RIQ And SROIQ
are Harder than SHOIQ

Yevgeny Kazakov
(presented by Birte Glimm)

Oxford University Computing Laboratory
September 18, 2008

1 Introduction

2 Hardness Results

3 Membership Results

4 DISCUSSION

Summary of the Main Results

Known Results (SEe DL Complexity Navigator ${ }^{1}$)

(Finite model) reasoning is:

- ExpTime-complete for $\mathcal{S H} \mathcal{I} \mathcal{Q}$

■ NExpTime-complete for $\mathcal{S H O \mathcal { I } \mathcal { Q }}$
${ }^{1}$ http://www.cs.man.ac.uk/~ezolin/dl/

Summary of the Main Results

Known Results (SEe DL Complexity Navigator ${ }^{1}$)

(Finite model) reasoning is:

- ExpTime-complete for $\mathcal{S H} \mathcal{H} \mathcal{Q}$

■ NExpTime-complete for $\mathcal{S H O \mathcal { L } \mathcal { Q }}$

Theorem (New Results in This Talk)
(Finite model) reasoning is:

- 2ExpTime-hard for $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$ [$\mathcal{R I} \mathcal{Q}$, and even for $\mathcal{R}]$
- N2ExpTime-complete for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ [and for $\mathcal{S R} \mathcal{O} \mathcal{I F}$]

[^0]

[2003] $\mathcal{S H \mathcal { H } \mathcal { Q }}$ was extended to $\mathcal{R} \mathcal{I} \mathcal{Q}$ with complex RIAs:
■ $R \circ S \sqsubseteq R \quad$ (left-linear)

- $S \circ R \sqsubseteq R \quad$ (right-linear)

Timeline: From $\mathcal{S H \mathcal { H } \mathcal { Q } \text { to } \mathcal { S } \mathcal { R } \mathcal { O } \mathcal { I } \mathcal { Q } , ~}$

[2003] $\mathcal{S H \mathcal { L } \mathcal { Q }}$ was extended to $\mathcal{R} \mathcal{I} \mathcal{Q}$ with complex RIAs:
■ $R \circ S \sqsubseteq R \quad$ (left-linear)

- $S \circ R \sqsubseteq R \quad$ (right-linear)
[2004] $\mathcal{R} \mathcal{I} \mathcal{Q}$ was extended with more types of complex RIAs:

■	$R \circ R \sqsubseteq R$	(transitivity)
$\mathbf{2}$	$R^{-} \sqsubseteq R$	(symmetry)
$\mathbf{3}$	$S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$	
4	$R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$	(left-linear general)
$\mathbf{5}$	$S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R$	(right-linear general)

Timeline: From $\mathcal{S H \mathcal { L } \mathcal { Q } \text { to } \mathcal { S } \mathcal { R } \mathcal { O } \mathcal { I } \mathcal { Q } , ~}$

[2003] $\mathcal{S H \mathcal { L } \mathcal { Q }}$ was extended to $\mathcal{R} \mathcal{I} \mathcal{Q}$ with complex RIAs:
■ $R \circ S \sqsubseteq R \quad$ (left-linear)

- $S \circ R \sqsubseteq R \quad$ (right-linear)
[2004] $\mathcal{R} \mathcal{I} \mathcal{Q}$ was extended with more types of complex RIAs:
$1 \quad R \circ R \sqsubseteq R \quad$ (transitivity)
$2 \quad R^{-} \sqsubseteq R \quad$ (symmetry)
$3 \quad S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$4 R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R \quad$ (left-linear general)
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ (right-linear general)
[2005] $\mathcal{S R} \mathcal{I} \mathcal{Q}$ extends $\mathcal{R} \mathcal{I} \mathcal{Q}$ with some other "stuff":
■ $U, \neg R(a, b), \exists R . \operatorname{Self}, \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R)$, $\operatorname{Disj}\left(S_{1}, S_{2}\right)$

Timeline: From $\mathcal{S H \mathcal { L } \mathcal { Q } \text { to } \mathcal { S R } \mathcal { O } \mathcal { I } \mathcal { Q } , ~}$

[2003] $\mathcal{S H \mathcal { H } \mathcal { Q }}$ was extended to $\boldsymbol{\mathcal { R I } \mathcal { Q }}$ with complex RIAs:
■ $R \circ S \sqsubseteq R \quad$ (left-linear)

- $S \circ R \sqsubseteq R \quad$ (right-linear)
[2004] $\mathcal{R} \mathcal{I} \mathcal{Q}$ was extended with more types of complex RIAs:
$1 \quad R \circ R \sqsubseteq R \quad$ (transitivity)
$2 \quad R^{-} \sqsubseteq R \quad$ (symmetry)
$3 \quad S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$4 R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R \quad$ (left-linear general)
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ (right-linear general)
[2005] $\mathcal{S R} \mathcal{I} \mathcal{Q}$ extends $\mathcal{R} \mathcal{I} \mathcal{Q}$ with some other "stuff":
■ $U, \neg R(a, b), \exists R \cdot \operatorname{Self}, \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R)$, $\operatorname{Disj}\left(S_{1}, S_{2}\right)$

currently being standardized by W3C as the basis of $\mathcal{O} \mathcal{W} \mathcal{L}$ 2-the Ontology Web Language v. 2

Regular RIAs

■ The new constructions in tableau-based procedures:
■ $U, \neg R(a, b), \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$ - do not break the tree-model property

REGULAR RIAS

- The new constructions in tableau-based procedures:

■ $U, \neg R(a, b), \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$ — do not break the tree-model property
■ $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R$

- break the tree-model property
- Cause undecidability when used without restrictions
- Regularity restrictions $\mathbf{1}$ - 5 ensure decidability

Regular RIAs

$1 \quad R \circ R \sqsubseteq R$

2

$$
R^{-} \sqsubseteq R
$$

3
$S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$4 R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R$
provided that $S_{i} \prec R$

Regular RIAs

- The new constructions in tableau-based procedures:

■ $U, \neg R(a, b), \operatorname{Sym}(R), \operatorname{Ref}(R), \operatorname{Asy}(S), \operatorname{Irr}(R), \operatorname{Disj}\left(S_{1}, S_{2}\right)$
— do not break the tree-model property
■ $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R$

- break the tree-model property
- Cause undecidability when used without restrictions
- Regularity restrictions $\mathbf{1}$ - $\mathbf{5}$ ensure decidability

Regular RIAs

$1 \quad R \circ R \sqsubseteq R$
$2 \quad R^{-} \sqsubseteq R$
$3 \quad S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$4 R \circ S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$
$5 S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R$
provided that $S_{i} \prec R$

EXAMPLE

$$
S \circ R \circ S \sqsubseteq R
$$

— not regular

$$
S \circ S \sqsubseteq R \quad \text { - regular by } 3
$$

$$
\text { when } S \prec R
$$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R} \mathcal{I} \mathcal{Q}-\mathcal{S R O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

TABLEAU: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R I \mathcal { L }}-\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

$1 S \circ R \circ S \sqsubseteq R \quad L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} \quad$ - non regular
$\boxed{2} R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right)$

- regular (because finite)

TABLEAU: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R I} \mathcal{Q}-\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

$1 S \circ R \circ S \sqsubseteq R \quad L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} \quad$ - non regular
$\boxed{2} R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right)$

- regular (because finite)

■ Unfortunately $\left|L_{\mathcal{R}}(R)\right|$ can be exponential in $|\mathcal{R}|$: in 2 one can show that $\left|L_{\mathcal{R}}\left(R_{i}\right)\right| \geq \mathbf{2}^{i}$

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R} \mathcal{I} \mathcal{Q}-\mathcal{S R O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

$1 S \circ R \circ S \sqsubseteq R \quad L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} \quad$ - non regular
$2 R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right)$

- regular (because finite)

■ Unfortunately $\left|L_{\mathcal{R}}(R)\right|$ can be exponential in $|\mathcal{R}|$: in 2 one can show that $\left|L_{\mathcal{R}}\left(R_{i}\right)\right| \geq \mathbf{2}^{i}$

- This causes an exponential blowup in the tableau procedure

Tableau: The Exponential Blowup

- Every regular RBox \mathcal{R} induces a regular language:

$$
L_{\mathcal{R}}(R)=\left\{S_{1} S_{2} \ldots S_{n} \mid S_{1} \circ S_{2} \circ \cdots \circ S_{n} \sqsubseteq_{\mathcal{R}}^{*} R\right\}
$$

- Tableau procedures for $\mathcal{R} \mathcal{I} \mathcal{Q}-\mathcal{S R O} \mathcal{I} \mathcal{Q}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

$\boldsymbol{1} \circ R \circ S \sqsubseteq R \quad L_{\mathcal{R}}(R)=\left\{S^{i} R S^{i} \mid i \geq 0\right\} \quad$ - non regular
$2 R_{i} \circ R_{i} \sqsubseteq R_{i+1} \quad L_{\mathcal{R}}\left(R_{i+1}\right)=\left\{R_{i+1}\right\} \cup L_{\mathcal{R}}\left(R_{i}\right) \cdot L_{\mathcal{R}}\left(R_{i}\right)$

- regular (because finite)

■ Unfortunately $\left|L_{\mathcal{R}}(R)\right|$ can be exponential in $|\mathcal{R}|$: in 2 one can show that $\left|L_{\mathcal{R}}\left(R_{i}\right)\right| \geq \mathbf{2}^{i}$

- This causes an exponential blowup in the tableau procedure
- Can one avoid this blowup?
- Our results imply that is not possible!

Outline

1 INTRODUCTION

2 Hardness Results

3 Membership Results

4 DISCUSSION

Exponential Chains in $\mathcal{A L C}$

- Well-known "integer counter" technique:

Exponential Chains in $\mathcal{A L C}$

■ Well-known "integer counter" technique:

- A counter between 0 and $2^{n}-1$

Exponential Chains in $\mathcal{A L C}$

■ Well-known "integer counter" technique:

- A counter between 0 and $2^{n}-1$
- Bits are encoded by concepts B_{1}, \ldots, B_{n}.

Exponential Chains in $\mathcal{A L C}$

■ Well-known "integer counter" technique:

- A counter between 0 and $2^{n}-1$
- Bits are encoded by concepts B_{1}, \ldots, B_{n}.
- The counter is incremented over R : The bit is flipped iff all the preceding bits = 1

Doubly-Exponential Chains in $\mathcal{S R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"

Doubly-Exponential Chains in $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
- Key point: connect corresponding elements using complex RIAs:
- $R_{i} \circ R_{i} \sqsubseteq R_{i+1}, 0 \leq i \leq n$

Doubly-Exponential Chains in $\mathcal{S R} \mathcal{I} \mathcal{Q}$

- Encode the counter on exponentially-long chains
- The value of X on i-th element of the chain encodes the i-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
- Key point: connect corresponding elements using complex RIAs:
- $R_{i} \circ R_{i} \sqsubseteq R_{i+1}, 0 \leq i \leq n$
- Complex RIAs connect elements reachable over exactly 2^{n} roles:
- $\underbrace{R \circ R \circ \cdots \circ R} \sqsubseteq R_{n}$ iff $k=2^{n}$

The Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { H } \mathcal { Q } .}$

- In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles

The Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q } .}$

- In $\mathcal{S H O \mathcal { O } \mathcal { Q }}$ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal

The Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q }}$.
■ In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:
■ Use two counters to encode the coordinates of the grid

- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

The Hardness Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q }}$.
■ In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:
■ Use two counters to encode the coordinates of the grid

- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

The Hardness Result for $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { O } \mathcal { Q }}$.
■ In $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ it is possible to express an exponential grid:

- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

- For $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ the construction is exactly the same but using doubly-exponential counters

The Hardness Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

■ The key idea is like in the NExpTime-hardness for $\mathcal{S H O \mathcal { I } \mathcal { Q } \text { . }}$

THEOREM

(Finite model) reasoning in $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ is N2ExpTime-hard. The result holds already for inverse functional roles and nominals.

- For $\mathcal{S R O \mathcal { I } \mathcal { Q } \text { the construction is exactly the same but using }}$ doubly-exponential counters

The Hardness Result for $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$

By reduction from the word problem for an exponential-space alternating Turing machine:

COMPUTATION OF TM

The Hardness Result for $\mathcal{S} \mathcal{R} \mathcal{I} \mathcal{Q}$

By reduction from the word problem for an exponential-space alternating Turing machine:

COMPUTATION OF TM

The Hardness Result for $\mathcal{R} \mathcal{I} \mathcal{Q}$

- Complex RIAs in $\mathcal{R} \mathcal{I} \mathcal{Q}$ can only be of the form:
- $R \circ S \sqsubseteq R \quad$ (left-linear)
- $S \circ R \sqsubseteq R \quad$ (right-linear)

The Hardness Result for $\mathcal{R} \mathcal{I} \mathcal{Q}$

- Complex RIAs in $\mathcal{R} \mathcal{I} \mathcal{Q}$ can only be of the form:

■ $R \circ S \sqsubseteq R \quad$ (left-linear)

- $S \circ R \sqsubseteq R \quad$ (right-linear)
- Difficult to connect only the corresponding chain elements:

$S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ implies also
$S_{1} \circ \cdots \circ S_{1} \circ S_{1} \cdots \circ S_{n} \circ R \sqsubseteq R$

The Hardness Result for $\boldsymbol{\mathcal { R } \mathcal { I } \mathcal { Q }}$

- Complex RIAs in $\mathcal{R} \mathcal{I} \mathcal{Q}$ can only be of the form:

$$
\begin{array}{ll}
& R \circ S \sqsubseteq R
\end{array} \text { (left-linear) } \quad \begin{array}{ll}
& \text { (right-linear) }
\end{array}
$$

- Difficult to connect only the corresponding chain elements: $S_{1} \circ \cdots \circ S_{n} \circ R \sqsubseteq R \quad$ implies also $S_{1} \circ \cdots \circ S_{1} \circ S_{1} \cdots \circ S_{n} \circ R \sqsubseteq R$
- To connect the chain elements we use alternating roles

THEOREM

(Finite model) reasoning in $\mathcal{R I \mathcal { Q }}$ is 2ExpTime-hard. The result holds already without inverses and counting.

Outline

1 InTRODUCTION

2 Hardness Results

3 Membership Results

4 DISCUSSION

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms 1 -10
2 Eliminate axioms of form 10 using NFA
3 Translate the other axioms into \mathcal{C}^{2}

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r . B$	$\forall x .(A(x) \rightarrow \forall y .[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .(A(x) \rightarrow \exists \geq n y \cdot[s(x, y) \wedge B(y)])$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x \cdot(A(x) \rightarrow \exists \leq n y \cdot[s(x, y) \wedge B(y)])$
4	$A \equiv \exists s$. Self	$\forall x \cdot(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
6	$\prod A_{i} \sqsubseteq \bigsqcup B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$D i s j\left(s_{1}, s_{2}\right)$	$\forall x y \cdot\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}-$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$
10	$r_{1} \circ \cdots \circ r_{n} \sqsubseteq v, \quad n \geq 1, v$ is non-simple	

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms $1-10$
$\boxed{2}$ Eliminate axioms of form 10 using NFA
3 Translate the other axioms into \mathcal{C}^{2}

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall \underline{r} \cdot B$	$\forall x .(A(x) \rightarrow \forall y .[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\geq n} y .[s(x, y) \wedge B(y)]\right)$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x .(A(x) \rightarrow \exists \leq n y .[s(x, y) \wedge B(y)])$
4	$A \equiv \exists s$. Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
6	$\sqcap A_{i} \sqsubseteq \bigsqcup B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$D i s j\left(s_{1}, s_{2}\right)$	$\forall x y .\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$

$10 r_{1} \circ \cdots \circ r_{n} \sqsubseteq \underline{v}, \quad n \geq 1, \underline{v}$ is non-simple

KEY PROPERTY FOR STEP 2

Axioms of form 10 can interact only with axioms of form 1, since other axioms contain only simple roles $s_{(i)}$

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms 1-10 (polynom.)
2 Eliminate axioms of form 10 using NFA (exponential step!)
3 Translate the other axioms into \mathcal{C}^{2} (NExpTime-complete)

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r . B$	$\forall x .(A(x) \rightarrow \forall y \cdot[r(x, y) \rightarrow B(y)])$
2	$A \sqsubseteq \geqslant n s . B$	$\forall x .(A(x) \rightarrow \exists \geq n y \cdot[s(x, y) \wedge B(y)])$
3	$A \sqsubseteq \leqslant n s . B$	$\forall x \cdot(A(x) \rightarrow \exists \leq n y \cdot[s(x, y) \wedge B(y)])$
4	$A \equiv \exists s$. Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
5	$A_{a} \equiv\{a\}$	$\exists=1 y \cdot A_{a}(y)$
6	$\prod A_{i} \sqsubseteq \bigsqcup B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
7	$\operatorname{Disj}\left(s_{1}, s_{2}\right)$	$\forall x y \cdot\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
8	$s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
9	$s_{1} \sqsubseteq s_{2}-$	$\forall x y \cdot\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$
10	$r_{1} \circ \cdots \circ r_{n} \sqsubseteq v, \quad n \geq 1, v$ is non-simple	

The Membership Result for $\mathcal{S} \mathcal{R} \mathcal{O} \mathcal{I} \mathcal{Q}$

The matching N2ExpTime upper bound for $\mathcal{S R O \mathcal { O }}$ is obtained by an exponential translation into \mathcal{C}^{2} :

Summary:

1 Simplify ontology to contain only axioms of forms 1-10 (polynom.)
2 Eliminate axioms of form 10 using NFA (exponential step!)
3 Translate the other axioms into \mathcal{C}^{2} (NExpTime-complete)

Axiom	First-Order Translation
1 A $5 \forall r \cdot B$	$\forall x .(A(x) \rightarrow \forall y .[r(x, y) \rightarrow B(y)])$
2 A $\sqsubseteq \geqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists{ }^{2} y .[s(x, y) \wedge B(y)]\right)$
3 A $\sqsubseteq \leqslant n s . B$	$\forall x .\left(A(x) \rightarrow \exists^{\leq n} y .[s(x, y) \wedge B(y)]\right)$
4 A $\equiv \exists$ s.Self	$\forall x .(A(x) \leftrightarrow s(x, x))$
$5 A_{a} \equiv\{a\}$	$\exists^{=1} y \cdot A_{a}(y)$
$6 \sqcap A_{i} \sqsubseteq \square B_{j}$	$\forall x .\left(\bigvee \neg A_{i}(x) \vee \bigvee B_{j}(x)\right)$
$7 \operatorname{Disj}\left(s_{1}, s_{2}\right)$	$\forall x y .\left(s_{1}(x, y) \wedge s_{2}(x, y) \rightarrow \perp\right)$
$8 \quad s_{1} \sqsubseteq s_{2}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(x, y)\right)$
$9 s_{1} \sqsubseteq s_{2}{ }^{-}$	$\forall x y .\left(s_{1}(x, y) \rightarrow s_{2}(y, x)\right)$

$10 r_{1} \circ \cdots \circ r_{n} \sqsubseteq v, \quad n \geq 1, v$ is non-simple

THEOREM (UPPER COMPLEXITY FOR SROIQ)

(Finite model) reasoning in $\mathcal{S R O \mathcal { O } \mathcal { Q } \text { is N2ExpTime }}$

Outline

1 InTRODUCTION

2 HaRdness Results

3 Membership Results

4 DISCUSSION

SUMMARY

■ New complexity results:

- $\mathcal{S R} \mathcal{I} \mathcal{Q}, \mathcal{R} \mathcal{I} \mathcal{Q}$, and \mathcal{R} are 2ExpTime-hard.

■ Complexity blowup is caused by complex RIAs:

- either by $S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$,
- or by $\quad R \circ S \sqsubseteq R \quad+\quad S \circ R \sqsubseteq R$
- Explains why the exponential blowup in the tableau

SUMMARY

- New complexity results:

- $\mathcal{S R I} \mathcal{I}, \mathcal{R} \mathcal{I} \mathcal{Q}$, and \mathcal{R} are 2ExpTime-hard.

■ Complexity blowup is caused by complex RIAs:

- either by $S_{1} \circ \cdots \circ S_{n} \sqsubseteq R$,
- or by $\quad R \circ S \sqsubseteq R \quad+\quad S \circ R \sqsubseteq R$
- Explains why the exponential blowup in the tableau procedures for $\mathcal{S R I \mathcal { Q }}$ and $\mathcal{S R O \mathcal { O } \mathcal { Q }}$ is unavoidable
- Open questions:

1 Upper bound for $\mathcal{S R} \mathcal{I} \mathcal{Q} \& \mathcal{R} \mathcal{I} \mathcal{Q}$? Conjecture: 2ExpTime
2 Complexity of $\mathcal{R} \mathcal{I} \mathcal{Q}$ with only left-linear / right-linear axioms?

Avoiding the Exponential Blowup

- Some further restrictions on complex RIAs are known to prevent an exponential blowup
(e.g. when every sequence $R_{1} \prec R_{2} \prec \cdots \prec R_{n}$ has a bounded length)

Avoiding the Exponential Blowup

- Some further restrictions on complex RIAs are known to prevent an exponential blowup (e.g. when every sequence $R_{1} \prec R_{2} \prec \cdots \prec R_{n}$ has a bounded length)
- Only the size of the RBox has a high complexity impact:

$S \mathcal{H}[\mathcal{O}] \mathcal{I} \mathcal{Q}$		
ABox	TBox	RBox
NP?		
[N]ExpTime		
[N]ExpTime		

SR[O]IQ		
ABox	TBox	RBox
NP?		
[N]ExpTime		
2[N]ExpTime		

Questions?

- Please send difficult questions to

$$
\begin{aligned}
& \text { YEVGENY KAZAKOV } \\
& \text { yevgeny.kazakov@comlab.ox.ac.uk }
\end{aligned}
$$

- Our contribution:
$1 \mathcal{S R O I \mathcal { Q }}$ and $\mathcal{S R O \mathcal { I F }}$ are N 2 ExpTime-complete
$2 \mathcal{S R} \mathcal{I} \mathcal{Q}, \mathcal{R} \mathcal{I} \mathcal{Q}$, and \mathcal{R} are 2ExpTime-hard

■ Thank you for your attention!

[^0]: ${ }^{1}$ http://www.cs.man.ac.uk/~ezolin/dl/

