SRIQ And SROIQ are Harder than SHOIQ

Yevgeny Kazakov

(presented by Birte Glimm)

Oxford University Computing Laboratory
May 15, 2008

1 Introduction

2 Hardness Results

3 Membership Results

4 DISCUSSION

Summary of the Main Results

Known Results (SEe DL Complexity Navigator ${ }^{1}$)

(Finite model) reasoning is:

- ExpTime-complete for $\mathcal{S H \mathcal { H } \mathcal { Q }}$

■ NExpTime-complete for $\mathcal{S H O \mathcal { I } \mathcal { Q }}$
${ }^{1}$ http://www.cs.man.ac.uk/~ezolin/dl/

Summary of the Main Results

Known Results (SEe DL Complexity Navigator ${ }^{1}$)

(Finite model) reasoning is:

- ExpTime-complete for $\mathcal{S H \mathcal { H } \mathcal { Q }}$

■ NExpTime-complete for $\mathcal{S H O \mathcal { I } \mathcal { Q }}$

Theorem (New Results in This Talk)
(Finite model) reasoning is:

- 2ExpTime-hard for $\mathcal{S R} \mathcal{I} \mathcal{Q}$ [and even for $\mathcal{S R}$]
- N2ExpTime-complete for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ [and for $\mathcal{S R O \mathcal { I } F}$]

[^0]
Summary of the Main Results

Known Results (SEe DL Complexity Navigator ${ }^{1}$)

(Finite model) reasoning is:

- ExpTime-complete for $\mathcal{S H} \mathcal{H} \mathcal{Q}$

■ NExpTime-complete for $\mathcal{S H O \mathcal { L } \mathcal { Q }}$

Theorem (New Results in This Talk)
(Finite model) reasoning is:

- 2ExpTime-hard for $\mathcal{S R} \mathcal{I} \mathcal{Q}$ [and even for $\mathcal{S R}$]
- N2ExpTime-complete for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ [and for $\mathcal{S R} \mathcal{O} \mathcal{I F}$]

In short: $\mathcal{H} \Rightarrow \mathcal{R}$ causes an exponential blowup!

[^1]

[2003] $\mathcal{S H \mathcal { L } \mathcal { Q }}$ was extended to $\mathcal{R I} \mathcal{Q}$ with

- complex RIAs of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$
- required to be acyclic: $S \prec R$, otherwise it is undecidable

[2003] $\mathcal{S H \mathcal { H } \mathcal { Q }}$ was extended to $\mathcal{R} \mathcal{I} \mathcal{Q}$ with

- complex RIAs of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$
- required to be acyclic: $S \prec R$, otherwise it is undecidable [2004] $\mathcal{R I} \mathcal{Q}$ was extended with more types of complex RIAs:
$1 \quad R \circ R \sqsubseteq R \quad$ (transitivity)
$2 \quad R^{-} \sqsubseteq R \quad$ (symmetry)
$3 \quad S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$4 R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
(left-linear) $\quad S_{i} \prec R$ for all $1 \leq i \leq n$
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ (right-linear) $\quad S_{i} \prec R$ for all $1 \leq i \leq n$

[2003] $\mathcal{S H \mathcal { H } \mathcal { Q }}$ was extended to $\mathcal{R I \mathcal { Q }}$ with
\because complex RIAs of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$

- required to be acyclic: $S \prec R$, otherwise it is undecidable [2004] $\mathcal{R} \mathcal{I} \mathcal{Q}$ was extended with more types of complex RIAs:

$R \circ R \sqsubseteq R \quad$ (transitivity)

2 $R^{-} \sqsubseteq R \quad$ (symmetry)
$3 \quad S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
(left-linear) $\quad S_{i} \prec R$ for all $1 \leq i \leq n$
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ (right-linear) $\quad S_{i} \prec R$ for all $1 \leq i \leq n$
[2005] $\mathcal{S R} \mathcal{I} \mathcal{Q}$ extends $\mathcal{R} \mathcal{I} \mathcal{Q}$ with
■ Universal role U

- Negated role assertions $\neg R(a, b)$
- Concept constructor \exists R.Self

■ Role axioms $\operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$

[2003] $\mathcal{S H \mathcal { H } \mathcal { Q }}$ was extended to $\mathcal{R I \mathcal { Q }}$ with

- complex RIAs of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$

■ required to be acyclic: $S \prec R$, otherwise it is undecidable [2004] $\mathcal{R} \mathcal{I} \mathcal{Q}$ was extended with more types of complex RIAs:
$4 R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R \quad$ (left-linear) $\quad S_{i} \prec R$ for all $1 \leq i \leq n$
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ (right-linear) $\quad S_{i} \prec R$ for all $1 \leq i \leq n$
[2005] $\mathcal{S R} \mathcal{I} \mathcal{Q}$ extends $\mathcal{R} \mathcal{I} \mathcal{Q}$ with

- Universal role U
- Negated role assertions $\neg R(a, b)$
- Concept constructor \exists R.Self
- Role axioms $\operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$

proposed as a basis for $\mathcal{O} \mathcal{W} \mathcal{L} 2$ (a.k.a. $\mathcal{O} \mathcal{W} \mathcal{L} 1.1$)

Regular RIAs

- Integration of new constructions into existing tableau-based procedures:
■ $U, \neg R(a, b), \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$ — do not break the tree-model property

Regular RIAs

- Integration of new constructions into existing tableau-based procedures:
■ $U, \neg R(a, b), \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$
— do not break the tree-model property
- $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R$
- break the tree-model property

■ Cause undecidability when used without restrictions

- Regularity restrictions $\mathbf{1}$ - $\mathbf{5}$ ensure decidability

Regular RIAs

Regular RIAs

- Integration of new constructions into existing tableau-based procedures:
■ $U, \neg R(a, b), \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$
— do not break the tree-model property
- $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R$
- break the tree-model property
- Cause undecidability when used without restrictions
- Regularity restrictions $\mathbf{1}$ - $\mathbf{5}$ ensure decidability
EXAMPLE

$S \circ R \circ S \sqsubseteq R \quad$ - not regular
$R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad$ - regular by 3
when R_{0}
亿 $R_{1} \prec \cdots \prec R_{n}$

Regular RIAs

1	$R \circ R \sqsubseteq R$
2	$R^{-} \sqsubseteq R$
3	$S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
	$R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
	$S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R} \mathcal{I} \mathcal{Q}-\mathcal{S R O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

TABLEAU: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R I \mathcal { Q }}-\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

$$
\begin{array}{rlr}
S \circ R \circ S \sqsubseteq R & L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} & \text { - non regular } \\
R_{i} \circ R_{i} \sqsubseteq R_{i+1} & L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right) \\
& & \text {-regular (because finite) }
\end{array}
$$

TABLEAU: The Exponential Blowup

■ Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R I \mathcal { Q }}-\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

$$
\begin{array}{rlr}
S \circ R \circ S \sqsubseteq R & L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} & \text { - non regular } \\
R_{i} \circ R_{i} \sqsubseteq R_{i+1} & L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right) \\
& & \text {-regular (because finite) }
\end{array}
$$

■ The number of different labels in the tableau $\sim 2^{|\mathcal{T}| \cdot\left|L_{\mathcal{R}}(R)\right|}$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R} \mathcal{I} \mathcal{Q}-\mathcal{S R O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

Example (COntinued)

$$
\begin{array}{rll}
S \circ R \circ S \sqsubseteq R & L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} & \text { - non regular } \\
R_{i} \circ R_{i} \sqsubseteq R_{i+1} & L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right) \\
& & \text { regular (because finite) }
\end{array}
$$

- The number of different labels in the tableau $\sim 2^{|\mathcal{T}| \cdot\left|L_{\mathcal{R}}(R)\right|}$

■ Unfortunately $\left|L_{\mathcal{R}}(R)\right|$ can be exponential in $|\mathcal{R}|$: by induction on i one can show that $\left|L_{\mathcal{R}}\left(R_{i}\right)\right| \geq 2^{i}$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R} \mathcal{I} \mathcal{Q}-\mathcal{S R O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

Example (Continued)

$$
\begin{array}{rlr}
S \circ R \circ S \sqsubseteq R & L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} & \text { - non regular } \\
R_{i} \circ R_{i} \sqsubseteq R_{i+1} & L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right) \\
& & \text { regular (because finite) }
\end{array}
$$

- The number of different labels in the tableau $\sim 2^{|\mathcal{T}| \cdot\left|L_{\mathcal{R}}(R)\right|}$

■ Unfortunately $\left|L_{\mathcal{R}}(R)\right|$ can be exponential in $|\mathcal{R}|$: by induction on i one can show that $\left|L_{\mathcal{R}}\left(R_{i}\right)\right| \geq 2^{i}$

- This causes an exponential blowup compared to the procedure for $\mathcal{S H O} \mathcal{H} \mathcal{Q} \Leftarrow$ Unavoidable??

Outline

1 INTRODUCTION

2 Hardness Results

3 Membership Results

4 DISCUSSION

Exponential Chains in $\mathcal{A L C}$

- Integer counting technique:
- A counter between 0 and $2^{n}-1$ uses n concepts B_{1}, \ldots, B_{n}
- The i-th bit of the counter corresponds to the value of B_{i}
- The counter is incremented over R

Exponential Chains in $\mathcal{A L C}$

- Integer counting technique:
- A counter between 0 and $2^{n}-1$ uses n concepts B_{1}, \ldots, B_{n}
- The i-th bit of the counter corresponds to the value of B_{i}
- The counter is incremented over R

■ Expressing in $\mathcal{A L C}$:

$$
\begin{aligned}
Z \equiv & \neg B_{n} \sqcap \cdots \sqcap \neg B_{1} \quad \text { - "Zero" } \\
E \equiv & B_{n} \sqcap \cdots \sqcap B_{1} \quad \text { - "End" } \\
\neg E \equiv & \exists R . \top \quad \text { Successors } \\
\top \equiv & \left(B_{1} \sqcap \forall R . \neg B_{1}\right) \sqcup\left(\neg B_{1} \sqcap \forall R . B_{1}\right) \\
& \text { - The lowest bit always flips }
\end{aligned}
$$

$B_{i-1} \sqcap \forall R . \neg B_{i-1} \equiv$ $\left(B_{i} \sqcap \forall R . \neg B_{i}\right) \sqcup\left(\neg B_{i} \sqcap \forall R . B_{i}\right)$

2^{n}	$9{ }^{9} \quad \begin{array}{llll}B_{3} & B_{2} & B_{1}\end{array}$	111
	¢ $B_{3} \quad B_{2} \neg B_{1}$	110
	¢ $B_{3} \neg B_{2} \quad B_{1}$	101
	아슥 $B_{2} \neg B_{1}$	100
	¢ $\neg B_{3} \quad B_{2} \quad B_{1}$	011
	- $\neg B_{3} \quad B_{2} \neg B_{1}$	010
	- $\neg B_{3} \neg B_{2} \quad B_{1}$	001
	- $\neg B_{3} \neg B_{2} \neg B_{1}$	000

Doubly-Exponential Chains in $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"

Doubly-Exponential Chains in $\mathcal{S R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
- Key point: connect corresponding elements using complex RIAs:
- $R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad R_{0}=R$

Doubly-Exponential Chains in $\mathcal{S R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
- Key point: connect corresponding elements using complex RIAs:
$-R_{i} \circ R_{i} \sqsubseteq R_{i+1} R_{0}=R$
- Complex RIAs connect elements reachable over exactly 2^{n} roles:
- $\underbrace{R \circ R \circ \cdots \circ R}_{k} \sqsubseteq R_{n} \quad$ iff $\quad k=2^{n}$

Doubly-Exponential Chains in $\mathcal{S R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
- Key point: connect corresponding elements using complex RIAs:
$-R_{i} \circ R_{i} \sqsubseteq R_{i+1} R_{0}=R$
- Complex RIAs connect elements reachable over exactly 2^{n} roles:
- $\underbrace{R \circ R \circ \cdots \circ R}_{k} \sqsubseteq R_{n}$ iff $k=2^{n}$
- Flipping of corresponding bits:

$E \sqsubseteq\left(X \sqcap \forall R_{n} . \neg X\right) \sqcup\left(\neg X \sqcap \forall R_{n} \cdot X\right)$
— the last bit always flips, . . . etc.

Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { O } \mathcal { Q }}$.
■ In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:

- Use two counters to encode the coordinates of the grid
■ Increment / copy the counters over respective edges

Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q } .}$

- In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:

■ Use two counters to encode the coordinates of the grid

- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal

Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q } .}$

- In $\mathcal{S H O \mathcal { O } \mathcal { Q }}$ it is possible to express an exponential grid:

■ Use two counters to encode the coordinates of the grid

- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q } .}$

- In $\mathcal{S H O \mathcal { O } \mathcal { Q }}$ it is possible to express an exponential grid:

■ Use two counters to encode the coordinates of the grid

- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

- The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { O }} \mathcal{Q}$.

■ In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:
■ Use two counters to encode the coordinates of the grid

- Increment / copy the counters over respective edges
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

- For $\mathcal{S R O \mathcal { I } \mathcal { Q } \text { the construction is exactly the same but using }}$ doubly-exponential counters

Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O I} \mathcal{Q}$.
$■$ In $\mathcal{S H O \mathcal { O } \mathcal { Q }}$ it is possible to express an exponential grid:

THEOREM

(Finite model) reasoning in $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ is N2ExpTime-hard. The result holds already for inverse functional roles and nominals.

- For $\mathcal{S R O \mathcal { I } \mathcal { Q } \text { the construction is exactly the same but using }}$ doubly-exponential counters

HARDNESS RESULT FOR $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$

By reduction from the word problem for an exponential-space alternating Turing machine:

HARDNESS RESULT FOR $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$

By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by R_{n}
■ Easy to simulate the computation
- Since AExpSpace $=2$ ExpTime we have:

THEOREM

(Finite model) reasoning in $\mathcal{S R I \mathcal { Q }}$ is 2ExpTime-hard. The result holds already without inverses and counting.

Outline

1 InTRODUCTION

2 Hardness Results

3 Membership Results

4 DISCUSSION

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms 1-10
2 Eliminate axioms of form 10 using NFA
B Translate the other axioms into \mathcal{C}^{2}

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r . B$	$\forall x .(A(x) \rightarrow \forall y \cdot[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .(A(x) \rightarrow \exists \geq n y \cdot[s(x, y) \wedge B(y)])$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x .(A(x) \rightarrow \exists \leq n y \cdot[s(x, y) \wedge B(y)])$
4	$A \equiv \exists s$. Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
6	$\prod A_{i} \sqsubseteq \bigsqcup B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$\operatorname{Disj}\left(s_{1}, s_{2}\right)$	$\forall x y .\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}-$	$\forall x y \cdot\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$
10	$r_{1} \circ \cdots \circ r_{n} \sqsubseteq v, \quad n \geq 1, v$ is non-simple	

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

II Simplify ontology to contain only axioms of forms 1-10
2. Eliminate axioms of form 10 using NFA
B Translate the other axioms into \mathcal{C}^{2}

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall \underline{r} . B$	$\forall x .(A(x) \rightarrow \forall y .[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .(A(x) \rightarrow \exists \geq n y .[s(x, y) \wedge B(y)])$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\leq n} y .[s(x, y) \wedge B(y)]\right)$
4	$A \equiv \exists \mathrm{~s}$.Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
6	$\rceil A_{i} \sqsubseteq \square B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$\operatorname{Disj}\left(s_{1}, s_{2}\right)$	$\forall x y .\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}{ }^{-}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$

KEY PROPERTY FOR STEP 2

Axioms of form 10 can interact only with axioms of form 1, since other axioms contain only simple roles $s_{(i)}$

Elimination of Complex RIAs

The main idea

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r . B$
■ For each $A \sqsubseteq \forall r . B$, complex RIAs induce properties: $A \sqsubseteq \forall r_{1} \circ \cdots \circ r_{n} . B, \quad$ when $r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$

Elimination of Complex RIAs

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r . B$
■ For each $A \sqsubseteq \forall r . B$, complex RIAs induce properties: $A \sqsubseteq \forall r_{1} \circ \cdots \circ r_{n} \cdot B$, when $r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$

- These properties can be expressed alternatively using the regularity of $L_{\mathcal{R}}(r)$:

Elimination of Complex RIAs

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r . B$
■ For each $A \sqsubseteq \forall r . B$, complex RIAs induce properties: $A \sqsubseteq \forall r_{1} \circ \cdots \circ r_{n} . B$, when $r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$
■ These properties can be expressed alternatively using the regularity of $L_{\mathcal{R}}(r)$:

- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ

Elimination of Complex RIAs

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r . B$

- For each $A \sqsubseteq \forall r . B$, complex RIAs induce properties: $A \sqsubseteq \forall r_{1} \circ \ldots \circ r_{n} \cdot B$, when $r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of $L_{\mathcal{R}}(r)$:
- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ, and add new axioms for $A \sqsubseteq \forall r . B$:
- $A_{p} \sqsubseteq \forall s . A_{q}, \quad$ when $(p, s, q) \in \delta$
- $A \sqsubseteq A_{p}$, when p is the initial state
- $A_{q} \sqsubseteq B, \quad$ when q is the accepting state

Elimination of Complex RIAs

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r . B$

- For each $A \sqsubseteq \forall r . B$, complex RIAs induce properties: $A \sqsubseteq \forall r_{1} \circ \ldots \circ r_{n} \cdot B$, when $r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of $L_{\mathcal{R}}(r)$:
- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ, and add new axioms for $A \sqsubseteq \forall r . B$:
- $A_{p} \sqsubseteq \forall s . A_{q}, \quad$ when $(p, s, q) \in \delta$
- $A \sqsubseteq A_{p}$, when p is the initial state
- $A_{q} \sqsubseteq B, \quad$ when q is the accepting state

■ It is easy to see that these axioms imply $A \sqsubseteq \forall r_{1} \circ \cdots \circ r_{n} . B \quad$ iff $\quad r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$

Elimination of Complex RIAs

THE MAIN IDEA

"Absorb" regular RIAs into axioms of the form $A \sqsubseteq \forall r . B$

- For each $A \sqsubseteq \forall r . B$, complex RIAs induce properties: $A \sqsubseteq \forall r_{1} \circ \ldots \circ r_{n} \cdot B$, when $r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$
- These properties can be expressed alternatively using the regularity of $L_{\mathcal{R}}(r)$:
- Take any NFA for $L_{\mathcal{R}}(r)$ with the set of states Q, and the transition relation δ, and add new axioms for $A \sqsubseteq \forall r . B$:
- $A_{p} \sqsubseteq \forall s . A_{q}, \quad$ when $(p, s, q) \in \delta$
- $A \sqsubseteq A_{p}$, when p is the initial state
- $A_{q} \sqsubseteq B, \quad$ when q is the accepting state

■ It is easy to see that these axioms imply $A \sqsubseteq \forall r_{1} \circ \cdots \circ r_{n} \cdot B \quad$ iff $\quad r_{1} \ldots r_{n} \in L_{\mathcal{R}}(r)$
■ Note that $|Q|$ can be exponential in $|\mathcal{R}|$!

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms 1-10 (polynom.)
2 Eliminate axioms of form 10 using NFA (exponential step!)
3 Translate the other axioms into \mathcal{C}^{2}

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r . B$	$\forall x .(A(x) \rightarrow \forall y .[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\geq n} y .[s(x, y) \wedge B(y)]\right)$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\leq n} y .[s(x, y) \wedge B(y)]\right)$
4	$A \equiv \exists s$. Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
6	$\rceil A_{i} \sqsubseteq \bigsqcup B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$D i s j\left(s_{1}, s_{2}\right)$	$\forall x y .\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}-$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$
10	$r_{1} \circ \cdots \circ r_{n} \sqsubseteq v, \quad n \geq 1, v$ is non-simple	

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms 1-10 (polynom.)
2 Eliminate axioms of form 10 using NFA (exponential step!)
3 Translate the other axioms into \mathcal{C}^{2}

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r . B$	$\forall x .(A(x) \rightarrow \forall y .[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\geq n} y .[s(x, y) \wedge B(y)]\right)$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\leq n} y .[s(x, y) \wedge B(y)]\right)$
4	$A \equiv \exists s$. Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
6	$\rceil A_{i} \sqsubseteq \bigsqcup B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$D i s j\left(s_{1}, s_{2}\right)$	$\forall x y .\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}-$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$
10	$r_{1} \circ \cdots \circ r_{n} \sqsubseteq v, \quad n \geq 1, v$ is non-simple	

THEOREM (UPPER COMPLEXITY FOR SROIQ)

(Finite model) reasoning in $\mathcal{S R O \mathcal { O } \mathcal { Q }}$ is N2ExpTime

Outline

1 InTRODUCTION

2 HaRdness Results

3 Membership Results

4 DISCUSSION

SUMMARY

- We have identified exact computational complexity of $\mathcal{S R O \mathcal { O }}$ to be N2ExpTime; $\mathcal{S R} \mathcal{I} \mathcal{Q}$ is 2ExpTime-hard.
■ Complexity blowup is due to complex RIAs $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R$, in particular because they can chain a fixed exponential number of roles
- Explains the exponential blowup in the tableau procedures for $\mathcal{S R I \mathcal { L }}$ and $\mathcal{S R O I Q}$

SUMMARY

- We have identified exact computational complexity of $\mathcal{S R O \mathcal { O }}$ to be N2ExpTime; $\mathcal{S R} \mathcal{I} \mathcal{Q}$ is 2ExpTime-hard.
- Complexity blowup is due to complex RIAs $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R$, in particular because they can chain a fixed exponential number of roles
- Explains the exponential blowup in the tableau procedures for $\mathcal{S R} \mathcal{I} \mathcal{Q}$ and $\mathcal{S R O \mathcal { I }}$
- Open problems:

1 Upper bound for $\mathcal{S R} \mathcal{I} \mathcal{Q}$?
2 Upper \& Lower bounds for $\mathcal{R} \mathcal{I} \mathcal{Q}$? Conjecture: 2ExpTime
$\mathcal{R} \mathcal{I} \mathcal{Q}$ allows only for restricted complex RIAs of the form
$R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$ which cannot be used in our constructions

Avoiding the Exponential Blowup

- The exponential blowup occurs in rather exotic cases, unlikely to occur often in practice

Avoiding the Exponential Blowup

■ The exponential blowup occurs in rather exotic cases, unlikely to occur often in practice
■ Some further restrictions on complex RIAs are known to prevent an exponential blowup
(e.g. when every sequence $R_{1} \prec R_{2} \prec \cdots \prec R_{n}$ has a bounded length)

Avoiding the Exponential Blowup

- The exponential blowup occurs in rather exotic cases, unlikely to occur often in practice
- Some further restrictions on complex RIAs are known to prevent an exponential blowup
(e.g. when every sequence $R_{1} \prec R_{2} \prec \cdots \prec R_{n}$ has a bounded length)
- Only the size of the RBox has a high complexity impact:

$S \mathcal{H}[\mathcal{O}] \mathcal{L}$		
ABox	TBox	RBox
NP?		
[N]E	pTime	
[N]ExpTime		

$\operatorname{SR}[\mathcal{O}] \mathcal{I} Q$		
ABox	TBox	RBox
NP?		
$[\mathrm{N}]$ ExpTime		
$2[\mathrm{~N}]$ ExpTime		

Questions?

- Please send difficult questions to

$$
\begin{aligned}
& \text { YEVGENY KAZAKOV } \\
& \text { yevgeny.kazakov@comlab.ox.ac.uk }
\end{aligned}
$$

- Our contribution:
$1 \mathcal{S R O I} \mathcal{Q}[\mathcal{S R O \mathcal { I }}]$ is N2ExpTime-complete
$2 \mathcal{S R} \mathcal{I} \mathcal{Q}[\mathcal{S R}]$ is 2ExpTime-hard
- Thank you for your attention!

[^0]: ${ }^{1}$ http://www.cs.man.ac.uk/~ezolin/dl/

[^1]: ${ }^{1}$ http://www.cs.man.ac.uk/~ezolin/dl/

