TRACTABLE EXTENSIONS OF THE DESCRIPTION LOGIC \mathcal{EL} with Numerical Datatypes

Despoina Magka, Yevgeny Kazakov and Ian Horrocks

Oxford University Computing Laboratory

April 27, 2010

OUTLINE

1 \mathcal{EL} and Datatypes

2 A Reasoning Algorithm for $\mathcal{EL}^{\perp}(\mathcal{D})$

3 CONCLUSION

Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- EL family of DLs [Baader et al., IJCAI 2003, 2005]:

EXAMPLE

YoungParent \equiv Human \sqcap \exists hasChild.Human \sqcap \exists hasAge.(<, 20)

\mathcal{EL} FAMILY OF DESCRIPTION LOGICS

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- EL family of DLs [Baader et al., IJCAI 2003, 2005]:
 - Conjuction

EXAMPLE

YoungParent \equiv Human \square \exists hasChild.Human \square \exists hasAge.(<, 20)

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- E C family of DLs [Baader et al., IJCAI 2003, 2005]:
 - Conjuction
 - Existential restriction

EXAMPLE

YoungParent \equiv Human $\sqcap \exists$ hasChild.Human $\sqcap \exists$ hasAge.(<, 20)

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- EL family of DLs [Baader et al., IJCAI 2003, 2005]:
 - Conjuction
 - Existential restriction
 - Domain/range restrictions, complex role inclusions, nominals

EXAMPLE

YoungParent \equiv Human \sqcap \exists hasChild.Human \sqcap \exists hasAge.(<, 20)

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- E C family of DLs [Baader et al., IJCAI 2003, 2005]:
 - Conjuction
 - Existential restriction
 - Domain/range restrictions, complex role inclusions, nominals
 - Datatypes

EXAMPLE

YoungParent \equiv Human \sqcap \exists hasChild.Human \sqcap \exists hasAge.(<, 20)

A (B) + A (B) + A (B) +

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- EL family of DLs [Baader et al., IJCAI 2003, 2005]:
 - Conjuction
 - Existential restriction
 - Domain/range restrictions, complex role inclusions, nominals
 - Datatypes

EXAMPLE

YoungParent \equiv Human \sqcap \exists hasChild.Human \sqcap \exists hasAge.(<, 20)

Sufficient expressivity for ontologies such as SNOMED CT and the Gene Ontology

(日)

- Description logics: logical foundation for W3C ontology languages such as OWL and OWL 2
- EL family of DLs [Baader et al., IJCAI 2003, 2005]:
 - Conjuction
 - Existential restriction
 - Domain/range restrictions, complex role inclusions, nominals
 - Datatypes

EXAMPLE

YoungParent \equiv Human \sqcap \exists hasChild.Human \sqcap \exists hasAge.(<, 20)

- Sufficient expressivity for ontologies such as SNOMED CT and the Gene Ontology
- Polynomial-time reasoning algorithms for *EL*

(日)

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

Restrict datatype use to ensure polynomiality

CONVEX DATATYPES

- Dangerous combination of datatypes [Baader et al., 2005]
- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

<,>

 \mathcal{EL} and Datatypes

CONVEX DATATYPES

- Dangerous combination of datatypes [Baader et al., 2005]
- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

CONVEX DATATYPES

- Dangerous combination of datatypes [Baader et al., 2005]
- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

- $A \sqsubseteq B \sqcup C$ can be expressed by:
 - $\begin{array}{cccc} \mathsf{A} & \sqsubseteq & \exists \mathsf{F}.(<,5) \\ \exists \mathsf{F}.(<,3) & \sqsubseteq & \mathsf{B} \\ \exists \mathsf{F}.(>,2) & \sqsubseteq & \mathsf{C} \end{array}$

CONVEX DATATYPES

- Dangerous combination of datatypes [Baader et al., 2005]
- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

- $A \sqsubseteq B \sqcup C$ can be expressed by:
 - $\begin{array}{cccc} \mathbf{A} & \sqsubseteq & \exists \mathbf{F}.(<,5) \\ \exists \mathbf{F}.(=,4) & \sqsubseteq & \mathbf{B} \\ \exists \mathbf{F}.(<,4) & \sqsubseteq & \mathbf{C} \end{array}$

A (10) A (10)

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

 $A \sqsubseteq B \sqcup C$ can be expressed by:

 $\begin{array}{rrrr} \mathbf{A} & \sqsubseteq & \exists \mathbf{F}.(<,5) \\ \exists \mathbf{F}.(=,4) & \sqsubseteq & \mathbf{B} \\ \exists \mathbf{F}.(<,4) & \sqsubseteq & \mathbf{C} \end{array}$

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

 $A \sqsubseteq B \sqcup C$ can be expressed by:

$$\begin{array}{cccc} \mathbf{A} & \sqsubseteq & \exists \mathbf{F}.(>,5) \\ \exists \mathbf{F}.(=,6) & \sqsubseteq & \mathbf{B} \\ \exists \mathbf{F}.(>,6) & \sqsubseteq & \mathbf{C} \end{array}$$

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

 $A \sqsubseteq B \sqcup C$ can be expressed by:

 $\begin{array}{cccc} \mathbf{A} & \sqsubseteq & \exists \mathbf{F}.(>,5) \\ \exists \mathbf{F}.(=,6) & \sqsubseteq & \mathbf{B} \\ \exists \mathbf{F}.(>,6) & \sqsubseteq & \mathbf{C} \end{array}$

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

 $A \sqsubseteq B \sqcup C$ cannot be expressed.

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EXAMPLE

 $A \sqsubseteq B \sqcup C$ cannot be expressed.

CONVEX DATATYPES

- Dangerous combination of datatypes [Baader et al., 2005]
- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EL Profile of OWL 2 admits only equality

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EL Profile of OWL 2 admits only equality

DEFINITION

Convexity property [Baader et al., 2005]: If a restriction implies a disjunction of restrictions, then it also implies one of its disjuncts.

CONVEX DATATYPES

Dangerous combination of datatypes [Baader et al., 2005]

- Restrict datatype use to ensure polynomiality
- It should not be possible to express disjunction:

EL Profile of OWL 2 admits only equality

DEFINITION

Convexity property [Baader et al., 2005]: If a restriction implies a disjunction of restrictions, then it also implies one of its disjuncts.

EXAMPLE

Convex case: If $(x < n) \rightarrow (x < m_1) \lor (x < m_2)$, then $x < \max(m_1, m_2)$

EXAMPLE

Not convex case: $(x < 5) \rightarrow (x < 2) \lor (x \ge 2)$ $(x < 5) \not\rightarrow (x < 2)$ $(x < 5) \not\rightarrow (x \ge 2)$

RESULTS OVERVIEW

Allow for more extensive datatype use without loosing tractability

RESULTS OVERVIEW

- Allow for more extensive datatype use without loosing tractability
- Key idea: distinguish positive and negative occurrences of datatypes

RESULTS OVERVIEW

- Allow for more extensive datatype use without loosing tractability
- Key idea: distinguish positive and negative occurrences of datatypes
- Main result: full classification of tractable cases for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} .

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.(=, 500))

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

< 17 ▶

MOTIVATING EXAMPLE

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.(=, 500))

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

Can Panadol be prescribed to a 3-year-old patient?

MOTIVATING EXAMPLE

EXAMPLE

 $Panadol \sqsubseteq \exists contains.(Paracetamol \ \sqcap \ \exists mgPerTablet.(=, 500))$

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

■ Can Panadol be prescribed to a 3-year-old patient? X ⊆ Patient □ ∃hasAge.(=,3) □ ∃hasPrescription.Panadol

MOTIVATING EXAMPLE

EXAMPLE

 $Panadol \sqsubseteq \exists contains.(Paracetamol \ \sqcap \ \exists mgPerTablet.(=, 500))$

Patient $\sqcap \exists hasAge.(<, 6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>, 250)) \sqsubseteq \bot$

Can Panadol be prescribed to a 3-year-old patient? X ⊑ Patient □ ∃hasAge.(=, 3) □ ∃hasPrescription.Panadol Is X satisfiable?

MOTIVATING EXAMPLE

EXAMPLE

 $Panadol \sqsubseteq \exists contains.(Paracetamol \ \sqcap \ \exists mgPerTablet.(=, 500))$

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

- Can Panadol be prescribed to a 3-year-old patient? X ⊑ Patient □ ∃hasAge.(=,3) □ ∃hasPrescription.Panadol Is X satisfiable?
- Equality is used to state a fact such as the content of a drug and the age of a patient

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

MOTIVATING EXAMPLE

EXAMPLE

 $Panadol \sqsubseteq \exists contains.(Paracetamol \ \sqcap \ \exists mgPerTablet.(=, 500))$

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

- Can Panadol be prescribed to a 3-year-old patient? X ⊆ Patient □ ∃hasAge.(=, 3) □ ∃hasPrescription.Panadol Is X satisfiable?
- Equality is used to state a fact such as the content of a drug and the age of a patient
- Inequalities are used to trigger a rule

(I)

MOTIVATING EXAMPLE

EXAMPLE

 $Panadol \sqsubseteq \exists contains.(Paracetamol \ \sqcap \ \exists mgPerTablet.(=, 500))$

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

- Can Panadol be prescribed to a 3-year-old patient? X ⊑ Patient □ ∃hasAge.(=,3) □ ∃hasPrescription.Panadol Is X satisfiable?
- Equality is used to state a fact such as the content of a drug and the age of a patient
- Inequalities are used to trigger a rule
- Positive use of datatypes typically involves equality whereas negative use both equality and inequalities

\mathcal{EL}^{\perp} with Numerical Datatypes

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	C ⊓ D	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y: R(x,y) \land C(y)$
Datatype restriction	$\exists F.(\leqq, n)$	$\exists v \in \mathcal{D}: \ F(x,v) \land v \stackrel{\leq}{=} n$

\mathcal{EL}^{\perp} with Numerical Datatypes

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	СпD	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y: R(x,y) \land C(y)$
Datatype restriction	$\exists F.(\leqq, n)$	$\exists v \in \mathcal{D}: F(x,v) \land v \leq n$

 $\mathcal D$ is the numerical domain: we consider $\mathcal D=\mathbb N,\mathbb Z,\mathbb R,\mathbb Q$

\mathcal{EL}^{\perp} with Numerical Datatypes

Concept constructors

	Syntax	Semantics
Concept name	С	C(x)
Тор	Т	Т
Bottom	\perp	\perp
Conjunction	C ⊓ D	$C(x) \wedge D(x)$
Existential restriction	∃R.C	$\exists y: R(x,y) \land C(y)$
Datatype restriction	$\exists F.(\leqq, n)$	$\exists v \in \mathcal{D}: \ F(x,v) \land v \stackrel{\leq}{=} n$

 $\mathcal D$ is the numerical domain: we consider $\mathcal D=\mathbb N,\mathbb Z,\mathbb R,\mathbb Q$ Axiom

Concept inclusion
$$| C \sqsubseteq D | C(x) \rightarrow D(x)$$

OUTLINE

1 \mathcal{EL} and Datatypes

2 A Reasoning Algorithm for $\mathcal{EL}^{\perp}(\mathcal{D})$

3 CONCLUSION

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

NORMALIZATION RULES

1 Normalization of the axioms

(日)

NORMALIZATION RULES

1 Normalization of the axioms

Normal forms

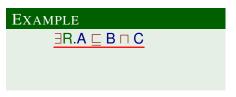
NF1	A ⊑ B
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F.(\leqq, n)$
NF6	$\exists F.(\leqq,n) \sqsubseteq A$

NORMALIZATION RULES

1 Normalization of the axioms

Normal forms

NF1	A ⊑ B
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F.(\leqq, n)$
NF6	$\exists F.(\leqq,n) \sqsubseteq A$



NORMALIZATION RULES

1 Normalization of the axioms

Normal forms

NF1	A ⊑ B
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F. (\leqq, n)$
NF6	$\exists F.(\leqq,n) \sqsubseteq A$

EXAMPLE

< 一型

NORMALIZATION RULES

1 Normalization of the axioms

Normal forms

NF1	A ⊑ B
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F. (\leqq, n)$
NF6	$\exists F.(\leqq,n) \sqsubseteq A$

$\begin{array}{c} \text{Example} \\ \exists \text{R.A} \sqsubseteq \text{B} \sqcap \text{C} \\ \rightarrow \exists \text{R.A} \sqsubseteq \text{D} \quad \text{D} \sqsubseteq \underline{\text{B}} \sqcap \underline{\text{C}} \end{array}$

< 17 >

NORMALIZATION RULES

1 Normalization of the axioms

Normal forms

NF1	$A \sqsubseteq B$
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F. (\leqq, n)$
NF6	$\exists F.(\leqq,n) \sqsubseteq A$

$\begin{array}{c} EXAMPLE \\ \exists R.A \sqsubseteq B \sqcap C \\ \rightarrow \exists R.A \sqsubseteq D \quad D \sqsubseteq B \sqcap C \\ \rightarrow \exists R.A \sqsubseteq D \quad D \sqsubseteq B \quad D \sqsubseteq C \end{array}$

NORMALIZATION RULES

1 Normalization of the axioms

Normal forms

NF1	A ⊑ B
NF2	$A_1 \sqcap A_2 \sqsubseteq B$
NF3	A ⊑ ∃R.B
NF4	∃R.B ⊑ A
NF5	$A \sqsubseteq \exists F. (\leq, n)$
NF6	$\exists F.(\leqq, n) \sqsubseteq A$

$\begin{array}{c} \text{Example} \\ \exists \text{R.A} \sqsubseteq \text{B} \sqcap \text{C} \\ \rightarrow \quad \exists \text{R.A} \sqsubseteq \text{D} \quad \text{D} \sqsubseteq \text{B} \sqcap \text{C} \\ \rightarrow \quad \exists \text{R.A} \sqsubseteq \text{D} \quad \text{D} \sqsubseteq \text{B} \quad \text{D} \sqsubseteq \text{C} \end{array}$

2 Saturation of the axioms under a set of rules

$\mathcal{EL}^{\perp}(\mathcal{D})$ Reasoning Rules

Common rules with \mathcal{EL}^{++} [Baader et al., 2005]

$$\mathcal{EL}^{\perp}(\mathcal{D})$$
 Reasoning Rules

 $\begin{array}{c} \text{Common rules with } \mathcal{EL}^{++} \ [\text{Baader et al., 2005}] \\ \\ \ensuremath{\mathbb{R}}^1 & \overline{A \sqsubseteq A} & \ensuremath{\mathbb{R}}^2 & \overline{A \sqsubseteq \top} & \ensuremath{\mathbb{CR}}^1 & \ensuremath{\overline{A}} \sqsubseteq C \\ \hline A \sqsubseteq C & \ensuremath{\mathbb{A}} & \ensuremath{\mathbb{C}} & \ensuremath{$

э

$$\mathcal{EL}^{\perp}(\mathcal{D})$$
 Reasoning Rules

Common rules with \mathcal{EL}^{++} [Baader et al., 2005] IR1 $\overline{A \sqsubseteq A}$ IR2 $\overline{A \sqsubseteq \top}$ CR1 $\frac{A \sqsubseteq B}{A \sqsubseteq C}$ $B \sqsubseteq C \in \mathcal{O}$ CR2 $\frac{A \sqsubseteq B \ A \sqsubseteq C}{A \sqsubset D}$ $B \sqcap C \sqsubseteq D \in \mathcal{O}$

э

$$\mathcal{EL}^{\perp}(\mathcal{D})$$
 Reasoning Rules

Common rules with \mathcal{EL}^{++} [Baader et al., 2005]

$$\begin{array}{cccc} \mathbf{IR1} & \overline{\mathbf{A} \sqsubseteq \mathbf{A}} & \mathbf{IR2} & \overline{\mathbf{A} \sqsubseteq \top} & \mathbf{CR1} & \overline{\mathbf{A} \sqsubseteq \mathbf{D}} \\ \mathbf{CR2} & \frac{\mathbf{A} \sqsubseteq \mathbf{B} & \mathbf{A} \sqsubseteq \mathbf{C}}{\mathbf{A} \sqsubseteq \mathbf{D}} & \mathbf{B} \sqcap \mathbf{C} \sqsubseteq \mathbf{D} \in \mathcal{O} \\ \end{array}$$

CR3
$$\overrightarrow{A \sqsubseteq B}$$
 $B \sqsubseteq \exists R.C \in \mathcal{O}$

< 17 >

$$\mathcal{EL}^{\perp}(\mathcal{D})$$
 Reasoning Rules

Common rules with \mathcal{EL}^{++} [Baader et al., 2005] $\overline{A \sqsubseteq A} \quad \overset{\text{IR2}}{=} \frac{A \sqsubseteq \top}{A \sqsubseteq \top} \quad \overset{\text{CR1}}{=} \frac{A \sqsubseteq B}{A \sqsubset C} \quad B \sqsubseteq C \in \mathcal{O}$ IR1 $\frac{A \sqsubseteq B \ A \sqsubseteq C}{A \sqsubset D} \quad B \sqcap C \sqsubseteq D \in \mathcal{O}$ CR2 $\frac{\mathsf{A}\sqsubseteq\mathsf{B}}{\mathsf{A}\sqsubset\exists\mathsf{R}.\mathsf{C}}\quad \mathsf{B}\sqsubseteq\exists\mathsf{R}.\mathsf{C}\in\mathcal{O}$ CR3 $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C}{A \sqsubset D} \quad \exists R.C \sqsubseteq D \in \mathcal{O}$ CR4

$$\mathcal{EL}^{\perp}(\mathcal{D})$$
 Reasoning Rules

Common rules with \mathcal{EL}^{++} [Baader et al., 2005] $\overline{A \sqsubseteq A} \quad \overset{\text{IR2}}{=} \overline{A \sqsubseteq \top} \quad \overset{\text{CR1}}{=} \quad \frac{A \sqsubseteq B}{A \sqsubset C} \quad B \sqsubseteq C \in \mathcal{O}$ IR1 $\frac{A \sqsubseteq B \ A \sqsubseteq C}{A \sqsubset D} \quad B \sqcap C \sqsubseteq D \in \mathcal{O}$ CR2 $\frac{A \sqsubseteq B}{A \sqsubset \exists R.C} \quad B \sqsubseteq \exists R.C \in \mathcal{O}$ CR3 $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C}{A \sqsubset D} \quad \exists R.C \sqsubseteq D \in \mathcal{O}$ CR4 $A \subseteq \exists R.B \quad B \subseteq \bot$ CR5 $A \sqsubset \bot$

э.

$ID1 \qquad \qquad \overline{\mathsf{A}\sqsubseteq \bot} \qquad \mathsf{A}\sqsubseteq \exists \mathsf{F}.(<,0)\in \mathcal{O}$

< 17 ×

A B F A B F

ID1 $\overline{\mathsf{A}} \sqsubseteq \bot$ $\mathsf{A} \sqsubseteq \exists \mathsf{F}.(<,0) \in \mathcal{O}$

< 17 ×

A B F A B F

 $ID1 \qquad \qquad \overline{\mathsf{A} \sqsubseteq \bot} \qquad \mathsf{A} \sqsubseteq \exists \mathsf{F}.(<,0) \in \mathcal{O}$

$$\mathbf{CD1} \qquad \frac{\mathbf{A} \sqsubseteq \mathbf{B}}{\mathbf{A} \sqsubseteq \exists \mathbf{F}.(\stackrel{\leq}{\leq}, n)} \qquad \mathbf{B} \sqsubseteq \exists \mathbf{F}.(\stackrel{\leq}{\leq}, n) \in \mathcal{O}$$

$$\mathsf{CD2}_{(<,<)} \qquad \frac{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(<,m)}{\mathsf{A} \sqsubseteq \mathsf{B}} \quad \exists \mathsf{F}.(<,n) \sqsubseteq \mathsf{B} \in \mathcal{O} , m \le n$$

< 17 ×

A B F A B F

 $\mathbf{ID1} \qquad \qquad \mathbf{A} \sqsubseteq \mathbf{\bot} \qquad \mathbf{A} \sqsubseteq \exists \mathbf{F}.(<,0) \in \mathcal{O}$

 $\mathsf{CD1} \qquad \frac{\mathsf{A} \sqsubseteq \mathsf{B}}{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(\leqq, n)} \quad \mathsf{B} \sqsubseteq \exists \mathsf{F}.(\leqq, n) \in \mathcal{O}$

$$\mathbf{CD2}_{(<,<)} \qquad \frac{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(<,m)}{\mathsf{A} \sqsubseteq \mathsf{B}} \quad \exists \mathsf{F}.(<,n) \sqsubseteq \mathsf{B} \in \mathcal{O} \ , m \le n$$

 $\begin{array}{lll} \mathsf{CD2}_{(=,<)} & & \displaystyle \frac{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(=,m)}{\mathsf{A} \sqsubseteq \mathsf{B}} & \exists \mathsf{F}.(<,n) \sqsubseteq \mathsf{B} \in \mathcal{O} \ , m < n \end{array}$

< 同 > < 回 > < 回 > <

 $\mathbf{ID1} \qquad \qquad \mathbf{A} \sqsubseteq \mathbf{\bot} \qquad \mathbf{A} \sqsubseteq \exists \mathbf{F}.(<,0) \in \mathcal{O}$

 $\mathsf{CD1} \qquad \frac{\mathsf{A} \sqsubseteq \mathsf{B}}{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(\leqq, n)} \quad \mathsf{B} \sqsubseteq \exists \mathsf{F}.(\leqq, n) \in \mathcal{O}$

$$\mathsf{CD2}_{(<,<)} \qquad \frac{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(<,m)}{\mathsf{A} \sqsubseteq \mathsf{B}} \quad \exists \mathsf{F}.(<,n) \sqsubseteq \mathsf{B} \in \mathcal{O} \ , m \le n$$

 $\mathbf{CD2}_{(=,<)} \qquad \frac{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(=,m)}{\mathsf{A} \sqsubseteq \mathsf{B}} \quad \exists \mathsf{F}.(<,n) \sqsubseteq \mathsf{B} \in \mathcal{O} \ , m < n$

 $\mathsf{CD2}_{(=,=)} \qquad \frac{\mathsf{A} \sqsubseteq \exists \mathsf{F}.(=,m)}{\mathsf{A} \sqsubseteq \mathsf{B}} \qquad \exists \mathsf{F}.(=,n) \sqsubseteq \mathsf{B} \in \mathcal{O} \ , m = n \ \dots$

- The algorithm is:
 - sound: all rules derive logical consequences of the premises

< 17 >

- The algorithm is:
 - sound: all rules derive logical consequences of the premises
 - polynomial: only polynomially different axioms are derived

- The algorithm is:
 - sound: all rules derive logical consequences of the premises
 - polynomial: only polynomially different axioms are derived
 - not complete in general

$SAFE \ DATATYPES$

- The algorithm is:
 - sound: all rules derive logical consequences of the premises
 - polynomial: only polynomially different axioms are derived
 - not complete in general
 - complete: provided the datatypes are convex

$SAFE \ DATATYPES$

- The algorithm is:
 - sound: all rules derive logical consequences of the premises
 - polynomial: only polynomially different axioms are derived
 - not complete in general
 - complete: provided the datatypes are convex

DEFINITION

Safety property: If a positive relation implies a disjunction of negative relations, then it also implies one of its disjuncts.

- The algorithm is:
 - sound: all rules derive logical consequences of the premises
 - polynomial: only polynomially different axioms are derived
 - not complete in general
 - complete: provided the datatypes are convex

DEFINITION

Safety property: If a positive relation implies a disjunction of negative relations, then it also implies one of its disjuncts.

EXAMPLE

Panadol \sqsubseteq \exists contains.(Paracetamol $\sqcap \exists$ mgPerTablet.(=, 500))

Patient $\sqcap \exists hasAge.(<,6) \sqcap \exists hasPrescription.$ $\exists contains.(Paracetamol \sqcap \exists mgPerTablet.(>,250)) \sqsubseteq \bot$

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

æ

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

All cases are safe:

문 🕨 🖈 문

크

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>,\geq,=$	$<, \leq, =$

• All cases are safe: If $(x = n) \rightarrow \bigvee_{i=1}^{k} (x \leq m_i)$, then $\exists i$ such that $(x \leq m_i)$.

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<,\leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

All cases are safe:

If $(x \leq n) \rightarrow (x < m_1) \lor (x < m_2)$, then $x < \max(m_1, m_2)$.

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

All cases are safe:

If $(x \leq n) \to (x > m_1) \lor (x > m_2)$, then $x > \min(m_1, m_2)$.

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

All cases are safe:

$$(x > n) \nrightarrow (x < m_1) \lor (x = m_2)$$

문 🕨 🖈 문

크

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=,<	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

All cases are safe:

$$(x > n) \nrightarrow (x < m_1) \lor (x = m_2)$$

All cases are maximal:

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=,<	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$

All cases are safe:

$$(x > n) \nrightarrow (x < m_1) \lor (x = m_2)$$

All cases are maximal:

$$\begin{array}{rrr} (x < 2) & \rightarrow & (x = 1) \lor (x = 0) \\ (x < 2) & \not \rightarrow & (x = 1) \\ (x < 2) & \not \rightarrow & (x = 0) \end{array}$$

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<,\leq,<$
$<,\leq,>,\geq,=$	$>,\geq$
$>,\geq,=$	$<, \leq, =$

All cases are safe:

$$(x > n) \nrightarrow (x < m_1) \lor (x = m_2)$$

All cases are maximal:

$$\begin{array}{rrrr} (x < 3) & \rightarrow & (x = 2) \lor (x < 2) \\ (x < 3) & \not \rightarrow & (x = 2) \\ (x < 3) & \not \rightarrow & (x < 2) \end{array}$$

< 一型

Safe Cases for $\mathbb N$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<,\leq,=,>$

All cases are safe:

$$(x > n) \nrightarrow (x < m_1) \lor (x = m_2)$$

All cases are maximal:

$$\begin{array}{rrrr} (x > 2) & \rightarrow & (x = 3) \lor (x > 3) \\ (x > 2) & \not \rightarrow & (x = 3) \\ (x > 2) & \not \rightarrow & (x > 3) \end{array}$$

A Reasoning Algorithm for $\mathcal{EL}^{\perp}(\mathcal{D})$

Safe Cases for $\mathbb Z$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$
$<,\leq,=$	$>, \geq, =$

< □ > < □ > < □ > < □ > < □ >

æ

Safe Cases for $\mathbb Z$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	=
$<,\leq,>,\geq,=$	$<,\leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$
$<, \leq, =$	$>,\geq,=$

 Additional datatype restrictions: integers do not have a minimal element such as 0.

Safe Cases for $\mathbb Z$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$
$<, \leq, =$	$>,\geq,=$

- Additional datatype restrictions: integers do not have a minimal element such as 0.
- All cases are safe:

Safe Cases for $\mathbb Z$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	=
$<,\leq,>,\geq,=$	$<,\leq$
$<,\leq,>,\geq,=$	$>,\geq$
$>, \geq, =$	$<, \leq, =$
$<, \leq, =$	$>, \geq, =$

- Additional datatype restrictions: integers do not have a minimal element such as 0.
- All cases are safe:

$$(x < 2) \nrightarrow (x = 1) \lor (x = 0) \lor \dots$$

A Reasoning Algorithm for $\mathcal{EL}^{\perp}(\mathcal{D})$

Safe Cases for ${\mathbb Q}$ and ${\mathbb R}$

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	\leq ,=
$<,\leq,>,\geq,=$	\geq ,=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$<,>,\geq,=$	$<, \leq, =$
$<,\leq,>,=$	$>, \geq, =$

< □ > < □ > < □ > < □ > < □ >

크

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	\leq ,=
$<,\leq,>,\geq,=$	\geq ,=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$<,>,\geq,=$	$<, \leq, =$
$<,\leq,>,=$	$>, \geq, =$

 Density property: between every two different numbers there exists a third one.

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	\leq ,=
$<,\leq,>,\geq,=$	\geq ,=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$<,>,\geq,=$	$<, \leq, =$
$<,\leq,>,=$	$>, \geq, =$

- Density property: between every two different numbers there exists a third one.
- All cases are safe:

A (1) > A (2) > A

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	\leq ,=
$<,\leq,>,\geq,=$	\geq ,=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$<,>,\geq,=$	$<, \leq, =$
$<,\leq,>,=$	$>, \geq, =$

- Density property: between every two different numbers there exists a third one.
- All cases are safe:

$$(x < n) \rightarrow_{\mathbb{Z}} (x = n - 1) \lor (x < n - 1)$$

A (1) > A (2) > A

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$
$<,\leq,>,\geq,=$	\leq ,=
$<,\leq,>,\geq,=$	\geq ,=
$<,\leq,>,\geq,=$	$<, \leq$
$<,\leq,>,\geq,=$	$>,\geq$
$<,>,\geq,=$	$<, \leq, =$
$<,\leq,>,=$	$>, \geq, =$

- Density property: between every two different numbers there exists a third one.
- All cases are safe:

$$(x < n) \rightarrow_{\mathbb{Z}} (x = n - 1) \lor (x < n - 1)$$
$$(x < n) \not\rightarrow_{\mathbb{R}} (x = n - 1) \lor (x < n - 1)$$

OUTLINE

1 \mathcal{EL} and Datatypes

2 A Reasoning Algorithm for $\mathcal{EL}^{\perp}(\mathcal{D})$

3 CONCLUSION

(日)

RESULTS OVERVIEW

 Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes
- Full classification of safe datatypes for the cases of $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes
- Full classification of safe datatypes for the cases of $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- Common safe datatype for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes
- Full classification of safe datatypes for the cases of $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- Common safe datatype for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Positive relations	Negative relations
=	$<,\leq,>,\geq,=$

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes
- Full classification of safe datatypes for the cases of $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- Common safe datatype for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Positive relations | Negative relations

= $<, \leq, >, \geq, =$

Interesting from a modeling point of view:

■ Positive use of datatypes describes precise facts ~→ equality

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes
- Full classification of safe datatypes for the cases of $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- Common safe datatype for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Positive relations | Negative relations

 $<,\leq,>,\geq,=$

(I)

Interesting from a modeling point of view:

- Positive use of datatypes describes precise facts ~→ equality
- Negative use of datatypes refers to a range of situations ~> both equality and inequalities

RESULTS OVERVIEW

- Polynomial, sound and complete reasoning procedure for extensions of *EL*[⊥] with numerical datatypes
- Full classification of safe datatypes for the cases of $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}
- Common safe datatype for \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} :

Positive relations | Negative relations

 $<,\leq,>,\geq,=$

Interesting from a modeling point of view:

- Positive use of datatypes describes precise facts ~→ equality
- Negative use of datatypes refers to a range of situations ~> both equality and inequalities
- Potential extension of the EL Profile in OWL 2 that currently supports only equality

FUTURE WORK

Extend the reasoning algorithm:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

FUTURE WORK

- Extend the reasoning algorithm:
 - complex role inclusions

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties

< 一型

FUTURE WORK

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals

< 一型

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]
- More fine-grained analysis by also considering which data properties correspond to which relations

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]
- More fine-grained analysis by also considering which data properties correspond to which relations
- Thank you for your attention! Questions?

- **Extend** the reasoning algorithm:
 - complex role inclusions
 - functional data properties
 - nominals
 - domain and range restrictions
 - Horn SHIQ [Kazakov, IJCAI, 2009]
- More fine-grained analysis by also considering which data properties correspond to which relations
- Thank you for your attention! Questions?