ACYCLICITY CONDITIONS AND THEIR APPLICATION TO QUERY ANSWERING IN DESCRIPTION LOGICS

Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka, Boris Motik, Zhe Wang

Department of Computer Science, University of Oxford

June 14, 2012

OUTLINE

2 MFA AND MSA

1

3 QUERYING ACYCLIC DL ONTOLOGIES

4 EXPERIMENTAL RESULTS

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - のへで

ONTOLOGICAL QUERY ANSWERING

Key reasoning task for DL and rule-based applications

ONTOLOGICAL QUERY ANSWERING

Key reasoning task for DL and rule-based applications
 Answering CQs over DLs ~> high computational complexity

ONTOLOGICAL QUERY ANSWERING

- Key reasoning task for DL and rule-based applications
- Answering CQs over DLs ~> high computational complexity
- Materialisation-based paradigm: chase ABox using TBox and evaluate Q in the computed ABox

 Positive, function-free, FOL implications with existentially quantified variables in the head

 Positive, function-free, FOL implications with existentially quantified variables in the head

EXAMPLE $A(x) \rightarrow \exists y. R(x, y) \land B(y)$ DL-equivalent \rightsquigarrow $A \sqsubseteq \exists R.B$

 Positive, function-free, FOL implications with existentially quantified variables in the head

EXAMPLE $A(x) \rightarrow \exists y. R(x, y) \land B(y)$ DL-equivalent \rightsquigarrow $A \sqsubseteq \exists R.B$

Existential rules fundamental for several KR formalisms:

 Positive, function-free, FOL implications with existentially quantified variables in the head

EXAMPLE

 $A(x) \rightarrow \exists y. R(x, y) \land B(y)$ DL-equivalent \rightsquigarrow $A \sqsubseteq \exists R. B$

Existential rules fundamental for several KR formalisms:

- Schema constraints in databases
- 2 Data transformation rules in data exchange
- 3 Foundation for Datalog± family of KR languages
- **4** Ubiquitous in **Description Logics**

 Positive, function-free, FOL implications with existentially quantified variables in the head

EXAMPLE

 $A(x) \rightarrow \exists y. R(x, y) \land B(y)$ DL-equivalent \rightsquigarrow $A \sqsubseteq \exists R. B$

Existential rules fundamental for several KR formalisms:

- Schema constraints in databases
- 2 Data transformation rules in data exchange
- **3** Foundation for Datalog± family of KR languages
- **4** Ubiquitous in **Description Logics**

Chase termination is undecidable for existential rules

 Positive, function-free, FOL implications with existentially quantified variables in the head

EXAMPLE

 $A(x) \rightarrow \exists y. R(x, y) \land B(y)$ DL-equivalent \rightsquigarrow $A \sqsubseteq \exists R. B$

Existential rules fundamental for several KR formalisms:

- Schema constraints in databases
- 2 Data transformation rules in data exchange
- 3 Foundation for Datalog± family of KR languages
- **4** Ubiquitous in **Description Logics**
- Chase termination is undecidable for existential rules
- CQ answering is undecidable for existential rules

 Identify groups of rules for which query answering is decidable

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

Acyclic set of rules

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

Plus

I No restriction on the shape of rules (unlike guarded rules)

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

(日)

Plus

- I No restriction on the shape of rules (unlike guarded rules)
- II Materialised ABoxes can be stored as databases

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

Plus

- I No restriction on the shape of rules (unlike guarded rules)
- II Materialised ABoxes can be stored as databases

I Only sets of rules with models of bounded size

(日)

- Identify groups of rules for which query answering is decidable
 - Guarded rules, sticky rules, bounded treewidth sets
- Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT, 2002], super-weak acyclicity [Marnette, PODS, 2009], joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011],...

Plus

- I No restriction on the shape of rules (unlike guarded rules)
- II Materialised ABoxes can be stored as databases

- I Only sets of rules with models of bounded size
- II Acyclicity conditions might be too restrictive

 Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

Risk of non-termination

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

Risk of non-termination

(日)

- Approaches taken:
 - 1 Saturate only non-existential rules (OWL 2 RL)

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

Risk of non-termination

- Approaches taken:
 - Saturate only non-existential rules (OWL 2 RL): can miss answers X

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

Risk of non-termination

- Approaches taken:
 - Saturate only non-existential rules (OWL 2 RL): can miss answers ×
 - 2 Apply existential rules in a restricted way

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

Risk of non-termination

- Approaches taken:
 - Saturate only non-existential rules (OWL 2 RL): can miss answers ×
 - 2 Apply existential rules in a restricted way: can still miss answers and/or not terminate X

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のの⊙

5

- Answering CQs over expressive DLs is expensive, e.g.
 EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and Simkus, 2011]
- For Horn ontologies, consequences can be precomputed, stored and used for query evaluation, e.g. by the RDF repositories Sesame, Jena, OWLIM, DLE-Jena,...

Risk of non-termination

- Approaches taken:
 - Saturate only non-existential rules (OWL 2 RL): can miss answers ×
 - 2 Apply existential rules in a restricted way: can still miss answers and/or not terminate ×
- Suggestion: materialise ABoxes only over acyclic TBoxes
 - Always complete
 - Provably terminating

1 More general acyclicity conditions: MSA and MFA

- More general acyclicity conditions: MSA and MFA
- 2 Complexity analysis for checking MSA and MFA

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- More general acyclicity conditions: MSA and MFA
- 2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

- 3 DL query answering under acyclicity conditions
 - Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard

- More general acyclicity conditions: MSA and MFA
- 2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

- 3 DL query answering under acyclicity conditions
 - Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
 - Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)
 - materialised ABoxes not too large

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)
 - materialised ABoxes not too large ~→ × 5 bigger on average for ontologies with depth < 5 (= most ontologies)</p>

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)
 - materialised ABoxes not too large

Materialisation-based reasoning beyond OWL 2 RL might be practically feasible

OUTLINE

2 MFA AND MSA

3 QUERYING ACYCLIC DL ONTOLOGIES

4 EXPERIMENTAL RESULTS

◆ロ ▶ ◆母 ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 母 ▶

$$r_1 : A(u) \to \exists y_1 . R(u, y_1) \land B(y_1)$$

$$r_2 : B(v) \to \exists y_2 . R(v, y_2) \land C(y_2)$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

EXAMPLE

$$r_1 : A(u) \to \exists y_1 . R(u, y_1) \land B(y_1)$$

$$r_2 : B(v) \to \exists y_2 . R(v, y_2) \land C(y_2)$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$r_1 : A(u) \to \exists y_1 . R(u, \underline{y_1}) \land B(\underline{y_1})$$

$$r_2 : B(v) \to \exists y_2 . R(v, y_2) \land C(y_2)$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to \exists y_2 . R(v, y_2) \land C(y_2)$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to \exists y_2 . R(v, \underline{y_2}) \land C(\underline{y_2})$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

A, B, C

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(u) \to R(u, \underline{f(u)}) \land B(\underline{f(u)})$$

$$r_2 : B(v) \to R(v, \overline{g(v)}) \land C(\overline{g(v)})$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$\mathsf{Move}(f(u)) = \{ \mathbf{R}|_2, \ \mathbf{B}|_1$$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(\underline{v}, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$Move(f(u)) = \{R|_2, B|_1, R|_1$$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(\underline{w})$$

 $\mathsf{Move}(f(u)) = \{ R|_2, \ B|_1, \ R|_1, \ A|_1 \}$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(\underline{u}) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

 $\mathsf{Pos}_B(u) = \{A|_1\}$ $\mathsf{Move}(f(u)) = \{R|_2, B|_1, R|_1, A|_1\}$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$\mathsf{Pos}_B(u) = \{A|_1\} \subseteq \mathsf{Move}(f(u)) = \{R|_2, B|_1, R|_1, A|_1\}$$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$\mathsf{Pos}_B(u) = \{A|_1\} \subseteq \mathsf{Move}(f(u)) = \{R|_2, B|_1, R|_1, A|_1\}$$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check

EXAMPLE

$$r_1 : A(u) \to R(u, f(u)) \land B(f(u))$$

$$r_2 : B(v) \to R(v, g(v)) \land C(g(v))$$

$$r_3 : R(w, z) \land B(z) \to A(w)$$

$$\mathsf{Pos}_B(u) = \{A|_1\} \subseteq \mathsf{Move}(f(u)) = \{R|_2, B|_1, R|_1, A|_1\}$$

- Tracks value generation and propagation to detect cyclic creation of terms
- 2 Polynomial time to check
- May overestimate rule applicability

Track rule applications more 'faithfully'

Track rule applications more 'faithfully'

EXAMPLE

 $A(u) \to R(u, f(u)) \land B(f(u))$ $B(v) \to R(v, g(v)) \land C(g(v))$ $R(w, z) \land B(z) \to A(w)$

Track rule applications more 'faithfully'

EXAMPLE

 $A(u) \to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u))$ $B(v) \to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v))$ $R(w, z) \land B(z) \to A(w)$

Track rule applications more 'faithfully'

EXAMPLE

 $\begin{aligned} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \end{aligned}$

Track rule applications more 'faithfully'

EXAMPLE

 $\begin{aligned} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \\ F_f(x) \land D(x, y) \land F_f(y) &\to Cycle \\ F_g(x) \land D(x, y) \land F_g(y) &\to Cycle \end{aligned}$

Track rule applications more 'faithfully'

EXAMPLE

 $\begin{aligned} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \\ F_f(x) \land D(x, y) \land F_f(y) &\to Cycle \\ F_g(x) \land D(x, y) \land F_g(y) &\to Cycle \end{aligned}$

Track rule applications more 'faithfully'

EXAMPLE

$$\begin{split} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \\ F_f(x) \land D(x, y) \land F_f(y) &\to Cycle \\ F_g(x) \land D(x, y) \land F_g(y) &\to Cycle \end{split}$$

• For Σ a set of rules, Σ is MFA if $I_{\Sigma}^* \cup MFA(\Sigma) \not\models Cycle$

A, B, C

Track rule applications more 'faithfully'

EXAMPLE

 $\begin{aligned} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \\ F_f(x) \land D(x, y) \land F_f(y) &\to Cycle \\ F_g(x) \land D(x, y) \land F_g(y) &\to Cycle \end{aligned}$

Track rule applications more 'faithfully'

EXAMPLE

$$\begin{split} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \\ F_f(x) \land D(x, y) \land F_f(y) &\to Cycle \\ F_g(x) \land D(x, y) \land F_g(y) &\to Cycle \end{split}$$

Track rule applications more 'faithfully'

EXAMPLE

 $\begin{aligned} A(u) &\to R(u, f(u)) \land B(f(u)) \land S(u, f(u)) \land F_f(f(u)) \\ B(v) &\to R(v, g(v)) \land C(g(v)) \land S(v, g(v)) \land F_g(g(v)) \\ R(w, z) \land B(z) &\to A(w) \\ S(x, y) &\to D(x, y) \\ D(x, y) \land S(y, z) &\to D(x, z) \\ F_f(x) \land D(x, y) \land F_f(y) &\to Cycle \\ F_g(x) \land D(x, y) \land F_g(y) &\to Cycle \end{aligned}$

Track rule applications more 'faithfully'

- For Σ a set of rules, Σ is MFA if $I_{\Sigma}^* \cup MFA(\Sigma) \not\models Cycle$
- Set of rules that correspond to DL subsumptions $\{A \equiv \exists R.B, B \sqsubseteq \exists R.C\}$ is MFA

COST OF CHECKING MFA

 \blacksquare Testing model-faithful acyclicity for a set of rules Σ

COST OF CHECKING MFA

\blacksquare Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

 \rightsquigarrow 2EXPTIME-complete (tree with branching factor $|\vec{x}|$ and height the total number of function symbols)

COST OF CHECKING MFA

 \blacksquare Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

 \rightsquigarrow 2EXPTIME-complete (tree with branching factor $|\vec{x}|$ and height the total number of function symbols)

2 Rules of the form φ(x, z) → ∃y.ψ(x, y) with predicates of bounded arity

~ 2EXPTIME-complete
- \blacksquare Testing model-faithful acyclicity for a set of rules Σ
 - **1** Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

 \rightsquigarrow 2EXPTIME-complete (tree with branching factor $|\vec{x}|$ and height the total number of function symbols)

(日)

2 Rules of the form φ(x, z) → ∃y.ψ(x, y) with predicates of bounded arity

~ 2EXPTIME-complete

3 Rules from Horn-SRI

→ EXPTIME-hard

10

- \blacksquare Testing model-faithful acyclicity for a set of rules Σ
 - **1** Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

 \sim 2EXPTIME-complete (tree with branching factor $|\vec{x}|$ and height the total number of function symbols)

2 Rules of the form $\varphi(\vec{x}, \vec{z}) \to \exists \vec{y}. \psi(\vec{x}, \vec{y})$ with predicates of bounded arity

~ 2EXPTIME-complete

3 Rules from Horn-SRI

→ EXPTIME-hard

4 Rules from Horn-SHIQ

~ PSPACE-complete

- \blacksquare Testing model-faithful acyclicity for a set of rules Σ
 - **1** Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

 \rightsquigarrow 2EXPTIME-complete (tree with branching factor $|\vec{x}|$ and height the total number of function symbols)

2 Rules of the form φ(x, z) → ∃y.ψ(x, y) with predicates of bounded arity

~ 2EXPTIME-complete

- 3 Rules from Horn-SRI
 - → EXPTIME-hard
- 4 Rules from Horn-SHIQ

~ PSPACE-complete

Existing acyclicity conditions can be checked in PTIME

- \blacksquare Testing model-faithful acyclicity for a set of rules Σ
 - **1** Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

 \rightsquigarrow 2EXPTIME-complete (tree with branching factor $|\vec{x}|$ and height the total number of function symbols)

2 Rules of the form φ(x, z) → ∃y.ψ(x, y) with predicates of bounded arity

~ 2EXPTIME-complete

- 3 Rules from Horn-SRI
 - → EXPTIME-hard
- 4 Rules from Horn-SHIQ

~ PSPACE-complete

- Existing acyclicity conditions can be checked in PTIME
- Isn't computational complexity too high?

Track rule applications just 'faithfully' enough

Track rule applications just 'faithfully' enough

EXAMPLE

 $A(u) \to R(u, f(u)) \land B(f(u))$ $B(v) \to R(v, g(v)) \land C(g(v))$ $R(w, z) \land B(z) \to A(w)$

Track rule applications just 'faithfully' enough

EXAMPLE

 $A(u) \to R(u, f(u)) \land B(f(u))$ $B(v) \to R(v, g(v)) \land C(g(v))$ $R(w, z) \land B(z) \to A(w)$

Track rule applications just 'faithfully' enough

EXAMPLE

 $A(u) \to R(u, c_1) \land B(c_1)$ $B(v) \to R(v, c_2) \land C(c_2)$ $R(w, z) \land B(z) \to A(w)$

Track rule applications just 'faithfully' enough

EXAMPLE

$$A(u) \to R(u, c_1) \land B(c_1) \land S(u, c_1) \land F_{c_1}(c_1)$$

$$B(v) \to R(v, c_2) \land C(c_2) \land S(v, c_2) \land F_{c_2}(c_2)$$

$$R(w, z) \land B(z) \to A(w)$$

Track rule applications just 'faithfully' enough

EXAMPLE

$$\begin{aligned} A(u) &\to R(u,c_1) \land B(c_1) \land S(u,c_1) \land F_{c_1}(c_1) \\ B(v) &\to R(v,c_2) \land C(c_2) \land S(v,c_2) \land F_{c_2}(c_2) \\ R(w,z) \land B(z) &\to A(w) \\ S(x,y) &\to D(x,y) \\ D(x,y) \land S(y,z) &\to D(x,z) \\ F_{c_1}(x) \land D(x,y) \land F_{c_1}(y) &\to Cycle \\ F_{c_2}(x) \land D(x,y) \land F_{c_2}(y) &\to Cycle \end{aligned}$$

Track rule applications just 'faithfully' enough

EXAMPLE

$$\begin{aligned} A(u) &\to R(u,c_1) \land B(c_1) \land S(u,c_1) \land F_{c_1}(c_1) \\ B(v) &\to R(v,c_2) \land C(c_2) \land S(v,c_2) \land F_{c_2}(c_2) \\ R(w,z) \land B(z) &\to A(w) \\ S(x,y) &\to D(x,y) \\ D(x,y) \land S(y,z) &\to D(x,z) \\ F_{c_1}(x) \land D(x,y) \land F_{c_1}(y) &\to Cycle \\ F_{c_2}(x) \land D(x,y) \land F_{c_2}(y) &\to Cycle \end{aligned}$$

Track rule applications just 'faithfully' enough

EXAMPLE

$$\begin{aligned} A(u) &\to R(u,c_1) \land B(c_1) \land S(u,c_1) \land F_{c_1}(c_1) \\ B(v) &\to R(v,c_2) \land C(c_2) \land S(v,c_2) \land F_{c_2}(c_2) \\ R(w,z) \land B(z) &\to A(w) \\ S(x,y) &\to D(x,y) \\ D(x,y) \land S(y,z) &\to D(x,z) \\ F_{c_1}(x) \land D(x,y) \land F_{c_1}(y) &\to Cycle \\ F_{c_2}(x) \land D(x,y) \land F_{c_2}(y) &\to Cycle \end{aligned}$$

A, B, C

Track rule applications just 'faithfully' enough

EXAMPLE

$$\begin{aligned} A(u) &\to R(u,c_1) \land B(c_1) \land S(u,c_1) \land F_{c_1}(c_1) \\ B(v) &\to R(v,c_2) \land C(c_2) \land S(v,c_2) \land F_{c_2}(c_2) \\ R(w,z) \land B(z) &\to A(w) \\ S(x,y) &\to D(x,y) \\ D(x,y) \land S(y,z) &\to D(x,z) \\ F_{c_1}(x) \land D(x,y) \land F_{c_1}(y) &\to Cycle \\ F_{c_2}(x) \land D(x,y) \land F_{c_2}(y) &\to Cycle \end{aligned}$$

Track rule applications just 'faithfully' enough

EXAMPLE

$$\begin{aligned} A(u) &\to R(u,c_1) \land B(c_1) \land S(u,c_1) \land F_{c_1}(c_1) \\ B(v) &\to R(v,c_2) \land C(c_2) \land S(v,c_2) \land F_{c_2}(c_2) \\ R(w,z) \land B(z) &\to A(w) \\ S(x,y) &\to D(x,y) \\ D(x,y) \land S(y,z) &\to D(x,z) \\ F_{c_1}(x) \land D(x,y) \land F_{c_1}(y) &\to Cycle \\ F_{c_2}(x) \land D(x,y) \land F_{c_2}(y) &\to Cycle \end{aligned}$$

Track rule applications just 'faithfully' enough

EXAMPLE

$$\begin{array}{l} A(u) \rightarrow R(u,c_{1}) \wedge B(c_{1}) \\ \beta(v) \rightarrow R(v,c_{2}) \wedge C(c_{2}) \\ R(w,z) \wedge B(z) \rightarrow A(w) \\ \hline S(x,y) \rightarrow D(x,y) \\ D(x,y) \wedge S(y,z) \rightarrow D(x,z) \\ F_{c_{1}}(x) \wedge D(x,y) \wedge F_{c_{1}}(y) \rightarrow Cycle \\ F_{c_{2}}(x) \wedge D(x,y) \wedge F_{c_{2}}(y) \rightarrow Cycle \end{array}$$

- For Σ a set of rules, Σ is MSA if $I_{\Sigma}^* \cup MSA(\Sigma) \not\models Cycle$
- Set of rules that correspond to DL subsumptions $\{A \equiv \exists R.B, B \sqsubseteq \exists R.C\}$ is still MSA

 \blacksquare Testing model-faithful acyclicity for a set of rules Σ

\blacksquare Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

~ EXPTIME-complete

\blacksquare Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form $\varphi(\vec{x}, \vec{z}) \to \exists \vec{y}.\psi(\vec{x}, \vec{y})$ (no restriction)

~ EXPTIME-complete

2 Rules of the form $\varphi(\vec{x}, \vec{z}) \to \exists \vec{y}. \psi(\vec{x}, \vec{y})$ with predicates of bounded arity

→ coNP-complete

\blacksquare Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

~ EXPTIME-complete

2 Rules of the form $\varphi(\vec{x}, \vec{z}) \to \exists \vec{y}.\psi(\vec{x}, \vec{y})$ with predicates of bounded arity

(日)

~ coNP-complete

3 Rules from Horn-SHIQ

~ PTIME-complete

12

\blacksquare Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form $\varphi(\vec{x}, \vec{z}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y})$ (no restriction)

~ EXPTIME-complete

2 Rules of the form $\varphi(\vec{x}, \vec{z}) \to \exists \vec{y}.\psi(\vec{x}, \vec{y})$ with predicates of bounded arity

→ coNP-complete

3 Rules from Horn-SHIQ

~ PTIME-complete

 Horn-SHIQ TBoxes can be checked in PTIME for MSA before *potential* materialisation-based query answering

Our contributions:

$$\mathsf{JA} \, \subsetneq \, \mathsf{SWA} \qquad \mathsf{MSA} \qquad \mathsf{MFA}$$

Our contributions:

1 MSA strictly subsumes SWA

$$\mathsf{JA} \ \subsetneq \ \mathsf{SWA} \ \subsetneq \ \mathsf{MSA} \qquad \mathsf{MFA}$$

Our contributions:

1 MSA strictly subsumes SWA

2 MFA strictly subsumes MSA

$$\mathsf{JA} \ \subsetneq \ \mathsf{SWA} \ \subsetneq \ \mathsf{MSA} \ \subsetneq \ \mathsf{MFA}$$

EXAMPLE

$$egin{aligned} A(x) &
ightarrow \exists y. R(x,y) \wedge B(y) \ B(x) &
ightarrow \exists y. S(x,y) \wedge T(y,x) \ A(z) \wedge S(z,x) &
ightarrow C(x) \ C(z) \wedge T(z,x) &
ightarrow A(x) \end{aligned}$$
 MFA but not MSA

Our contributions:

1 MSA strictly subsumes SWA

2 MFA strictly subsumes MSA

$$\mathsf{JA}\ \subsetneq\ \mathsf{SWA}\ \subsetneq\ \mathsf{MSA}\ \subsetneq\ \mathsf{MFA}$$

EXAMPLE

 $\begin{array}{l} A(x) \to \exists y. R(x,y) \land B(y) \\ B(x) \to \exists y. S(x,y) \land T(y,x) \\ A(z) \land S(z,x) \to C(x) \\ C(z) \land T(z,x) \to A(x) \end{array}$ MFA but not MSA

MSA and MFA coincide in experimental evaluation of DL ontologies

OUTLINE

2 MFA AND MSA

3 QUERYING ACYCLIC DL ONTOLOGIES

4 EXPERIMENTAL RESULTS

▲□▶▲□▶▲□▶▲□▶ □ ● ●

TRANSLATING DLS INTO RULES

 Axioms of normalised Horn-SRIQ ontologies can be converted to (existential) rules

A	⊑∃R.B	$A(x) \rightarrow \exists y.R(x,y) \land B(y)$
A	$\sqsubseteq \le 1 \text{ R.B}$	$A(z) \wedge R(z,x_1) \wedge B(x_1) \wedge R(z,x_2)$
		$\wedge \ \mathbf{B}(x_2) \ \rightarrow \ x_1 \approx x_2$
A⊓B	⊑ C	$A(x) \wedge B(x) \rightarrow C(x)$
A	⊑ ∀R.B	$A(z) \wedge R(z,x) \rightarrow B(x)$
R	⊑S	$R(x_1, x_2) \rightarrow S(x_1, x_2)$
R o S	⊑ T	$R(x_1,z) \wedge S(z,x_2) \rightarrow T(x_1,x_2)$

TRANSLATING DLS INTO RULES

 Axioms of normalised Horn-SRIQ ontologies can be converted to (existential) rules

Α	⊑∃R.B	$A(x) \rightarrow \exists y. R(x, y) \land B(y)$
Α	$\sqsubseteq \le 1 \text{ R.B}$	$A(z) \wedge R(z,x_1) \wedge B(x_1) \wedge R(z,x_2)$
		$\wedge B(x_2) \rightarrow \underline{x_1 \approx x_2}$
A ⊓ B	⊑C	$A(x) \wedge B(x) \rightarrow C(x)$
Α	⊑ ∀R.B	$A(z) \wedge R(z,x) \rightarrow B(x)$
R	⊑S	$R(x_1, x_2) \rightarrow S(x_1, x_2)$
R o S	⊑ T	$R(x_1,z) \wedge S(z,x_2) \rightarrow T(x_1,x_2)$

 Equality is handled with a modification of the singularisation [Marnette, PODS, 2009] technique

 Answering conjunctive queries for the DL Horn-SHIQ is EXPTIME-complete [Eiter et al., 2008]

 Answering conjunctive queries for the DL Horn-SHIQ is EXPTIME-complete [Eiter et al., 2008]

Does acyclicity affect complexity for DL Query Answering?

 Answering conjunctive queries for the DL Horn-SHIQ is EXPTIME-complete [Eiter et al., 2008]

Does acyclicity affect complexity for DL Query Answering?

I Horn-SHIQ TBox T and ABox AT is MFA

Q Boolean conjunctive query

 \rightsquigarrow Deciding $\mathcal{T} \cup \mathcal{A} \models Q$ is PSPACE-complete

 Answering conjunctive queries for the DL Horn-SHIQ is EXPTIME-complete [Eiter et al., 2008]

Does acyclicity affect complexity for DL Query Answering?

1 Horn- \mathcal{SHIQ} TBox \mathcal{T} and ABox \mathcal{A}

 \mathcal{T} is MFA *Q* Boolean conjunctive query

 \rightsquigarrow Deciding $\mathcal{T} \cup \mathcal{A} \models Q$ is PSPACE-complete

2 Horn-SRI TBox T and ABox A

 ${\mathcal T}$ is weakly acyclic

F set of facts

 \rightsquigarrow Deciding $\mathcal{T} \cup \mathcal{A} \models F$ is EXPTIME-hard

OUTLINE

2 MFA AND MSA

3 QUERYING ACYCLIC DL ONTOLOGIES

4 EXPERIMENTAL RESULTS

▲□▶▲□▶▲□▶▲□▶ □ ● ●

ACYCLICITY TESTS

Checked 149 DL ontologies for WA, JA, MSA, MFA

ACYCLICITY TESTS

Checked 149 DL ontologies for WA, JA, MSA, MFA

Existential rules	Total	MSA	JA	WA
< 100	70	64	64	64
100–1K	33	30	30	23
1K–5K	20	14	14	12
5K-12K	14	11	6	6
12K-160K	12	5	3	3
All sizes	149	124	117	108

ACYCLICITY TESTS

Checked 149 DL ontologies for WA, JA, MSA, MFA

Existential rules	Total	MSA	JA	WA
< 100	70	64	64	64
100–1K	33	30	30	23
1K–5K	20	14	14	12
5K-12K	14	11	6	6
12K-160K	12	5	3	3
All sizes	149	124	117	108

MSA and MFA coincide w.r.t. the test ontologies
ACYCLICITY TESTS

Checked 149 DL ontologies for WA, JA, MSA, MFA

Existential rules	Total	MSA	JA	WA
< 100	70	64	64	64
100–1K	33	30	30	23
1K–5K	20	14	14	12
5K-12K	14	11	6	6
12K-160K	12	5	3	3
All sizes	149	124	117	108

- MSA and MFA coincide w.r.t. the test ontologies
- 83% were found MSA

ACYCLICITY TESTS

Checked 149 DL ontologies for WA, JA, MSA, MFA

Existential rules	Total	MSA	JA	WA
< 100	70	64	64	64
100–1K	33	30	30	23
1K–5K	20	14	14	12
5K-12K	14	11	6	6
12K-160K	12	5	3	3
All sizes	149	124	117	108

- MSA and MFA coincide w.r.t. the test ontologies
- 83% were found MSA
- 7 large and expressive OBO ontologies MSA but not JA (only two of them were *ELH*^r and DL-Lite)

Computed materialisation of acyclic TBoxes

Computed materialisation of acyclic TBoxes

Depth	#	gener	rated size	mater	rialisation size
		max	avg	max	avg
< 5	82	27	2	35	5
5–9	13	37	11	41	13
10-80	14	281	51	283	53

Depth = length of function symbol nesting

apportated size - #	facts generated by existential rules
generated size	# facts in initial ABox
materialization cize	_ # facts in materialisation
materialisation size	# facts in initial ABox

Computed materialisation of acyclic TBoxes

Depth	#	gener	rated size	mater	rialisation size
		max	avg	max	avg
< 5	82	27	2	35	5
5–9	13	37	11	41	13
10-80	14	281	51	283	53

Depth = length of function symbol nesting

apported size $-$	<pre># facts generated by existential rules</pre>
generaled size	# facts in initial ABox
materialization size	_ # facts in materialisation
materialisation size	# facts in initial ABox

 For ontologies with small depths materialisation seems practically feasible

Computed materialisation of acyclic TBoxes

Depth	#	genei	rated size	mater	rialisation size
		max	avg	max	avg
< 5	82	27	2	35	(5)
5–9	13	37	11	41	13
10-80	14	281	51	283	53

Depth = length of function symbol nesting

apported size $-$	<pre># facts generated by existential rules</pre>
generaled size	# facts in initial ABox
materialization size	_ # facts in materialisation
materialisation size	# facts in initial ABox

 For ontologies with small depths materialisation seems practically feasible

SUMMARY OF THE RESULTS

- More general acyclicity conditions: MSA and MFA
- 2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)
 - materialised ABoxes not too large ~>> × 5 bigger on average for ontologies with depth < 5 (= most ontologies)</p>

SUMMARY OF THE RESULTS

- More general acyclicity conditions: MSA and MFA
- 2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn-SHIQT in MFA: $T \cup A \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)
 - materialised ABoxes not too large

Materialisation-based reasoning beyond OWL 2 RL might be practically feasible

SUMMARY OF THE RESULTS

More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

	Horn- \mathcal{SHIQ}	bounded arity	no restriction
MSA	PTime-complete	coNP-complete	ExpTime-complete
MFA	PSpace-complete	2ExpTime-complete	2ExpTime-complete

3 DL query answering under acyclicity conditions

- Horn-SRIT in WA: $T \cup A \models F$ is ExpTime-hard
- Horn- \mathcal{SHIQT} in MFA: $\mathcal{T} \cup \mathcal{A} \models Q$ is PSpace-complete
- 4 Experimental evaluation on DL ontologies
 - 83% ontologies found acyclic (78% JA)
 - materialised ABoxes not too large

Materialisation-based reasoning beyond OWL 2 RL might be practically feasible

Thank you! Questions?!?