SRIQ AND SROIQ ARE HARDER THAN SHOIQ

Yevgeny Kazakov

(presented by Birte Glimm)

Oxford University Computing Laboratory

May 15, 2008

《曰》 《聞》 《臣》 《臣》 三臣 …

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- ExpTime-complete for *SHIQ*
- NExpTime-complete for *SHOTQ*

 ¹http://www.cs.man.ac.uk/~ezolin/dl/
 Image: Comparison of the comparison

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- ExpTime-complete for *SHIQ*
- NExpTime-complete for *SHOTQ*

THEOREM (NEW RESULTS IN THIS TALK)

(Finite model) reasoning is:

- 2ExpTime-hard for SRIQ [and even for SR]
- N2ExpTime-complete for *SROIQ* [and for *SROIF*]

 ¹http://www.cs.man.ac.uk/~ezolin/dl/
 Image: Comparison of the state of the

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- ExpTime-complete for SHIQ
- NExpTime-complete for *S*HOTQ

THEOREM (NEW RESULTS IN THIS TALK)

(Finite model) reasoning is:

- **EXAMPLE** 2ExpTime-hard for SRIQ [and even for SR]
- N2ExpTime-complete for *SROIQ* [and for *SROIF*]

In short: $\mathcal{H} \Rightarrow \mathcal{R}$ causes an exponential blowup!

http://www.cs.man.ac.uk/~ezolin/dl/ < = > < //> 3/19

FROM SHIQ TO SROIQ

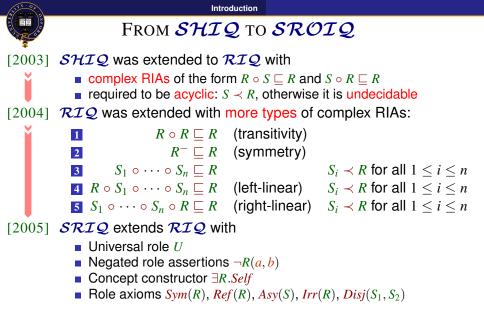
[2003] \mathcal{SHIQ} was extended to \mathcal{RIQ} with

- complex RIAs of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$
- required to be acyclic: $S \prec R$, otherwise it is undecidable

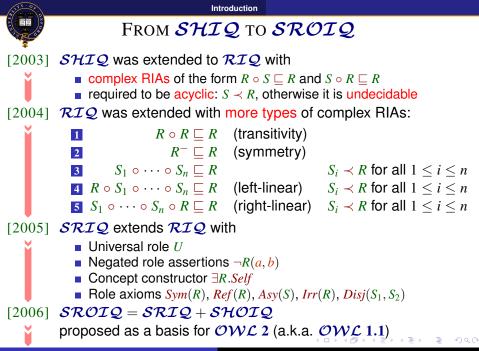
(日)

Introduction FROM SHIQ TO SROIQ SHIQ was extended to RIQ with [2003] • complex RIAs of the form $R \circ S \sqsubset R$ and $S \circ R \sqsubset R$ required to be acyclic: $S \prec R$, otherwise it is undecidable [2004] \mathcal{RIQ} was extended with more types of complex RIAs: $R \circ R \sqsubseteq R$ (transitivity) 1 2 $R^{-} \sqsubset R$ (symmetry) 3 $S_1 \circ \cdots \circ S_n \sqsubset R$ $S_i \prec R$ for all 1 < i < n4 $R \circ S_1 \circ \cdots \circ S_n \sqsubset R$ (left-linear) $S_i \prec R$ for all $1 \le i \le n$ **5** $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ (right-linear) $S_i \prec R$ for all $1 \le i \le n$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •



• □ ▶ • □ ▶ • □ ▶ • □ ▶ •



REGULAR RIAS

- Integration of new constructions into existing tableau-based procedures:
- $U, \neg R(a, b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$

- do not break the tree-model property

・ 戸 ト ・ 三 ト ・ 三 ト

REGULAR RIAS

- Integration of new constructions into existing tableau-based procedures:
- $U, \neg R(a, b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$
 - do not break the tree-model property
- $\blacksquare R_1 \circ \cdots \circ R_n \sqsubseteq R$
 - break the tree-model property
 - Cause undecidability when used without restrictions
 - Regularity restrictions 1 5 ensure decidability

REGULAR RIAS		
1	$R \circ R \sqsubseteq R$	
2	$R^{-} \sqsubseteq R$	
3	$S_1 \circ \cdots \circ S_n \sqsubseteq R$	
4 <i>R</i>	$\circ S_1 \circ \cdots \circ S_n \sqsubseteq R$	
5 S ₁	$\circ \cdots \circ S_n \circ R \sqsubseteq R$	
	$S_i \prec R$	

REGULAR RIAS

- Integration of new constructions into existing tableau-based procedures:
- $U, \neg R(a, b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$
 - do not break the tree-model property
- $\blacksquare R_1 \circ \cdots \circ R_n \sqsubseteq R$
 - break the tree-model property
 - Cause undecidability when used without restrictions
 - Regularity restrictions 1 5 ensure decidability

Example	REGULAR RIAS
$S \circ R \circ S \sqsubseteq R \qquad - \text{not regular}$ $R_i \circ R_i \sqsubseteq R_{i+1} \qquad - \text{regular by } \texttt{3}$ when $R_0 \prec R_1 \prec \cdots \prec R_n$	1 $R \circ R \sqsubseteq R$ 2 $R^- \sqsubseteq R$ 3 $S_1 \circ \cdots \circ S_n \sqsubseteq R$ 4 $R \circ S_1 \circ \cdots \circ S_n \sqsubseteq R$
	5 $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ $S_i \prec R$

TABLEAU: THE EXPONENTIAL BLOWUP

• Every regular RBox \mathcal{R} induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Yevgeny Kazakov (presented by Birte Glimm) SRIQ and SROIQ are Harder than SHOIQ 6/19

Image: A matrix

TABLEAU: THE EXPONENTIAL BLOWUP

• Every regular RBox \mathcal{R} induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $S \circ R \circ S \sqsubseteq R \qquad L_{\mathcal{R}}(R) = \{S^{i}RS^{i} \mid i \ge 0\} \qquad \text{--non regular}$ $R_{i} \circ R_{i} \sqsubseteq R_{i+1} \qquad L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_{i}) \cdot L_{\mathcal{R}}(R_{i})$ -- regular (because finite)

• Image: A image:

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $S \circ R \circ S \sqsubseteq R \quad L_{\mathcal{R}}(R) = \{S^{i}RS^{i} \mid i \ge 0\} \quad -\text{non regular}$ $R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_{i}) \cdot L_{\mathcal{R}}(R_{i})$ - regular (because finite)

• The number of different labels in the tableau $\sim 2^{|\mathcal{T}| \cdot |L_{\mathcal{R}}(R)|}$

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $S \circ R \circ S \sqsubseteq R \qquad L_{\mathcal{R}}(R) = \{S^{i}RS^{i} \mid i \ge 0\} \qquad \text{--non regular}$ $R_{i} \circ R_{i} \sqsubseteq R_{i+1} \qquad L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_{i}) \cdot L_{\mathcal{R}}(R_{i})$ --regular (because finite)

- The number of different labels in the tableau $\sim 2^{|\mathcal{T}| \cdot |L_{\mathcal{R}}(R)|}$
- Unfortunately $|L_{\mathcal{R}}(R)|$ can be exponential in $|\mathcal{R}|$: by induction on *i* one can show that $|L_{\mathcal{R}}(R_i)| \ge 2^i$

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $S \circ R \circ S \sqsubseteq R \qquad L_{\mathcal{R}}(R) = \{S^{i}RS^{i} \mid i \ge 0\} \qquad \text{--non regular}$ $R_{i} \circ R_{i} \sqsubseteq R_{i+1} \qquad L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_{i}) \cdot L_{\mathcal{R}}(R_{i})$ --regular (because finite)

- The number of different labels in the tableau $\sim 2^{|\mathcal{T}| \cdot |L_{\mathcal{R}}(R)|}$
- Unfortunately $|L_{\mathcal{R}}(R)|$ can be exponential in $|\mathcal{R}|$: by induction on *i* one can show that $|L_{\mathcal{R}}(R_i)| \ge 2^i$
- This causes an exponential blowup compared to the procedure for *SHOTQ* ← Unavoidable??

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

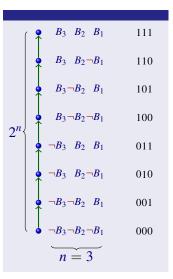
4 DISCUSSION

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EXPONENTIAL CHAINS IN ALC

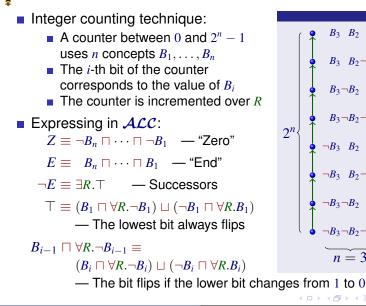
Integer counting technique:

- A counter between 0 and $2^n 1$ uses *n* concepts B_1, \ldots, B_n
- The *i*-th bit of the counter corresponds to the value of B_i
- The counter is incremented over R



< 同 > < 回 > < 回 >

EXPONENTIAL CHAINS IN ALC



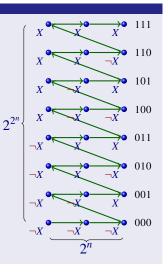
 B_3 B_2 B_1 111 $B_3 \quad B_2 \neg B_1$ 110 $B_3 \neg B_2 \quad B_1$ 101 $B_3 \neg B_2 \neg B_1$ 100 $\neg B_3 \quad B_2 \quad B_1$ 011 $\neg B_3 \quad B_2 \neg B_1$ 010 $\neg B_3 \neg B_2 \quad B_1$ 001 $\neg B_3 \neg B_2 \neg B_1$ 000

n = 3

DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"

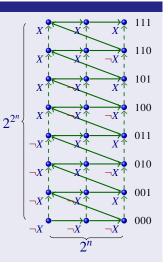


DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
 - Key point: connect corresponding elements using complex RIAs:

$$R_i \circ R_i \sqsubseteq R_{i+1} \quad R_0 = K$$

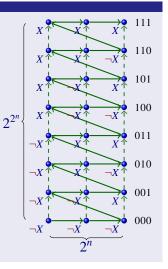


DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
 - Key point: connect corresponding elements using complex RIAs:
 - $R_i \circ R_i \sqsubseteq R_{i+1} \quad R_0 = R$
 - Complex RIAs connect elements reachable over exactly 2ⁿ roles:

$$\blacksquare \underbrace{R \circ R \circ \cdots \circ R}_{l} \sqsubseteq R_{n} \quad \text{iff} \quad k = 2^{n}$$



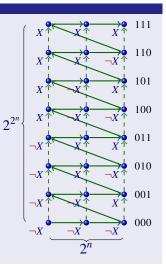
DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

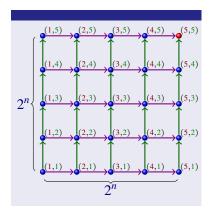
- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
 - Key point: connect corresponding elements using complex RIAs:
 - $R_i \circ R_i \sqsubseteq R_{i+1} \quad R_0 = R$
 - Complex RIAs connect elements reachable over exactly 2ⁿ roles:

$$\underbrace{R \circ R \circ \cdots \circ R}_{R \circ K} \sqsubseteq R_n \quad \text{iff} \quad k = 2^n$$

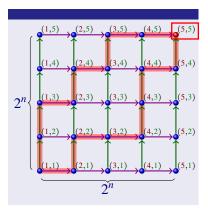
■ Flipping of corresponding bits: $E \sqsubseteq (X \sqcap \forall R_n. \neg X) \sqcup (\neg X \sqcap \forall R_n. X)$ — the last bit always flips, . . . etc.



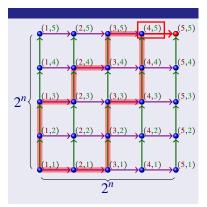
- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective edges



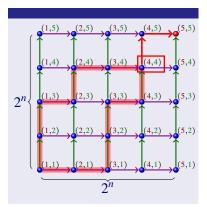
- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal



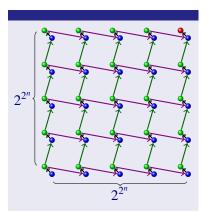
- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles



- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles



- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

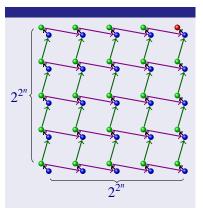


For SROIQ the construction is exactly the same but using doubly-exponential counters

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:

THEOREM

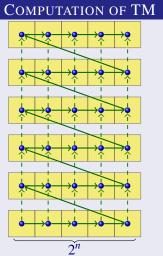
(Finite model) reasoning in *SROIQ* is *N2ExpTime*-hard. The result holds already for inverse functional roles and nominals.



For SROIQ the construction is exactly the same but using doubly-exponential counters

By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by R_n
- Easy to simulate the computation

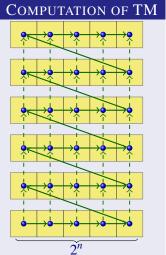


By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by R_n
- Easy to simulate the computation
- Since AExpSpace = 2ExpTime we have:

Theorem

(Finite model) reasoning in *SRIQ* is 2*ExpTime*-hard. The result holds already without inverses and counting.



Membership Results

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

▲御▶ ▲ 国▶ ▲ 国≯

THE MEMBERSHIP RESULT FOR SROIQ

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10
- 2 Eliminate axioms of form 10 using NFA
- Translate the other axioms into C²

Axiom	First-Order Translation	
1 $A \sqsubseteq \forall r.B$	$\forall x. (A(x) \to \forall y. [r(x, y) \to B(y)])$	
2 $A \sqsubseteq \ge n s.B$	$\forall x. (A(x) \to \exists^{\geq n} y. [s(x, y) \land B(y)])$	
3 $A \sqsubseteq \leq n s.B$	$\forall x. (A(x) \to \exists^{\leq n} y. [s(x, y) \land B(y)])$	
4 $A \equiv \exists s.Self$	$\forall x. (A(x) \leftrightarrow s(x, x))$	
5 $A_a \equiv \{a\}$	$\exists^{=1} y.A_a(y)$	
6 $\Box A_i \sqsubseteq B_j$	$\forall x. (\bigvee \neg A_i(x) \lor \bigvee B_j(x))$	
7 <i>Disj</i> (s_1, s_2)	$\forall xy.(s_1(x,y) \land s_2(x,y) \to \bot)$	
8 $s_1 \sqsubseteq s_2$	$\forall xy.(s_1(x,y) \to s_2(x,y))$	
9 $s_1 \sqsubseteq s_2^-$	$\forall xy.(s_1(x,y) \to s_2(y,x))$	
10 $r_1 \circ \cdots \circ r_n \sqsubseteq v$, $n \ge 1$, v is non-simple		

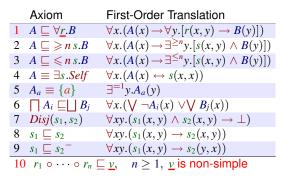
(B) (A) (B) (A)

The Membership Result for \mathcal{SROIQ}

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10
- 2 Eliminate axioms of form 10 using NFA
- Translate the other axioms into C²



13/19

Key property for step 2

Axioms of form 10 can interact only with axioms of form 1, since other axioms contain only simple roles $s_{(i)}$

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r.B$

For each $A \sqsubseteq \forall r.B$, complex RIAs induce properties: $A \sqsubseteq \forall r_1 \circ \cdots \circ r_n.B$, when $r_1 \ldots r_n \in L_{\mathcal{R}}(r)$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r.B$

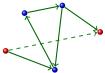
- For each $A \sqsubseteq \forall r.B$, complex RIAs induce properties: $A \sqsubset \forall r_1 \circ \cdots \circ r_n.B$, when $r_1 \ldots r_n \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of L_R(r):

・ 同 ト ・ ヨ ト ・ ヨ ト ・

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r.B$

- For each $A \sqsubseteq \forall r.B$, complex RIAs induce properties: $A \sqsubset \forall r_1 \circ \cdots \circ r_n.B$, when $r_1 \ldots r_n \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of L_R(r):
- Take any NFA for L_R(r) with the set of states Q, and the transition relation δ



< 同 > < 回 > < 回 > -

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r.B$

- For each $A \sqsubseteq \forall r.B$, complex RIAs induce properties: $A \sqsubseteq \forall r_1 \circ \cdots \circ r_n.B$, when $r_1 \ldots r_n \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of L_R(r):
- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ , and add new axioms for $A \sqsubseteq \forall r.B$:

•
$$A_p \sqsubseteq \forall s. A_q$$
, when $(p, s, q) \in \delta$

- $A \sqsubseteq A_p$, when *p* is the initial state
- $A_q \sqsubseteq B$, when q is the accepting state

• R

 $A \propto$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r.B$

- For each $A \sqsubseteq \forall r.B$, complex RIAs induce properties: $A \sqsubseteq \forall r_1 \circ \cdots \circ r_n.B$, when $r_1 \ldots r_n \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of L_R(r):
- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ , and add new axioms for $A \sqsubseteq \forall r.B$:
 - $A_p \sqsubseteq \forall s. A_q$, when $(p, s, q) \in \delta$
 - $A \sqsubseteq A_p$, when *p* is the initial state
 - $A_q \sqsubseteq B$, when q is the accepting state
- It is easy to see that these axioms imply
 - $A \sqsubseteq \forall r_1 \circ \cdots \circ r_n. B \quad iff \quad r_1 \ldots r_n \in L_{\mathcal{R}}(r)$

🍋 R

 $A \leq$

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r.B$

- For each $A \sqsubseteq \forall r.B$, complex RIAs induce properties: $A \sqsubseteq \forall r_1 \circ \cdots \circ r_n.B$, when $r_1 \ldots r_n \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of L_R(r):
- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ , and add new axioms for $A \sqsubseteq \forall r.B$:
 - $A_p \sqsubseteq \forall s. A_q$, when $(p, s, q) \in \delta$
 - $A \sqsubseteq A_p$, when *p* is the initial state
 - $A_q \sqsubseteq B$, when q is the accepting state
- It is easy to see that these axioms imply
 - $A \sqsubseteq \forall r_1 \circ \cdots \circ r_n.B \quad iff \quad r_1 \ldots r_n \in L_{\mathcal{R}}(r)$
- Note that |Q| can be exponential in $|\mathcal{R}|!$

b R

A <

THE MEMBERSHIP RESULT FOR SROIQ

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10 (polynom.)
- Eliminate axioms of form 10 using NFA (exponential step!)
- Translate the other axioms into C² (NExpTime-complete)

	Axiom	First-Order Translation	
1	$A \sqsubseteq \forall r.B$	$\forall x. (A(x) \to \forall y. [r(x, y) \to B(y)])$	
2	$A \sqsubseteq \ge n s.B$	$\forall x. (A(x) \to \exists^{\geq n} y. [s(x, y) \land B(y)])$	
3	$A \sqsubseteq \leq n s.B$	$\forall x. (A(x) \to \exists^{\leq n} y. [s(x, y) \land B(y)])$	
4	$A \equiv \exists s.Self$	$\forall x. (A(x) \leftrightarrow s(x, x))$	
5	$A_a \equiv \{a\}$	$\exists^{=1} y.A_a(y)$	
6	$\Box A_i \sqsubseteq B_j$	$\forall x. (\bigvee \neg A_i(x) \lor \bigvee B_j(x))$	
7	$Disj(s_1, s_2)$	$\forall xy.(s_1(x,y) \land s_2(x,y) \to \bot)$	
8	$s_1 \sqsubseteq s_2$	$\forall xy.(s_1(x,y) \to s_2(x,y))$	
9	$s_1 \sqsubseteq s_2^-$	$\forall xy.(s_1(x,y) \to s_2(y,x))$	
10 $r_1 \circ \cdots \circ r_n \sqsubset v n \ge 1$ v is non-simple			

10 $r_1 \circ \cdots \circ r_n \sqsubseteq v$, $n \ge 1$, v is non-simple

伺 ト イ ヨ ト イ ヨ ト -

The Membership Result for \mathcal{SROIQ}

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10 (polynom.)
- 2 Eliminate axioms of form 10 using NFA (exponential step!)
- Translate the other axioms into C² (NExpTime-complete)

Axiom	First-Order Translation		
1 $A \sqsubseteq \forall r.B$	$\forall x. (A(x) \to \forall y. [r(x, y) \to B(y)])$		
$2 A \sqsubseteq \ge n s.B$	$\forall x. (A(x) \to \exists^{\geq n} y. [s(x, y) \land B(y)])$		
3 $A \sqsubseteq \leq n s.B$	$\forall x. (A(x) \to \exists^{\leq n} y. [s(x, y) \land B(y)])$		
4 $A \equiv \exists s.Self$	$\forall x. (A(x) \leftrightarrow s(x, x))$		
5 $A_a \equiv \{a\}$	$\exists^{=1}y.A_a(y)$		
$6 \ \square A_i \sqsubseteq \bigsqcup B_j$	$\forall x. (\bigvee \neg A_i(x) \lor \bigvee B_j(x))$		
7 <i>Disj</i> (s_1, s_2)	$\forall xy.(s_1(x,y) \land s_2(x,y) \to \bot)$		
8 $s_1 \sqsubseteq s_2$	$\forall xy.(s_1(x,y) \to s_2(x,y))$		
9 $s_1 \sqsubseteq s_2^-$	$\forall xy.(s_1(x,y) \to s_2(y,x))$		
10 $r_1 \circ \cdots \circ r_n \sqsubseteq v$, $n \ge 1$, v is non-simple			

Theorem (Upper Complexity for SROIQ)

(Finite model) reasoning in SROIQ is N2ExpTime

Yevgeny Kazakov (presented by Birte Glimm)

SRIQ and SROIQ are Harder than SHOIQ

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

• (10) • (10)

SUMMARY

- We have identified exact computational complexity of SROIQ to be N2ExpTime; SRIQ is 2ExpTime-hard.
- Complexity blowup is due to complex RIAs R₁ ∘ · · · ∘ R_n ⊑ R, in particular because they can chain a fixed exponential number of roles
- Explains the exponential blowup in the tableau procedures for SRIQ and SROIQ

SUMMARY

- We have identified exact computational complexity of SROIQ to be N2ExpTime; SRIQ is 2ExpTime-hard.
- Complexity blowup is due to complex RIAs $R_1 \circ \cdots \circ R_n \sqsubseteq R$, in particular because they can chain a fixed exponential number of roles
- Explains the exponential blowup in the tableau procedures for SRIQ and SROIQ
- Open problems:
 - **1** Upper bound for SRIQ?

2 Upper & Lower bounds for \mathcal{RIQ} ?

Conjecture: 2ExpTime Conjecture: 2ExpTime

 \mathcal{RIQ} allows only for restricted complex RIAs of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$ which cannot be used in our constructions

AVOIDING THE EXPONENTIAL BLOWUP

 The exponential blowup occurs in rather exotic cases, unlikely to occur often in practice

I I I I

AVOIDING THE EXPONENTIAL BLOWUP

- The exponential blowup occurs in rather exotic cases, unlikely to occur often in practice
- Some further restrictions on complex RIAs are known to prevent an exponential blowup

(e.g. when every sequence $R_1 \prec R_2 \prec \cdots \prec R_n$ has a bounded length)

AVOIDING THE EXPONENTIAL BLOWUP

- The exponential blowup occurs in rather exotic cases, unlikely to occur often in practice
- Some further restrictions on complex RIAs are known to prevent an exponential blowup

(e.g. when every sequence $R_1 \prec R_2 \prec \cdots \prec R_n$ has a bounded length)

Only the size of the RBox has a high complexity impact:

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

QUESTIONS?

Please send difficult questions to

YEVGENY KAZAKOV

yevgeny.kazakov@comlab.ox.ac.uk

- Our contribution:
 - SROIQ [SROIF] is N2ExpTime-complete
 SRIQ [SR] is 2ExpTime-hard
- Thank you for your attention!

< 同 > < 回 > < 回 > <