ROLE CONJUNCTIONS IN EXPRESSIVE DESCRIPTION LOGICS

Birte Glimm and Yevgeny Kazakov

Oxford University Computing Laboratory

November 26, 2008

<ロ> (四) (四) (三) (三) (三)

OUTLINE

2 MEMBERSHIP RESULTS

3 HARDNESS RESULTS

4 CONCLUSIONS

・ロト ・回ト ・ヨト ・ヨト

크

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- NExpTime-complete for *SHOTQ* [OWL]
- ExpTime-complete for *SHQ* and *SHIQ* [OWL-Lite]

 1 http://www.cs.man.ac.uk/~ezolin/dl/
 Image: Comparison of the second secon

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- NExpTime-complete for SHOTQ [OWL]
- ExpTime-complete for *SHQ* and *SHIQ* [OWL-Lite]

THEOREM (NEW RESULTS IN THIS TALK)

(Finite model) reasoning is:

- N2ExpTime-hard for SHOIQ[¬] [and already for SHOIF[¬]]
- 2ExpTime-complete for $SHIQ^{\square}$ [hard already for SHI^{\square}]
- ExpTime-complete for *SHQ*[¬]

http://www.cs.man.ac.uk/~ezolin/dl/ < = > < //> **Role Conjunctions in Expressive Description Logics**

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- NExpTime-complete for *SHOTQ* [OWL]
- ExpTime-complete for *SHQ* and *SHIQ* [OWL-Lite]

THEOREM (NEW RESULTS IN THIS TALK)

(Finite model) reasoning is:

- N2 xpTime-hard for SHOI 2 and already for SHOI A
- ExpTime-complete for SH

The exponential blowup is due to a combination of: role conjunctions + inverses + role inclusions + transitive roles

¹http://www.cs.man.ac.uk/~ezolin/dl/ <□> <♂> <≧> <≧> ≥

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL (= SHOIQ) has a rich algebra of concept constructors:

Conjunction	$C \sqcap D$	Mammal ⊓ Predator
Disjunction	$C \sqcup D$	Male ⊔ Female
Negation	$\neg C$	-Vegetarian
Existential Restriction	$\exists R.C$	∃produce.Oxygen
Universal Restriction	$\forall R.C$	∀eat.Plant
Number Restrictions	$\geq n R.C$	\geq 8 hasPart.Leg

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL (= SHOIQ) has a rich algebra of concept constructors:

Conjunction	$C \sqcap D$	Mammal Predator	
Disjunction	$C \sqcup D$	Male ⊔ Female	
Negation	$\neg C$	-Vegetarian	
Existential Restriction	$\exists R.C$	∃produce.Oxygen	
Universal Restriction	$\forall R.C$	∀eat.Plant	
Number Restrictions	$\geq n R.C$	≥8hasPart.Leg	
But only one role constructor:			
Inverse Role	r^{-}	∃eat ⁻ .Vegetarian	

< 🗇 🕨

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL (= SHOIQ) has a rich algebra of concept constructors:

Conjunction	$C \sqcap D$	Mammal	
Disjunction	$C \sqcup D$	Male 🗆 Female	
Negation	$\neg C$	- Vegetarian	
Existential Restriction	$\exists R.C$	∃produce.Oxygen	
Universal Restriction	$\forall R.C$	∀eat.Plant	
Number Restrictions	$\geq n R.C$	≥8hasPart.Leg	
But only one role cons	structor:		
Inverse Role	r^{-}	∃eat ⁻ .Vegetarian	
The dis-balance is cor	npensated	d by concept / role axioms	S:
Concept Inclusion	$C \sqsubseteq D$	\forall eat.Plant $\sqsubseteq \neg$ Predator	
Role Inclusion	$R \sqsubseteq S$	eat 드 consume	
Assertions	$\langle \boldsymbol{a}, \boldsymbol{b} \rangle : \boldsymbol{R}$	$\langle Bill, John \rangle$: hasFather	
Transitivity	Tra(R)	Tra(hasDescendant)	
Functionality	Fun(R)	Fun(hasFather)	
Dista Olivera and Verseaux Kanalas	Della Ora	towards and in Francisco Description I and a	

Birte Glimm and Yevgeny Kazakov

Role Conjunctions in Expressive Description Logics

4/16

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL 2 directions: new role axioms

New role assertions:

Symmetry	Sym(R)	<i>Sym</i> (hasBrother)
Anti-Symmetry	Asy(R)	Asy(hasParent)
Reflexivity	Ref(R)	<i>Ref</i> (knows)
Irreflexivity	Irr(R)	<i>Irr</i> (hasChild)
Disjointness	Disj(R,S)	Disj(hasParent, hasUncle)

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL 2 directions: new role axioms

New role assertions:

Symmetry	Sym(R)	<i>Sym</i> (hasBrother)
Anti-Symmetry	Asy(R)	Asy(hasParent)
Reflexivity	Ref(R)	<i>Ref</i> (knows)
Irreflexivity	Irr(R)	<i>Irr</i> (hasChild)
Disjointness	Disj(R,S)	<i>Disj</i> (hasParent, hasUncle)

Complex role inclusion axioms:

 $R_1 \circ \cdots \circ R_n \sqsubseteq R$ | hasParent \circ hasBrother \sqsubseteq hasUncle

-turn out to cause an exponential complexity blowup

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL 2 directions: new role axioms

New role assertions:

Symmetry	Sym(R)	<i>Sym</i> (hasBrother)
Anti-Symmetry	Asy(R)	Asy(hasParent)
Reflexivity	Ref(R)	<i>Ref</i> (knows)
Irreflexivity	Irr(R)	<i>Irr</i> (hasChild)
Disjointness	Disj(R,S)	<i>Disj</i> (hasParent, hasUncle)

Complex role inclusion axioms:

 $R_1 \circ \cdots \circ R_n \sqsubseteq R$ | hasParent \circ hasBrother \sqsubseteq hasUncle

-turn out to cause an exponential complexity blowup

What about role constructors?

MOTIVATION I: ROLE CONSTRUCTORS IN OWL

OWL 2 directions: new role axioms

New role assertions:

Symmetry	Sym(R)	<i>Sym</i> (hasBrother)
Anti-Symmetry	Asy(R)	Asy(hasParent)
Reflexivity	Ref(R)	<i>Ref</i> (knows)
Irreflexivity	Irr(R)	<i>Irr</i> (hasChild)
Disjointness	Disj(R,S)	<i>Disj</i> (hasParent, hasUncle)

Complex role inclusion axioms:

 $R_1 \circ \cdots \circ R_n \sqsubseteq R$ | hasParent \circ hasBrother \sqsubseteq hasUncle

-turn out to cause an exponential complexity blowup

What about role constructors?

The simplest one is:

Role Conjunction $R \sqcap S$ | Man $\sqcap \exists$ (cooks \sqcap eats).Soup

MOTIVATION II: CONJUNCTIVE QUERIES

Answering conjunctive queries w.r.t. knowledge bases

- $Q(x) = \langle x \rangle \longleftarrow \mathsf{Man}(x) \land \mathsf{cooks}(x, y) \land \mathsf{eats}(x, y) \land \mathsf{Soup}(y)$
 - **given: TBox**, **ABox**, Q(x)

find: $\langle x \rangle$ such that **TBox**, **ABox** $\models Q(x)$

MOTIVATION II: CONJUNCTIVE QUERIES

- Answering conjunctive queries w.r.t. knowledge bases
 - $Q(x) = \langle x \rangle \longleftarrow Man(x) \land cooks(x, y) \land eats(x, y) \land Soup(y)$
 - **given: TBox**, **ABox**, Q(x)
 - find: $\langle x \rangle$ such that **TBox**, **ABox** $\models Q(x)$
- Can be reduced to the instance retrieval of concepts with role conjunctions
 - given: TBox + ABox
 - find: $\langle x \rangle$ such that

TBox, **ABox** \models (Man $\sqcap \exists$ (cooks \sqcap eats).Soup)(*x*)

イロト イポト イヨト イヨト

MOTIVATION II: CONJUNCTIVE QUERIES

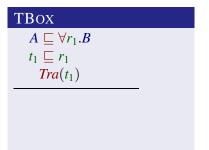
- Answering conjunctive queries w.r.t. knowledge bases
 - $Q(x) = \langle x \rangle \longleftarrow Man(x) \land cooks(x, y) \land eats(x, y) \land Soup(y)$
 - **given: TBox**, **ABox**, Q(x)
 - find: $\langle x \rangle$ such that **TBox**, **ABox** $\models Q(x)$
- Can be reduced to the instance retrieval of concepts with role conjunctions
 - given: **TBox** + **ABox**
 - find: $\langle x \rangle$ such that

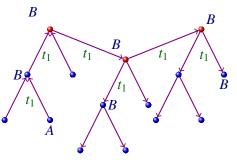
TBox, **ABox** \models (Man $\sqcap \exists$ (cooks \sqcap eats).Soup)(*x*)

- It is known that conjunctive query answering in SHIQ can be reduced to standard reasoning in SHIQ[¬].
- Reasoning in SHIQ[¬] can be done 2ExpTime, whereas
 SHIQ is merely ExpTime.
- It was not clear whether this bound is tight.

OUTLINE

2 MEMBERSHIP RESULTS


3 HARDNESS RESULTS


4 CONCLUSIONS

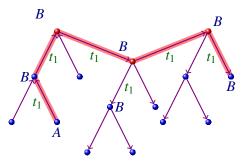
・ロト ・回ト ・ヨト ・ヨト

æ

The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}

æ

→ ∃ →

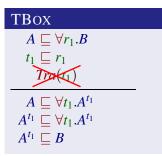

Occurs during the elimination of transitivity:

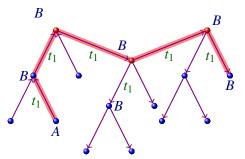
Тне

The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}

TBox

 $A \sqsubseteq \forall r_1.B$ $t_1 \sqsubseteq r_1$ $Tra(t_1)$

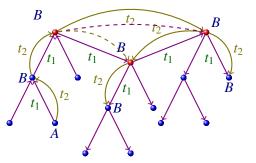



→ ∃ →

э

- Occurs during the elimination of transitivity:
 - introduce axioms to express propagation via transitive roles

The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}

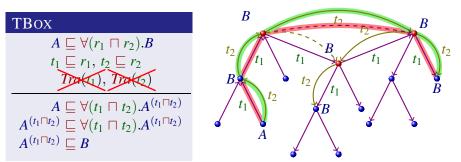

э

- Occurs during the elimination of transitivity:
 - introduce axioms to express propagation via transitive roles
 - works even without tree-model property (e.g. for SHOIQ)

The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}

TBox

 $A \sqsubseteq \forall (r_1 \sqcap r_2).B$ $t_1 \sqsubseteq r_1, t_2 \sqsubseteq r_2$ $Tra(t_1), Tra(t_2)$

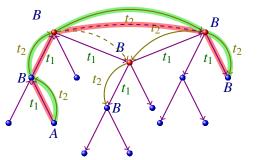


Occurs during the elimination of transitivity:

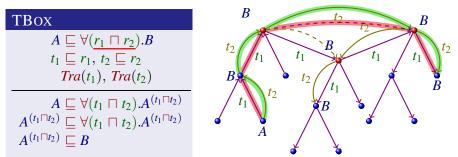
introduce axioms to express propagation via transitive roles

- works even without tree-model property (e.g. for SHOIQ)
- Similar technique works for \mathcal{SHIQ}^{\sqcap} , except that
 - tree-model property is crucial (does not work for SHOIQ)
 - can produce exponentially-many axioms—one for every combination of transitive subroles

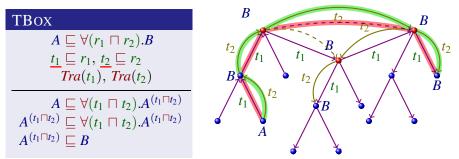
The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}


- Occurs during the elimination of transitivity:
 - introduce axioms to express propagation via transitive roles
 - works even without tree-model property (e.g. for SHOIQ)
- Similar technique works for *SHIQ*[¬], except that
 - tree-model property is crucial (does not work for SHOIQ)
 - can produce exponentially-many axioms—one for every combination of transitive subroles

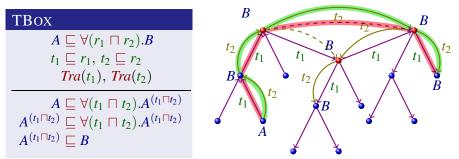
The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}


 $A \sqsubseteq \forall (r_1 \sqcap r_2).B$ $t_1 \sqsubseteq r_1, t_2 \sqsubseteq r_2$ $Tra(t_1), Tra(t_2)$ $A \sqsubseteq \forall (t_1 \sqcap t_2).A^{(t_1 \sqcap t_2)}$ $A^{(t_1 \sqcap t_2)} \sqsubseteq \forall (t_1 \sqcap t_2).A^{(t_1 \sqcap t_2)}$ $A^{(t_1 \sqcap t_2)} \sqsubseteq B$

The exponential blowup does not take place when either:

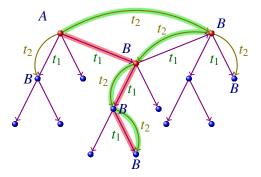

The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}

The exponential blowup does not take place when either:
 the length of role conjuncts is bounded, or


The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}

- The exponential blowup does not take place when either:
 - the length of role conjuncts is bounded, or
 - the number of transitive roles in role inclusions is bounded

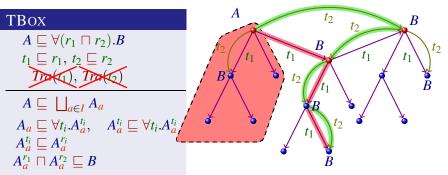
The Exponential Blowup in \mathcal{SHIQ}^{\sqcap}


- The exponential blowup does not take place when either:
 - the length of role conjuncts is bounded, or
 - the number of transitive roles in role inclusions is bounded
- We can demonstrate that without inverse roles the blowup can also be avoided

Elimination of Transitivity in \mathcal{SHQ}^{\sqcap}

TBOX

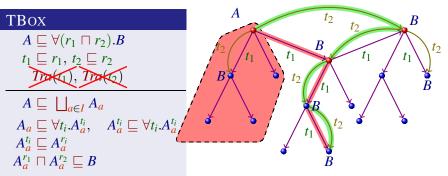
 $A \sqsubseteq \forall (r_1 \sqcap r_2).B$ $t_1 \sqsubseteq r_1, t_2 \sqsubseteq r_2$ $Tra(t_1), Tra(t_2)$



Forrest model: every element is reachable either:

- from a root element, or
- from an element upper in the same tree

ELIMINATION OF TRANSITIVITY IN \mathcal{SHQ}^{\sqcap}


Forrest model: every element is reachable either:

- from a root element, or
- from an element upper in the same tree
- The main idea: remember from which tree an element is reachable by tagging concepts with individuals

э

ELIMINATION OF TRANSITIVITY IN \mathcal{SHQ}^{\sqcap}

Forrest model: every element is reachable either:

- from a root element, or
- from an element upper in the same tree
- The main idea: remember from which tree an element is reachable by tagging concepts with individuals
- This translation is polynomial, hence SHQ^{\Box} is in ExpTime

Hardness Results

OUTLINE

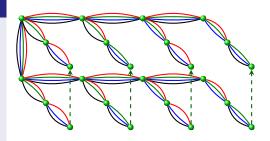
2 MEMBERSHIP RESULTS

3 HARDNESS RESULTS

4 CONCLUSIONS

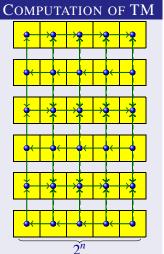
・ロト ・回ト ・ヨト ・ヨト

크



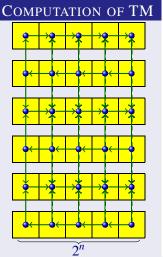
Hardness Results

WHY IS \mathcal{SHIQ}^{\sqcap} HARDER?

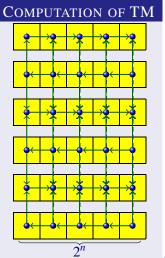

 $\rho := (r_1 \sqcap r_2)$

 Using role conjunctions it is possible to connect the corresponding elements in exponentially-long chains

By reduction from the word problem for an exponential-space alternating Turing machine:


 Configurations are encoded on exponential chains

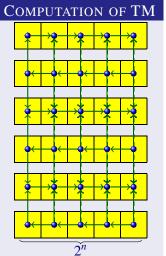
By reduction from the word problem for an exponential-space alternating Turing machine:


- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by

 $\rho = R_1 \sqcap \cdots \sqcap R_n$

By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by $\rho = R_1 \sqcap \cdots \sqcap R_n$
- Easy to simulate the computation

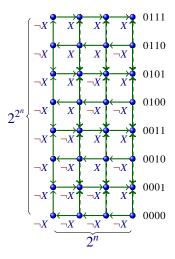


By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by ρ = R₁ □ · · · □ R_n
- Easy to simulate the computation
- Since AExpSpace = 2ExpTime we have:

THEOREM

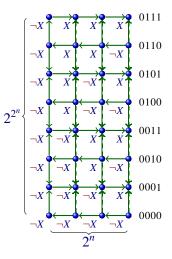
(Finite model) reasoning in SHI^{\sqcap} (and therefore in $SHIQ^{\sqcap}$) is 2ExpTime-hard.



Hardness Results

DOUBLY-EXPONENTIAL CHAINS IN \mathcal{SHIQ}^{\sqcap}

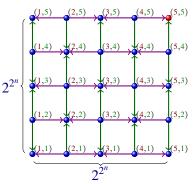
- Encode the counter on exponentially-long chains
 - the value of X on *i*-th element of the chain encodes the *i*-th bit


э

Hardness Results

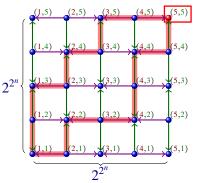
DOUBLY-EXPONENTIAL CHAINS IN \mathcal{SHIQ}^{\sqcap}

- Encode the counter on exponentially-long chains
 - the value of X on *i*-th element of the chain encodes the *i*-th bit
- Incrementing of the counter:
 - the least bit is always flipped
 - the bit is flipped if the next lower bit is changed from 1 to 0

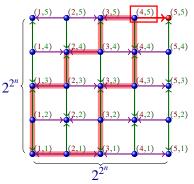


SHOIQ does not have a tree model property

■ It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.


DOUBLY-EXPONENTIAL GRID IN $SHOIQ^{\sqcap}$

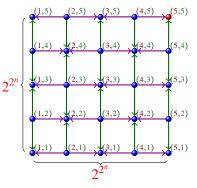
- SHOIQ does not have a tree model property
 - It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.
- Using nominals it is possible to express a grid in *SHOTQ*:
 - use two counters to encode the coordinates of the grid
 - increment / copy the counters over respective roles


DOUBLY-EXPONENTIAL GRID IN SHOTQ

- SHOIQ does not have a tree model property
 - It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.
- Using nominals it is possible to express a grid in *SHOTQ*:
 - use two counters to encode the coordinates of the grid
 - increment / copy the counters over respective roles
 - ensure that the element with the max coordinates is unique using a nominal


DOUBLY-EXPONENTIAL GRID IN SHOTQ

- SHOIQ does not have a tree model property
 - It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.
- Using nominals it is possible to express a grid in *SHOTQ*:
 - use two counters to encode the coordinates of the grid
 - increment / copy the counters over respective roles
 - ensure that the element with the max coordinates is unique using a nominal
 - ensure that elements with smaller coordinates are unique using inverse functional roles

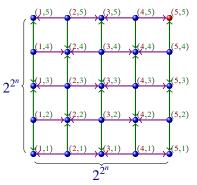

DOUBLY-EXPONENTIAL GRID IN SHOTQ

- SHOIQ does not have a tree model property
 - It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.
- Using nominals it is possible to express a grid in *SHOTQ*:
 - use two counters to encode the coordinates of the grid
 - increment / copy the counters over respective roles
 - ensure that the element with the max coordinates is unique using a nominal
 - ensure that elements with smaller coordinates are unique using inverse functional roles

DOUBLY-EXPONENTIAL GRID IN SHOTQ

- SHOIQ does not have a tree model property
 - It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.
- Using nominals it is possible to express a grid in SHOTQ:
 - use two counters to encode the coordinates of the grid
 - increment / copy the counters over respective roles
 - ensure that the element with the max coordinates is unique using a nominal
 - ensure that elements with smaller coordinates are unique using inverse functional roles
- For *SHOIQ*[¬] use doubly-exponential counters

14/16


DOUBLY-EXPONENTIAL GRID IN \mathcal{SHOIQ}^{\sqcap}

SHOIQ does not have a tree model property

- It allows to bound the cardinality of concepts using nominals—one element sets: $A \sqsubseteq o_1 \sqcup \ldots \sqcup o_n$.
- Using nominals it is possible to express a grid in SHOTQ:

THEOREM

(Finite model) reasoning in $SHOIF^{\sqcap}$ (and therefore in $SHOIQ^{\sqcap}$) is N2ExpTime-hard.

Conclusions

OUTLINE

2 MEMBERSHIP RESULTS

3 HARDNESS RESULTS

4 CONCLUSIONS

・ロト ・回ト ・ヨト ・ヨト

크

Conclusions

SUMMARY

New complexity results:

- SHQ^{\sqcap} is ExpTime-complete;
- $SHIQ^{\sqcap}$ and SHI^{\sqcap} are 2ExpTime-complete;
- $SHOIQ^{\sqcap}$ and $SHOIF^{\sqcap}$ are N2ExpTime-hard.

New complexity results:

- SHQ^{\sqcap} is ExpTime-complete;
- $SHIQ^{\sqcap}$ and SHI^{\sqcap} are 2ExpTime-complete;
- $SHOIQ^{\sqcap}$ and $SHOIF^{\sqcap}$ are N2ExpTime-hard.

Complexity blowup is caused by a combination of:

- role conjunctions
- transitive roles
- role inclusions
- role inverses

New complexity results:

- SHQ^{\sqcap} is ExpTime-complete;
- $SHIQ^{\sqcap}$ and SHI^{\sqcap} are 2ExpTime-complete;
- $SHOIQ^{\sqcap}$ and $SHOIF^{\sqcap}$ are N2ExpTime-hard.

Complexity blowup is caused by a combination of:

- role conjunctions
- transitive roles
- role inclusions
- role inverses
- Open questions:
 - Complexity of SHOQ[¬]?

Looks like NExpTime-hard

New complexity results:

- SHQ^{\sqcap} is ExpTime-complete;
- $SHIQ^{\sqcap}$ and SHI^{\sqcap} are 2ExpTime-complete;
- $SHOIQ^{\sqcap}$ and $SHOIF^{\sqcap}$ are N2ExpTime-hard.
- Complexity blowup is caused by a combination of:
 - role conjunctions
 - transitive roles
 - role inclusions
 - role inverses
- Open questions:
 - Complexity of SHOQ[¬]?

Looks like NExpTime-hard

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- **2** Decidability of $\mathcal{SHOIQ}^{\square}$?
 - Can help solving a long standing open problem about decidability of conjunctive query answering for SHOTQ.

New complexity results:

- SHQ^{\Box} is ExpTime-complete;
- $SHIQ^{\Box}$ and SHI^{\Box} are 2ExpTime-complete;
- $SHOIQ^{\sqcap}$ and $SHOIF^{\sqcap}$ are N2ExpTime-hard.
- Complexity blowup is caused by a combination of:
 - role conjunctions
 - transitive roles
 - role inclusions
 - role inverses
- Open questions:
 - Complexity of SHOQ[¬]?_

Looks like NExpTime-hard

- **2** Decidability of $\mathcal{SHOIQ}^{\square}$?
 - Can help solving a long standing open problem about decidability of conjunctive query answering for SHOTQ.
- Thank you for your attention!