseteq D | \quad \forall x : C(x) \rightarrow D(x)$$

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	СпD	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y: R(x, y) \land C(y)$
Datatype restriction	∃ F . <i>range</i>	$\exists v: F(x,v) \land v \in range$
$range = [< n] \mid [\le n] \mid [>$	$> n$] [$\geq n$]	$[=n]\subseteq \mathcal{D}=\mathbb{N},\mathbb{Z},\mathbb{R},\mathbb{Q}$

Axioms

Concept inclusion $| \mathbf{C} \sqsubseteq \mathbf{D} | \quad \forall x : \mathbf{C}(x) \rightarrow \mathbf{D}(x)$

Reasoning problems

Classification: compute all $A \sqsubseteq B$ such that $\mathcal{O} \models A \sqsubseteq B$

Admissible Datatypes

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

- \mathcal{EL}^{\perp} with datatypes is EXPTIME-complete
- Disjunction is expressible using datatypes:

Admissible Datatypes

- \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete
- Disjunction is expressible using datatypes:

$$<, =$$

Admissible Datatypes

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

Disjunction is expressible using datatypes:

<, =

EXAMPLE

 $\begin{array}{c} \mathbf{A} \sqsubseteq \exists \mathbf{F} . [< 2] \\ \exists \mathbf{F} . [= 1] \sqsubseteq \mathbf{B} \\ \exists \mathbf{F} . [= 0] \sqsubseteq \mathbf{C} \\ \mathbf{A} \sqsubseteq \mathbf{B} \sqcup \mathbf{C} \end{array}$

(日)

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

Disjunction is expressible using datatypes:

$$<,=$$
 $>,=$ $<,>$ $\leq,=$ $\geq,=$ \leq,\geq

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

Disjunction is expressible using datatypes:

$$<,=$$
 $>,=$ $<,>$ $\leq,=$ $\geq,=$ \leq,\geq

 Ensure polynomiality by restrictions on datatype use [Baader et al., IJCAI 2005]

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

Disjunction is expressible using datatypes:

 Ensure polynomiality by restrictions on datatype use [Baader et al., IJCAI 2005]

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

Disjunction is expressible using datatypes:

 Ensure polynomiality by restrictions on datatype use [Baader et al., IJCAI 2005]

EL Profile of OWL 2 admits only equality

• \mathcal{EL}^{\perp} with datatypes is **EXPTIME**-complete

Disjunction is expressible using datatypes:

 Ensure polynomiality by restrictions on datatype use [Baader et al., IJCAI 2005]

EL Profile of OWL 2 admits only equality

Absence of inequalities reduces the utility of OWL 2 EL

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

< 17 ▶

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

Can Panadol be prescribed to a 3-year-old patient?

< 🗇 🕨

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

- Can Panadol be prescribed to a 3-year-old patient?
 - Is X satisfiable?

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

EL and Datatypes

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

- Can Panadol be prescribed to a 3-year-old patient?
 - Is X satisfiable?
- Equality is used to state a fact such as the content of a drug and the age of a patient

EL and Datatypes

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq$ Patient $\sqcap \exists$ hasAge. $[= 3] \sqcap \exists$ hasPrescription.Panadol

- Can Panadol be prescribed to a 3-year-old patient?
 - Is X satisfiable?
- Equality is used to state a fact such as the content of a drug and the age of a patient
- Inequalities are used to trigger a rule

(日)

EL and Datatypes

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

- Can Panadol be prescribed to a 3-year-old patient?
 - Is X satisfiable?
- Equality is used to state a fact such as the content of a drug and the age of a patient
- Inequalities are used to trigger a rule
- The EL Profile of OWL 2 does not allow inequality relations

RESULTS OVERVIEW

Relax the restrictions on datatype use

• • 3

< 一型

RESULTS OVERVIEW

- Relax the restrictions on datatype use
- Key idea
 - Distinguish positive (RHS of axiom) and negative (LHS of axiom) occurrences of datatypes

RESULTS OVERVIEW

Relax the restrictions on datatype use

- Key idea
 - Distinguish positive (RHS of axiom) and negative (LHS of axiom) occurrences of datatypes
- Main results
 - \blacksquare Full classification of tractable cases for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}

RESULTS OVERVIEW

Relax the restrictions on datatype use

- Key idea
 - Distinguish positive (RHS of axiom) and negative (LHS of axiom) occurrences of datatypes
- Main results
 - Full classification of tractable cases for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
 - Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with "safe" numerical datatypes

OUTLINE

1 \mathcal{EL} and Datatypes

2 Reasoning in $\mathcal{EL}^{\perp}(\mathcal{D})$

3 CONCLUSION

Algorithm Stages

1 Standard normalization of the axioms

Normal forms

NF1	$A \sqsubseteq B$
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F.range$
NF6	$\exists F.range \sqsubseteq A$

ALGORITHM STAGES

1 Standard normalization of the axioms

Normal forms

NF1	A ⊑ B
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F.range$
NF6	$\exists F.range \sqsubseteq A$

2 Saturation of the axioms under inference rules, such as:

 $\frac{A \sqsubseteq B \ A \sqsubseteq C}{A \sqsubseteq D} \quad B \sqcap C \sqsubseteq D \in \mathcal{O}$

REASONING RULES (PART I)

Rules from \mathcal{EL}^{\perp}

IR1	$\overline{A \sqsubseteq A} \stackrel{IR2}{=} \overline{A \sqsubseteq \top} CR1 \frac{A \sqsubseteq B}{A \sqsubseteq C} B \sqsubseteq C \in \mathcal{O}$
CR2	$\frac{A \sqsubseteq B \ A \sqsubseteq C}{A \sqsubseteq D} B \sqcap C \sqsubseteq D \in \mathcal{O}$
CR3	$\frac{A \sqsubseteq B}{A \sqsubseteq \exists R.C} B \sqsubseteq \exists R.C \in \mathcal{O}$
CR4	$\frac{A\sqsubseteq \exists R.B B\sqsubseteq C}{A\sqsubseteq D} \exists R.C\sqsubseteq D\in\mathcal{O}$
CR5	$\frac{A \sqsubseteq \exists \mathbf{R}. \mathbf{B} \mathbf{B} \sqsubseteq \bot}{A \sqsubseteq \bot}$

3 1 4 3

크

REASONING RULES (PART II)

New rules for datatypes

REASONING RULES (PART II)

New rules for datatypes

The $\mathcal{EL}^{\perp}(\mathcal{D})$ Algorithm

The algorithm is:

sound: all rules derive logical consequences of premises

The $\mathcal{EL}^{\perp}(\mathcal{D})$ Algorithm

The algorithm is:

- sound: all rules derive logical consequences of premises
- polynomial as only polynomially many axioms are possible

The $\mathcal{EL}^{\perp}(\mathcal{D})$ Algorithm

The algorithm is:

- sound: all rules derive logical consequences of premises
- polynomial as only polynomially many axioms are possible
- not complete in general

The $\mathcal{EL}^{\perp}(\mathcal{D})$ Algorithm

The algorithm is:

- sound: all rules derive logical consequences of premises
- polynomial as only polynomially many axioms are possible
- not complete in general
- complete under certain restrictions on datatypes

< 17 > <

Restrictions for \mathbb{N}

Negative relationsPositive relations $<, \leq, >, \geq, =$ =

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Restrictions for \mathbb{N}

Negative relationsPositive relations $< \leq > \geq , =$ =

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

Image: A marked and A marked

Restrictions for \mathbb{N}

Negative relationsPositive relations $<, \leq, >, \geq, =$ \bigcirc

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

Restrictions for \mathbb{N}

Negative relations	Positive relations
$<,\leq,>,\geq,=$	=
$<,\leq$	$<,\leq,>,\geq,=$
$>,\geq$	$<,\leq,>,\geq,=$
$<,\leq,=$	$>,\geq,=$

æ

Restrictions for \mathbb{N}

Negative relations	Positive relations
$<,\leq,>,\geq,=$	=
$<,\leq$	$<,\leq,>,\geq,=$
$>,\geq$	$<,\leq,>,\geq,=$
$<, \leq, =$	$>, \geq, =$

All restrictions are maximal:

∃ ► < ∃ ►</p>

크

Restrictions for \mathbb{N}

Negative relations	Positive relations
$<,\leq,>,\geq,=$	=<
$<,\leq$	$<,\leq,>,\geq,=$
$>,\geq$	$<,\leq,>,\geq,=$
$<, \leq, =$	$>,\geq,=$

All restrictions are maximal:

EXAMPLE

$$A \sqsubseteq \exists F. [< 2] \\ \exists F. [= 1] \sqsubseteq B \\ \exists F. [= 0] \sqsubseteq C \\ A \sqsubseteq B \sqcup C$$

< (17) > <

ъ

æ

Restrictions for $\mathbb Z$

Negative relations	Positive relations
$<,\leq,>,\geq,=$	=
=	$<,\leq,>,\geq,=$
$<,\leq$	$<,\leq,>,\geq,=$
$>,\geq$	$<,\leq,>,\geq,=$
$<, \leq, =$	$>, \geq, =$
$>,\geq,=$	$<, \leq, =$

æ

Restrictions for \mathbb{Z}

Negative relations	Positive relations
$<,\leq,>,\geq,=$	=
=	$<,\leq,>,\geq,=$
$<,\leq$	$<,\leq,>,\geq,=$
$>,\geq$	$<,\leq,>,\geq,=$
$<, \leq, =$	$>, \geq, =$
$>,\geq,=$	$<, \leq, =$

Additional datatype restrictions: integers do not have a minimal element such as 0.

< 🗇 🕨

Restrictions for \mathbb{Z}

 Additional datatype restrictions: integers do not have a minimal element such as 0.

Restrictions for \mathbb{Z}

 Additional datatype restrictions: integers do not have a minimal element such as 0.

Restrictions for \mathbb{Z}

 Additional datatype restrictions: integers do not have a minimal element such as 0.

Restrictions for ${\mathbb Q}$ and ${\mathbb R}$

Negative relations	Positive relations
$<,\leq,>,\geq,=$	=
\leq ,=	$<,\leq,>,\geq,=$
\geq ,=	$<,\leq,>,\geq,=$
$<, \leq$	$<,\leq,>,\geq,=$
$>,\geq$	$<,\leq,>,\geq,=$
$<,\leq,=$	$<,>,\geq,=$
$>, \geq, =$	$<, \leq, >, =$

æ

Restrictions for ${\mathbb Q}$ and ${\mathbb R}$

Between every two different numbers there exists a third one:

Image: A matrix

Restrictions for ${\mathbb Q}$ and ${\mathbb R}$

Between every two different numbers there exists a third one:

Restrictions for ${\mathbb Q}$ and ${\mathbb R}$

Between every two different numbers there exists a third one:

Restrictions for ${\mathbb Q}$ and ${\mathbb R}$

Between every two different numbers there exists a third one:

OUTLINE

1 \mathcal{EL} and Datatypes

2 Reasoning in $\mathcal{EL}^{\perp}(\mathcal{D})$

3 CONCLUSION

크

RESULTS OVERVIEW

Polynomial, sound and complete reasoning procedure for extensions of *EL[⊥]* with "safe" numerical datatypes

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with "safe" numerical datatypes
- Full classification of positive and negative relations for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with "safe" numerical datatypes
- Full classification of positive and negative relations for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- **Common restriction** for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Negative relations | Positive relations

$$<, \leq, >, \geq, =$$
 =

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with "safe" numerical datatypes
- Full classification of positive and negative relations for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- **Common restriction** for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Negative relations | Positive relations

=

 $<,\leq,>,\geq,=$

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq Patient \sqcap \exists hasAge. [= 3] \sqcap \exists hasPrescription. Panadol$

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with "safe" numerical datatypes
- Full classification of positive and negative relations for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- **Common restriction** for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Negative relations | Positive relations

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq$ Patient $\sqcap \exists$ hasAge.[< 3] $\sqcap \exists$ hasPrescription.Panadol

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL[⊥]* with "safe" numerical datatypes
- Full classification of positive and negative relations for $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- **Common restriction** for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Negative relations | Positive relations

$$\begin{array}{c|c} <, \leq & \searrow \geq, = & \textcircled{=} \\ <, \leq & <, \leq, >, \geq, = \end{array}$$

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.[= 500])

Patient $\sqcap \exists hasAge.[< 6] \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.[> 250]) \sqsubseteq \bot$

 $X \sqsubseteq$ Patient $\sqcap \exists$ hasAge.[< 3] $\sqcap \exists$ hasPrescription.Panadol

FUTURE WORK

Extend the reasoning algorithm:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

FUTURE WORK

- Extend the reasoning algorithm:
 - complex role inclusions

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties

< 一型

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals

< 一型

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]

 More fine-grained analysis by also considering which data properties are used with relations

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]

More fine-grained analysis by also considering which data properties are used with relations

Thank you for your attention! Questions?

Conclusion

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]

More fine-grained analysis by also considering which data properties are used with relations

Thank you for your attention! Questions?