# An Extension of Regularity Conditions FOR COMPLEX ROLE INCLUSION AXIOMS 

## Yevgeny Kazakov

Oxford University Computing Laboratory
July 30， 2009


## OUTLINE

## 1 Introduction

## 2 Stratified RIAs

## Complex Role Inclusion Axioms

- A new powerful feature in $\mathcal{S R O \mathcal { I }}$ and $\mathcal{O W \mathcal { L }} 2$
- Axioms of the form: $R_{1} \cdots R_{n} \sqsubseteq R$


## EXAMPLE

hasParent • hasBrother $\sqsubseteq$ hasUncle

## Complex Role Inclusion Axioms

- A new powerful feature in $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ and $\mathcal{O W \mathcal { L }} 2$
- Axioms of the form: $R_{1} \cdots R_{n} \sqsubseteq R$

EXAMPLE
hasParent • hasBrother $\sqsubseteq$ hasUncle

- In general cause undecidability (except for $\mathcal{E} \mathcal{L}^{++}$)


## Complex Role Inclusion Axioms

- A new powerful feature in $\mathcal{S R O \mathcal { O } \mathcal { Q }}$ and $\mathcal{O} \mathcal{W} \mathcal{L} 2$
- Axioms of the form: $R_{1} \cdots R_{n} \sqsubseteq R$


## EXAMPLE

hasParent • hasBrother $\sqsubseteq$ hasUncle
■ In general cause undecidability (except for $\mathcal{E} \mathcal{L}^{++}$)
■ Decidability is regained by imposing restrictions:

```
\prec-REGULARITY
    1}R\cdotR\sqsubseteqR\quad\mathrm{ (transitivity)
2 R \sqsubseteqR (symmetry)
3 }\mp@subsup{S}{1}{}\cdots\mp@subsup{S}{n}{}\sqsubseteq
4 R}\cdot\mp@subsup{S}{1}{}\cdots\mp@subsup{S}{n}{}\sqsubseteqR\quad\mathrm{ (left-linear)
5 S \cdots 的准\sqsubseteqR (right-linear)
where }\mp@subsup{S}{i}{}\prec
```


## REGULARITY

- Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { am } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

■ Induce a language for every role $R$ :

$$
L(R)=\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\}
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \longleftrightarrow \leadsto \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{array}{ll}
L(R)=\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } \quad & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \cdots R_{n} \sqsubseteq^{*} R\right\}
\end{array}
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{array}{ll}
L(R) & =\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } \quad & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \cdots R_{n} \sqsubseteq^{*} R\right\}
\end{array}
$$

- $\prec$-regularity implies that $L(R)$ is regular for every $R$


## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{aligned}
& L(R)=\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \cdots R_{n} \sqsubseteq^{*} R\right\}
\end{aligned}
$$

■ $\prec$-regularity implies that $L(R)$ is regular for every $R$

## EXAMPLE

$$
L(R)=\{\quad R \quad\}
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{aligned}
& L(R)=\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \cdots R_{n} \sqsubseteq^{*} R\right\}
\end{aligned}
$$

■ $\prec$-regularity implies that $L(R)$ is regular for every $R$

## EXAMPLE

$$
R \cdot R \sqsubseteq R \quad L(R)=\left\{\quad R^{+} \quad\right\}
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{array}{ll}
L(R) & =\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } \quad & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \cdots R_{n} \sqsubseteq^{*} R\right\}
\end{array}
$$

■ $\prec$-regularity implies that $L(R)$ is regular for every $R$

## EXAMPLE

$$
\begin{array}{ll}
R \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \quad\right\} \\
S_{1} \cdot R \sqsubseteq R &
\end{array}
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{array}{ll}
L(R)=\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } \quad & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \ldots R_{n} \sqsubseteq^{*} R\right\}
\end{array}
$$

■ $\prec$-regularity implies that $L(R)$ is regular for every $R$

## EXAMPLE

$$
R \cdot R \sqsubseteq R \quad L(R)=\left\{S_{1}^{*} \cdot R^{+} \cdot S_{2}^{*}\right\}
$$

$$
S_{1} \cdot R \sqsubseteq R
$$

$$
R \cdot S_{2} \sqsubseteq R
$$

## REGULARITY

■ Complex RIAs are related to context-free grammars:

$$
R \rightarrow R_{1} \cdots R_{n} \quad \text { «ぃ } \quad R_{1} \cdots R_{n} \sqsubseteq R
$$

- Induce a language for every role $R$ :

$$
\begin{aligned}
& L(R)=\left\{R_{1} \cdots R_{n} \mid R \rightarrow R_{1} \ldots R_{n}\right\} \\
\text { or } & L(R)=\left\{R_{1} \cdots R_{n} \mid R_{1} \cdots R_{n} \sqsubseteq^{*} R\right\}
\end{aligned}
$$

■ $\prec$-regularity implies that $L(R)$ is regular for every $R$

## EXAMPLE

$$
\begin{array}{ll}
R \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
S_{1} \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

- The procedure for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ requires just a NFA for $L(R)$ $\Rightarrow$ works for any RIAs which induce regular languages


## $\prec-R E G U L A R I T Y$ VS. REGULARITY

## EXAMPLE (hasProperPart $\prec$ hasPart)

## hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$ <br> hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbb{1}$

## $\prec-$ REGULARITY VS. REGULARITY


hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$ hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{1}$ hasPart • hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 4$ hasProperPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{5}$

| hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{3}$ |
| ---: |
| hasPart $\cdot$ hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{1}$ |
| hasPart $\cdot$ hasProperPart |
| $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{4}$ |
| hasProperPart $\cdot$ hasPart |
|  |
| hasPart |$>\mathbf{5}$


| $\prec-$ REGULARITY |  |
| ---: | ---: |
| ■ | $R \cdot R \sqsubseteq R$ |
| $\mathbf{2}$ | $R^{-}$ |
| $\sqsubseteq R$ |  |
| $\mathbf{3}$ | $S_{1} \cdots S_{n}$ |
| $\sqsubseteq R$ |  |
| $\mathbf{4}$ | $R \cdot S_{1} \cdots S_{n}$ |
| $\mathbf{5}$ | $S_{1} \cdots S_{n} \cdot R$ |

$$
\begin{aligned}
R \cdot R & \sqsubseteq R \\
R^{-} & \sqsubseteq R \\
S_{1} \cdots S_{n} & \sqsubseteq R
\end{aligned}
$$

$$
5 S_{1} \cdots S_{n} \cdot R \sqsubseteq R
$$

## $\prec-$ REGULARITY VS. REGULARITY


hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$ hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{1}$ hasPart • hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 4$ hasProperPart • hasPart $\sqsubseteq \underline{\text { hasPart }} \rightsquigarrow \boldsymbol{5}$

## $\prec-$ REGULARITY

| 1 | $R \cdot R$ | $\sqsubseteq R$ |
| ---: | ---: | ---: |
| 2 | $R^{-}$ | $\sqsubseteq R$ |
| 3 | $S_{1} \cdots S_{n}$ | $\sqsubseteq R$ |
| 4 | $R \cdot S_{1} \cdots S_{n}$ | $\sqsubseteq R$ |
| 5 | $S_{1} \cdots S_{n} \cdot R$ | $\sqsubseteq R$ |

## $\prec-R E G U L A R I T Y$ VS. REGULARITY

EXAMPLE (hasProperPart $\prec$ hasPart)<br>hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$<br>hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbf{1}$<br>hasPart • hasProperPart $\sqsubseteq$ hasProperPart<br>hasProperPart • hasPart $\sqsubseteq \underline{\text { hasProperPart }}$

| 々-REGULARITY |  |
| :--- | ---: |
| ■ | $R \cdot R \sqsubseteq R$ |
| $\mathbf{2}$ | $R^{-} \sqsubseteq R$ |
| $\mathbf{3}$ | $S_{1} \cdots S_{n} \sqsubseteq R$ |
| $\mathbf{4}$ | $R \cdot S_{1} \cdots S_{n} \sqsubseteq R$ |
| $\mathbf{5}$ | $S_{1} \cdots S_{n} \cdot R \sqsubseteq R$ |

## $\prec-$ REGULARITY VS. REGULARITY

EXAMPLE (hasProperPart $\prec$ hasPart)<br>hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$<br>hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbb{1}$ hasPart • hasProperPart $\sqsubseteq$ hasProperPart hasProperPart • hasPart $\sqsubseteq$ hasProperPart

| 々-REGULARITY |  |
| :--- | ---: |
| $\mathbf{1}$ | $R \cdot R \sqsubseteq R$ |
| $\mathbf{2}$ | $R^{-} \sqsubseteq R$ |
| $\mathbf{3}$ | $S_{1} \cdots S_{n} \sqsubseteq R$ |
| $\mathbf{4}$ | $R \cdot S_{1} \cdots S_{n} \sqsubseteq R$ |
| $\mathbf{5}$ | $S_{1} \cdots S_{n} \cdot R$ |

- The set of RIAs is not $\prec$-regular because of the cycle: hasProperPart $\sqsubseteq$ hasPart hasPart • [...] $\sqsubseteq$ hasProperPart


## $\prec-$ REGULARITY VS. REGULARITY

EXAMPLE (hasProperPart $\prec$ hasPart)
hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$
hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbb{1}$ hasPart • hasProperPart $\sqsubseteq$ hasProperPart hasProperPart • hasPart $\sqsubseteq$ hasProperPart

## $\prec-$ REGULARITY

| 1 | $R \cdot R$ | $\sqsubseteq R$ |
| ---: | ---: | ---: |
| 2 | $R^{-}$ | $\sqsubseteq R$ |
| 3 | $S_{1} \cdots S_{n}$ | $\sqsubseteq R$ |
| 4 | $R \cdot S_{1} \cdots S_{n}$ | $\sqsubseteq R$ |
| 5 | $S_{1} \cdots S_{n} \cdot R$ | $\sqsubseteq R$ |

- The set of RIAs is not $\prec$-regular because of the cycle: hasProperPart $\sqsubseteq$ hasPart hasPart • [...] $\sqsubseteq$ hasProperPart

■ However the languages induced by the RIAs are regular:

$$
L(\text { hasPart })=\left\{(\text { hasPart | hasProperPart })^{+}\right\}
$$

## 々-REGULARITY VS. REGULARITY

EXAMPLE (hasProperPart $\prec$ hasPart)
hasProperPart $\sqsubseteq$ hasPart $\rightsquigarrow 3$
hasPart • hasPart $\sqsubseteq$ hasPart $\rightsquigarrow \mathbb{1}$ hasPart • hasProperPart $\sqsubseteq$ hasProperPart hasProperPart • hasPart $\sqsubseteq$ hasProperPart

## $\prec-$ REGULARITY



- The set of RIAs is not $\prec$-regular because of the cycle: hasProperPart $\sqsubseteq$ hasPart hasPart • [...] $\sqsubseteq$ hasProperPart

■ However the languages induced by the RIAs are regular:
$L($ hasPart $)=\left\{(\text { hasPart } \mid \text { hasProperPart })^{+}\right\}$
$L$ (hasProperPart) $=L$ (hasPart) $\backslash\{$ hasPart* $\}$

## Other Use Cases

1 Complex RIAs in GALEN:
NonPartitivelyContaines $\sqsubseteq$ Contains
Contains • Contains $\sqsubseteq$ Contains
NonPartitivelyContains • Contains $\sqsubseteq$ NonPartitivelyContains

## Other Use Cases

1 Complex RIAs in GALEN:

> NonPartitivelyContaines $\sqsubseteq$ Contains
> Contains • Contains $\sqsubseteq$ Contains

NonPartitivelyContains • Contains $\sqsubseteq$ NonPartitivelyContains
2 SEP Triplets encoding (used, e.g., in SNOMED CT):
■ Hand $\rightsquigarrow \operatorname{Hand}_{S}, \operatorname{Hand}_{E}, \operatorname{Hand}_{P}$

- encoding using complex RIAs [Santisrivaraporn et.al 2007]: Hand $_{S} \equiv$ ヨisPartOf.Hand ${ }_{E}$ Hand $_{P} \equiv \exists$ isProperPartOf.Hand ${ }_{E}$ isPartOf • isProperPartOf $\sqsubseteq$ isProperPartOf ...


## Other Use Cases

1 Complex RIAs in GALEN:

## NonPartitivelyContaines $\sqsubseteq$ Contains <br> Contains • Contains $\sqsubseteq$ Contains

NonPartitivelyContains • Contains $\sqsubseteq$ NonPartitivelyContains
2 SEP Triplets encoding (used, e.g., in SNOMED CT):
■ Hand $\rightsquigarrow \operatorname{Hand}_{S}, \operatorname{Hand}_{E}, \operatorname{Hand}_{P}$

- encoding using complex RIAs [Santisrivaraporn et.al 2007]:

Hand $_{S} \equiv$ ヨisPartOf. Hand ${ }_{E}$
Hand $_{P} \equiv \exists$ isProperPartOf.Hand ${ }_{E}$ isPartOf • isProperPartOf $\sqsubseteq$ isProperPartOf . . .
3 Roles describing "sibling" relations:
hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
hasSibling • hasSibling $\sqsubseteq$ hasSibling
hasChild $\cdot$ hasSibling $\sqsubseteq$ hasChild

## Characterizing ALL Regular RIAs?

- In general, it is not possible to check whether a given set of RIAs induces a regular language:


## Theorem (Well-Known Result)

It is undecidable to check if a context free grammar defines a regular language.

## Characterizing ALL Regular RIAs?

- In general, it is not possible to check whether a given set of RIAs induces a regular language:


## Theorem (Well-Known Result)

It is undecidable to check if a context free grammar defines a regular language.

- Even if the user supplies all regular automata for $L(R)$, it is not possible to check if they correspond to the given RIAs:


## Theorem (Well-Known Result)

It is undecidable to check if a context free grammar over $\Sigma$ induces $\Sigma^{*}$.

## Summary of the Main Results

We relax the restrictions on RIAs in $\mathcal{S R O} \mathcal{O} \mathcal{Q}$ such that:
1 They are backward compatible with the original restrictions

## Summary of the Main Results

We relax the restrictions on RIAs in $\mathcal{S R O} \mathcal{O} \mathcal{Q}$ such that:
1 They are backward compatible with the original restrictions
2. Can be checked in polynomial time

## Summary of the Main Results

We relax the restrictions on RIAs in $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ such that:
1 They are backward compatible with the original restrictions
2 Can be checked in polynomial time
3 Corresponding NFAs can be constructed in exponential time

## Summary of the Main Results

We relax the restrictions on RIAs in $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ such that:
1 They are backward compatible with the original restrictions
$\boxed{4}$ Can be checked in polynomial time
3 Corresponding NFAs can be constructed in exponential time
4 For every regular set of RIAs there exists a conservative extension that satisfies our restrictions.

## Outline

## 1 INTRODUCTION

## 2 Stratified RIAs

## The Main Idea

## EXAMPLE

$$
\begin{array}{ll}
S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
R \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1 S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq$

## The Main Idea

## EXAMPLE

$$
\begin{array}{rlr}
> & S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
& R \cdot R \sqsubseteq R & \\
& R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq \underline{R} \cdot R \cdot S_{2}$

## The Main Idea

## EXAMPLE

$$
\begin{array}{rlr} 
& S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
> & R \cdot R \sqsubseteq R & \\
& R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$\square\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq \underline{R} \cdot S_{2}$

## The Main Idea

## ExAMPLE

$$
\begin{array}{rlr} 
& S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
& R \cdot R \sqsubseteq R & \\
> & R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$

## The Main Idea

## EXAMPLE

$$
\begin{array}{ll}
S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
R \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
$2 S_{1} \cdot R \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot(R \cdot R) \sqsubseteq S_{1} \cdot R \sqsubseteq R$

## The Main Idea

## ExAMPLE

$$
\begin{array}{ll}
S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
R \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
$2 S_{1} \cdot R \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot(R \cdot R) \sqsubseteq S_{1} \cdot R \sqsubseteq R$
$3 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq\left(S_{1} \cdot R\right) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$

## The Main Idea

## EXAMPLE

$$
\begin{array}{ll}
S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
R \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
2 $S_{1} \cdot R \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot(R \cdot R) \sqsubseteq S_{1} \cdot R \sqsubseteq R$
$3 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq\left(S_{1} \cdot R\right) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
$4 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq S_{1} \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot R \sqsubseteq R$

## The Main Idea

## EXAMPLE

$$
\begin{array}{ll}
S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
R \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
2 $S_{1} \cdot R \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot(R \cdot R) \sqsubseteq S_{1} \cdot R \sqsubseteq R$
$3 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq\left(S_{1} \cdot R\right) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
$4 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq S_{1} \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot R \sqsubseteq R$
$\Rightarrow$ Does not depend on the order of the rule applications

## The Main Idea

## EXAMPLE

$$
\begin{array}{ll}
S_{1} \cdot R \sqsubseteq R & L(R)=\left\{S_{1}{ }^{*} \cdot R^{+} \cdot S_{2}{ }^{*}\right\} \\
R \cdot R \sqsubseteq R & \\
R \cdot S_{2} \sqsubseteq R &
\end{array}
$$

■ Possible proofs for $S_{1} \cdot R \cdot R \cdot S_{2} \sqsubseteq^{*} R$ :
$1\left(S_{1} \cdot R\right) \cdot R \cdot S_{2} \sqsubseteq(R \cdot R) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
$2 S_{1} \cdot R \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot(R \cdot R) \sqsubseteq S_{1} \cdot R \sqsubseteq R$
$3 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq\left(S_{1} \cdot R\right) \cdot S_{2} \sqsubseteq R \cdot S_{2} \sqsubseteq R$
$4 S_{1} \cdot(R \cdot R) \cdot S_{2} \sqsubseteq S_{1} \cdot\left(R \cdot S_{2}\right) \sqsubseteq S_{1} \cdot R \sqsubseteq R$
$\Rightarrow$ Does not depend on the order of the rule applications
■ In particular, for every role chains $\rho_{1}, \rho_{2}$ over $S_{1}, S_{2}$, and $R$ :

$$
\begin{array}{r}
\rho_{1} \cdot R \cdot \rho_{2} \sqsubseteq^{*} R \quad \text { implies } \quad\left(\rho_{1} \cdot R\right) \cdot \rho_{2} \sqsubseteq^{*} R \cdot \rho_{2} \sqsubseteq^{*} R \\
\text { and } \quad \rho_{1} \cdot\left(R \cdot \rho_{2}\right) \sqsubseteq^{*} \rho_{1} \cdot R \sqsubseteq^{*} R
\end{array}
$$

## GEnERALIZING REGULARITY Conditions

■ Instead of strict order $\prec$ we use a preorder $\precsim$, thus allowing equivalent roles $R_{1} \approx R_{2}$

## Generalizing Regularity Conditions

■ Instead of strict order $\prec$ we use a preorder $\precsim$, thus allowing equivalent roles $R_{1} \approx R_{2}$

■ Admissibility conditions:
$1 R \approx R^{-}$
$2 \rho_{1} \cdot S \cdot \rho_{2} \sqsubseteq R$ implies $S \precsim R$
3 if $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R_{2}$ and $R_{1} \approx R_{2}$ then:
$\left(\rho_{1} \cdot R_{1}\right) \cdot \rho_{2} \sqsubseteq^{*} R_{3} \cdot \rho_{2} \sqsubseteq^{*} R$, and
$\rho_{1} \cdot\left(R_{1} \cdot \rho_{2}\right) \sqsubseteq^{*} \rho_{1} \cdot R_{4} \sqsubseteq^{*} R$.
In this case we say that $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified.

## Generalizing Regularity Conditions

- Instead of strict order $\prec$ we use a preorder $\precsim$, thus allowing equivalent roles $R_{1} \approx R_{2}$
- Admissibility conditions:
$1 R \approx R^{-}$
$2 \rho_{1} \cdot S \cdot \rho_{2} \sqsubseteq R$ implies $S \precsim R$
3 if $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R_{2}$ and $R_{1} \rightleftharpoons R_{2}$ then:
$\left(\rho_{1} \cdot R_{1}\right) \cdot \rho_{2} \sqsubseteq^{*} R_{3} \cdot \rho_{2} \sqsubseteq^{*} R$, and $\rho_{1} \cdot\left(R_{1} \cdot \rho_{2}\right) \sqsubseteq^{*} \rho_{1} \cdot R_{4} \sqsubseteq^{*} R$.
In this case we say that $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified.
- If a set of RIAs satisfy $\mathbf{1}-\mathbf{3}$ then it is called stratified.


## Checking Stratified RIAs

## LEMMA

It is possible to check in polynomial time if $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified.

## CHECKING STRATIFIED RIAs

## LEMMA

It is possible to check in polynomial time if $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified.

## PRoof.

1 Find $R_{3}$ such that $\rho_{1} \cdot R_{1} \sqsubseteq^{*} R_{3}$ and $R_{3} \cdot \rho_{2} \sqsubseteq^{*} R$
2 Find $R_{4}$ such that $R_{1} \cdot \rho_{2} \sqsubseteq^{*} R_{4}$ and $\rho_{1} \cdot R_{4} \sqsubseteq^{*} R$
Checking if $\rho \sqsubseteq^{*} R$, equivalently, $\rho \in L(R)$ is polynomial (membership problem for context-free languages)

## Checking Stratified Sets of RIAs

Requires to check that all $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified for infinitely many implied RIAs.

## Checking Stratified Sets of RIAs

Requires to check that all $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified for infinitely many implied RIAs.

## DEFINITION

RIAs $\rho_{1} \cdot R_{1} \sqsubseteq R_{2}$ and $R_{3} \cdot \rho_{2} \sqsubseteq R_{4}$ overlap if $R_{2} \sqsubseteq^{*} R_{3}$.

## Checking Stratified Sets of RIAs

Requires to check that all $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified for infinitely many implied RIAs.

## DEFINITION

RIAs $\rho_{1} \cdot R_{1} \sqsubseteq R_{2}$ and $R_{3} \cdot \rho_{2} \sqsubseteq R_{4}$ overlap if $R_{2} \sqsubseteq^{*} R_{3}$. In this case we say that $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R_{4}$ is the overlap.

## Checking Stratified Sets of RIAs

Requires to check that all $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified for infinitely many implied RIAs.

## DEFINITION

RIAs $\rho_{1} \cdot R_{1} \sqsubseteq R_{2}$ and $R_{3} \cdot \rho_{2} \sqsubseteq R_{4}$ overlap if $R_{2} \sqsubseteq^{*} R_{3}$. In this case we say that $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R_{4}$ is the overlap.

## LEMMA

Let $\mathcal{R}$ be a set of RIAs and $\overline{\mathcal{R}}$ be obtained from $\mathcal{R}$ by adding $\rho^{-} \sqsubseteq R^{-}$for every $\rho \sqsubseteq R \in \mathcal{R}$. Then $\mathcal{R}$ is stratified iff:
$\boxed{1}$ every $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq R \in \overline{\mathcal{R}}$ is stratified, and
$\boxed{2}$ every overlap $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq R$ of RIAs in $\overline{\mathcal{R}}$ is stratified.

## Checking Stratified Sets of RIAs

Requires to check that all $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R$ is stratified for infinitely many implied RIAs.

## DEFINITION

RIAs $\rho_{1} \cdot R_{1} \sqsubseteq R_{2}$ and $R_{3} \cdot \rho_{2} \sqsubseteq R_{4}$ overlap if $R_{2} \sqsubseteq^{*} R_{3}$. In this case we say that $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq^{*} R_{4}$ is the overlap.

## LEMMA

Let $\mathcal{R}$ be a set of RIAs and $\overline{\mathcal{R}}$ be obtained from $\mathcal{R}$ by adding $\rho^{-} \sqsubseteq R^{-}$for every $\rho \sqsubseteq R \in \mathcal{R}$. Then $\mathcal{R}$ is stratified iff:
11 every $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq R \in \overline{\mathcal{R}}$ is stratified, and
$\boxed{2}$ every overlap $\rho_{1} \cdot R_{1} \cdot \rho_{2} \sqsubseteq R$ of RIAs in $\overline{\mathcal{R}}$ is stratified.

## COROLLARY

It is possible to check in polynomial time whether $\mathcal{R}$ is stratified.

## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart $\cdot$ hasPart $\sqsubseteq$ hasProperPart

## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ :
hasPart • hasPart • hasPart $\sqsubseteq$ hasPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ :
(hasPart • hasPart) • hasPart $\sqsubseteq$ hasPart hasPart • hasPart $\sqsubseteq$ hasPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ :
hasPart • (hasPart • hasPart) $\sqsubseteq$ hasPart
hasPart . hasPart $\sqsubseteq$ hasPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\boldsymbol{2}$ is stratified;


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and 3:
hasPart • hasPart • hasProperPart $\sqsubseteq ~ h a s P r o p e r P a r t ~$


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between 2 and 3:
(hasPart • hasPart) • hasProperPart $\sqsubseteq$ hasProperPart hasPart • hasProperPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and 3:
hasPart • (hasPart • hasProperPart) $\sqsubseteq ~ h a s P r o p e r P a r t ~$
hasPart . hasProperPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between 2 and $\mathbf{3}$ is stratified;


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart •hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\boldsymbol{2}$ is stratified;
$\square$ overlap between 2 and 3 is stratified;
- overlap between 2 and 4:
hasProperPart • hasPart • hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart •hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\boldsymbol{2}$ is stratified;
$\square$ overlap between 2 and 3 is stratified;
- overlap between 2 and 4:
(hasProperPart • hasPart) • hasPart $\sqsubseteq$ hasProperPart hasProperPart • hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart $\cdot$ hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\boldsymbol{2}$ is stratified;
$\square$ overlap between 2 and 3 is stratified;
- overlap between 2 and 4:
hasProperPart • (hasPart • hasPart) $\sqsubseteq ~ h a s P r o p e r P a r t ~$
hasProperPart . hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart •hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\boldsymbol{2}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart $\cdot$ hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart
$\square$ overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;

- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and 4 is stratified;
- overlap between 3 and 3:
hasPart • hasPart • hasProperPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart
$\square$ overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
$\square$ overlap between 2 and 3 is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;

- overlap between 3 and 3:
(hasPart • hasPart) • hasProperPart $\sqsubseteq$ hasProperPart hasPart • hasProperPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart
$\square$ overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
$\square$ overlap between 2 and 3 is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;

- overlap between 3 and 3:
hasPart • (hasPart • hasProperPart) $\sqsubseteq ~ h a s P r o p e r P a r t ~$
hasPart . hasProperPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq \overline{\text { hasProperPart }}$

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and $\mathbf{3}$ is stratified;


## EXAMPLE 1

I hasProperPart $\sqsubseteq$ hasPart
$\boxed{2}$ hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{\square}$ and $\mathbf{\Sigma}$ is stratified;
- overlap between $\mathbf{\square}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{\square}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4:
hasPart • hasProperPart • hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

I hasProperPart $\sqsubseteq$ hasPart
$\boxed{2}$ hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{\square}$ and $\mathbf{\Sigma}$ is stratified;
- overlap between $\mathbf{\square}$ and $\mathbf{3}$ is stratified;
- overlap between $\boxed{\square}$ and 4 is stratified;
- overlap between 3 and 3 is stratified;
- overlap between $\mathbf{3}$ and 4:
(hasPart • hasProperPart) • hasPart $\sqsubseteq ~ h a s P r o p e r P a r t ~$ hasProperPart - hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
$\boxed{2}$ hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{\square}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{\square}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4:
hasPart • (hasProperPart • hasPart) $\sqsubseteq$ hasProperPart hasPart . hasProperPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between $\mathbf{3}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{3}$ and 4 is stratified;


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq \underline{\text { hasProperPart }}$

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;

■ another overlap between 3 and 4:
hasPart • hasProperPart • hasPart $\sqsubseteq ~ h a s P r o p e r P a r t ~$

## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart $\cdot$ hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq \underline{\text { hasProperPart }}$

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;

■ another overlap between 3 and 4:
(hasPart • hasProperPart) • hasPart $\sqsubseteq$ hasProperPart hasProperPart • hasPart $\sqsubseteq$ hasProperPart

## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq \underline{\text { hasProperPart }}$

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;

■ another overlap between 3 and 4:
hasPart • (hasProperPart • hasPart) $\sqsubseteq ~ h a s P r o p e r P a r t ~$ hasPart . hasProperPart $\sqsubseteq$ hasProperPart

## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart
■ overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;

- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;

■ another overlap between $\mathbf{3}$ and $\mathbf{4}$ is stratified;

## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between 2 and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;

■ another overlap between $\mathbf{3}$ and $\mathbf{4}$ is stratified;

- overlap between 4 and 4:
hasProperPart • hasPart • hasPart $\sqsubseteq ~ h a s P r o p e r P a r t ~$


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
$\square$ overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;

■ another overlap between $\mathbf{3}$ and $\mathbf{4}$ is stratified;

- overlap between 4 and 4:
(hasProperPart • hasPart) • hasPart $\sqsubseteq$ hasProperPart hasProperPart • hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

I hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\boxed{\square}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between $\mathbf{3}$ and $\mathbf{4}$ is stratified;
- another overlap between 3 and 4 is stratified;
- overlap between 44 and 4:
hasProperPart • (hasPart • hasPart) $\sqsubseteq ~ h a s P r o p e r P a r t ~$
hasProperPart . hasPart $\sqsubseteq$ hasProperPart


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart •hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;
- another overlap between $\mathbf{3}$ and $\mathbf{4}$ is stratified;
- overlap between 4 and 4 is stratified;


## EXAMPLE 1

1 hasProperPart $\sqsubseteq$ hasPart
2 hasPart • hasPart $\sqsubseteq$ hasPart
3 hasPart • hasProperPart $\sqsubseteq$ hasProperPart
4 hasProperPart • hasPart $\sqsubseteq$ hasProperPart

- overlap between $\mathbf{2}$ and $\mathbf{2}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{3}$ is stratified;
- overlap between $\mathbf{2}$ and $\mathbf{4}$ is stratified;
- overlap between 3 and 3 is stratified;
- overlap between 3 and 4 is stratified;
- another overlap between $\mathbf{3}$ and $\mathbf{4}$ is stratified;
- overlap between 4 and 4 is stratified;
- all overlaps are stratified


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild $\cdot$ hasSibling $\sqsubseteq ~ h a s C h i l d ~$

## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild $\cdot$ hasSibling $\sqsubseteq$ hasChild

- overlap between 1 and 2: hasChild ${ }^{-}$. hasChild • hasSibling $\sqsubseteq$ hasSibling


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild

- overlap between 1 and 2:
(hasChild ${ }^{-}$• hasChild) • hasSibling $\sqsubseteq ~ h a s S i b l i n g ~$
hasSibling $\cdot$ hasSibling $\sqsubseteq$ hasSibling


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild

- overlap between 1 and 2: hasChild ${ }^{-}$• (hasChild • hasSibling) $\sqsubseteq$ hasSibling hasChild ${ }^{-}$hasChild $\sqsubseteq$ hasSibling


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild $\cdot$ hasSibling $\sqsubseteq$ hasChild

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling $^{\underline{1}}$
2 hasSibling $\cdot$ hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild

- overlap between 1 and $\mathbf{2}$ is stratified;

■ another overlap between 1 and 2: hasSibling • hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling

## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling $\cdot$ hasSibling $\sqsubseteq$ hasSibling
3 hasChild • hasSibling $\sqsubseteq$ hasChild

- overlap between 1 and $\mathbf{2}$ is stratified;

■ another overlap between 1 and 2:
(hasSibling • hasChild ${ }^{-}$) hasChild $\sqsubseteq$ hasSibling
? $\quad$ hasChild $\sqsubseteq$ hasSibling

## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling $\cdot$ hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild

- overlap between $\mathbf{1}$ and $\mathbf{\Sigma}$ is stratified;

■ another overlap between 1 and 2:
(hasSibling • hasChild ${ }^{-}$) • hasChild $\sqsubseteq$ hasSibling hasChild $^{-} \quad$. hasChild $\sqsubseteq$ hasSibling

## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

- overlap between 1 and $\mathbf{2}$ is stratified;

■ another overlap between 1 and 2:
(hasSibling • hasChild ${ }^{-}$) • hasChild $\sqsubseteq$ hasSibling hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling

## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling $\cdot$ hasSibling $\sqsubseteq$ hasSibling
3 hasChild • hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

■ another overlap between 1 and 2: hasSibling • (hasChild ${ }^{-}$• hasChild) $\sqsubseteq$ hasSibling hasChild . hasSibling $\sqsubseteq$ hasSibling

## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild $\cdot$ hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;
- another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling $^{\prime}$
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild • hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;
- another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;
- overlap between 1 and 3:
hasChild • hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasChild


## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild • hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

■ another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

- overlap between 1 and 3:
(hasChild • hasChild ${ }^{-}$) • hasChild $\sqsubseteq$ hasChild ? $\quad$ hasChild $\sqsubseteq$ hasChild


## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild • hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;
- another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;
- overlap between 1 and 3:
(hasChild • hasChild ${ }^{-}$) • hasChild $\sqsubseteq$ hasChild hasPartner • hasChild $\sqsubseteq$ hasChild


## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling •hasSibling $\sqsubseteq$ hasSibling
3 hasChild • hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

5 hasChild•hasChild ${ }^{-} \sqsubseteq$ hasPartner
6 hasPartner • hasPartner $\sqsubseteq$
hasPartner
7 hasPartner • hasChild $\sqsubseteq$ hasChild
8 hasPartner $\sqsubseteq$ hasPartner ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

■ another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

- overlap between 1 and 3:
(hasChild • hasChild ${ }^{-}$) • hasChild $\sqsubseteq$ hasChild hasPartner . hasChild $\sqsubseteq$ hasChild


## EXAMPLE 2

1 hasChild ${ }^{-}$• hasChild $\sqsubseteq$ hasSibling
2 hasSibling $\cdot$ hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

5 hasChild•hasChild ${ }^{-} \sqsubseteq$ hasPartner
6 hasPartner • hasPartner $\sqsubseteq$
hasPartner
7 hasPartner • hasChild $\sqsubseteq$ hasChild
8 hasPartner $\sqsubseteq$ hasPartner ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

■ another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

- overlap between $\mathbf{1}$ and $\mathbf{3}$ is stratified;


## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

5 hasChild•hasChild ${ }^{-} \sqsubseteq$ hasPartner
6 hasPartner $\cdot$ hasPartner $\sqsubseteq$
hasPartner
7 hasPartner • hasChild $\sqsubseteq$ hasChild
8 hasPartner $\sqsubseteq$ hasPartner ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

■ another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

- overlap between $\mathbf{1}$ and $\mathbf{3}$ is stratified;
- all remaining overlaps are stratified


## EXAMPLE 2

1 hasChild ${ }^{-}$. hasChild $\sqsubseteq$ hasSibling
2 hasSibling•hasSibling $\sqsubseteq$ hasSibling
3 hasChild •hasSibling $\sqsubseteq$ hasChild
4 hasSibling $\sqsubseteq$ hasSibling ${ }^{-}$

5 hasChild•hasChild ${ }^{-} \sqsubseteq$ hasPartner
6 hasPartner • hasPartner $\sqsubseteq$
hasPartner
7 hasPartner • hasChild $\sqsubseteq$ hasChild
8 hasPartner $\sqsubseteq$ hasPartner ${ }^{-}$

- overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

■ another overlap between $\mathbf{1}$ and $\mathbf{2}$ is stratified;

- overlap between $\mathbf{1}$ and $\mathbf{3}$ is stratified;
- all remaining overlaps are stratified


## Theorem

Every regular set of RIAs can be conservatively extended to stratified one by adding new RIAs.

## CONCLUSIONS

New restrictions on complex RIAs:

- Backward compatible with the original restrictions
- Can be checked in polynomial time
- Imply regularity for RIAs © Detalls

■ NFAs can be constructed in exponential time $\Rightarrow$ computationaly optimal complexity for $\mathcal{S R O \mathcal { I } \mathcal { Q }}$
■ Can capture any regular compositional properties
■ Can be used to discover missing RIAs

## Stratified RIAs and Regularity

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

## Stratified RIAs and Regularity

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

$$
\rho \sqsubseteq^{*} \rho_{0} \cdot R_{1} \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \quad \text { (using } \rho^{\prime} \sqsubseteq S \text { with } S \prec R \text { ) }
$$

## Stratified RIAs and Regularity

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

$$
\begin{aligned}
\rho \sqsubseteq^{*} & \left.\left(\rho_{0} \cdot R_{1}\right) \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \quad \text { (using } \rho^{\prime} \sqsubseteq S \text { with } S \prec R\right) \\
& \sqsubseteq^{*} \underline{R_{1}^{\prime}} \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n}
\end{aligned}
$$

## Stratified RIAs and Regularity

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

$$
\begin{array}{r}
\left.\rho \sqsubseteq^{*}\left(\rho_{0} \cdot R_{1}\right) \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \quad \text { (using } \rho^{\prime} \sqsubseteq S \text { with } S \prec R\right) \\
\sqsubseteq^{*}\left(R_{1}^{\prime} \cdot \rho_{1} \cdot R_{2}\right) \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \\
\sqsubseteq^{*} \underline{R_{2}^{\prime}} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n}
\end{array}
$$

## Stratified RIAs and Regularity

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

$$
\begin{gathered}
\left.\rho \sqsubseteq^{*}\left(\rho_{0} \cdot R_{1}\right) \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \quad \text { (using } \rho^{\prime} \sqsubseteq S \text { with } S \prec R\right) \\
\sqsubseteq^{*}\left(R_{1}^{\prime} \cdot \rho_{1} \cdot R_{2}\right) \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \\
\sqsubseteq^{*}\left(R_{2}^{\prime} \cdot \rho_{2} \cdots R_{n}\right) \cdot \rho_{n} \\
\cdots \\
\sqsubseteq^{*} \underline{R}_{n}^{\prime} \cdot \rho_{n}
\end{gathered}
$$

## Stratified RIAs and Regularity

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

$$
\begin{gathered}
\left.\rho \sqsubseteq^{*}\left(\rho_{0} \cdot R_{1}\right) \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \quad \text { (using } \rho^{\prime} \sqsubseteq S \text { with } S \prec R\right) \\
\sqsubseteq^{*}\left(R_{1}^{\prime} \cdot \rho_{1} \cdot R_{2}\right) \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \\
\sqsubseteq^{*}\left(R_{2}^{\prime} \cdot \rho_{2} \cdots R_{n}\right) \cdot \rho_{n} \\
\cdots \\
\sqsubseteq^{*}\left(R_{n}^{\prime} \cdot \rho_{n}\right) \\
\sqsubseteq^{*} \underline{R}
\end{gathered}
$$

## StRATIFIED RIAs AND REGULARITY

If $\rho \sqsubseteq^{*} R$ then it has a stratified proof:

$$
\begin{gathered}
\left.\rho \sqsubseteq^{*}\left(\rho_{0} \cdot R_{1}\right) \cdot \rho_{1} \cdot R_{2} \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \quad \text { (using } \rho^{\prime} \sqsubseteq S \text { with } S \prec R\right) \\
\sqsubseteq^{*}\left(R_{1}^{\prime} \cdot \rho_{1} \cdot R_{2}\right) \cdot \rho_{2} \cdots R_{n} \cdot \rho_{n} \\
\sqsubseteq^{*}\left(R_{2}^{\prime} \cdot \rho_{2} \cdots R_{n}\right) \cdot \rho_{n} \\
\cdots \\
\sqsubseteq^{*}\left(R_{n}^{\prime} \cdot \rho_{n}\right) \\
\sqsubseteq^{*} R
\end{gathered}
$$

Regularity follows from the fact that:
1 Left-linear context-free languages are regular
2 Regular languages are closed under substitutions

