\mathcal{RIQ} and \mathcal{SROIQ} are Harder than \mathcal{SHOIQ}

Yevgeny Kazakov

(presented by Birte Glimm)

Oxford University Computing Laboratory

September 18, 2008

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- ExpTime-complete for *SHIQ*
- NExpTime-complete for *SHOTQ*

 ¹http://www.cs.man.ac.uk/~ezolin/dl/
 Image: Comparison of the second seco

SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR¹)

(Finite model) reasoning is:

- ExpTime-complete for SHIQ
- NExpTime-complete for *S*HOTQ

THEOREM (NEW RESULTS IN THIS TALK)

(Finite model) reasoning is:

- 2ExpTime-hard for SRIQ [RIQ, and even for R]
- N2ExpTime-complete for *SROIQ* [and for *SROIF*]

http://www.cs.man.ac.uk/~ezolin/dl/ < = > < //> Yevgeny Kazakov (presented by Birte Glimm) RIQ and SROIQ are Harder than SHOIQ

TIMELINE: FROM \mathcal{SHIQ} to \mathcal{SROIQ}

[2003] SHIQ was extended to RIQ with complex RIAs:

- **R** \circ *S* \sqsubseteq *R* (left-linear)
- $\blacksquare S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$

TIMELINE: FROM *SHIQ* TO *SROIQ*

[2003] SHIQ was extended to RIQ with complex RIAs:

- **R** \circ *S* \sqsubseteq *R* (left-linear)
- $\blacksquare S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$

[2004] \mathcal{RIQ} was extended with more types of complex RIAs:

 $R \circ R \sqsubseteq R$ (transitivity) $R^- \sqsubseteq R$ (symmetry) $S_1 \circ \cdots \circ S_n \sqsubseteq R$ $R \circ S_1 \circ \cdots \circ S_n \sqsubseteq R$ (left-linear general) $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ (right-linear general)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

TIMELINE: FROM *SHIQ* TO *SROIQ*

[2003] SHIQ was extended to RIQ with complex RIAs:

- **R** \circ *S* \sqsubseteq *R* (left-linear)
- $\blacksquare S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$

[2004] \mathcal{RIQ} was extended with more types of complex RIAs:

 $R \circ R \sqsubseteq R$ (transitivity) $R^- \sqsubseteq R$ (symmetry) $S_1 \circ \cdots \circ S_n \sqsubseteq R$ $R \circ S_1 \circ \cdots \circ S_n \sqsubseteq R$ (left-linear general) $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ (right-linear general)

[2005] SRIQ extends RIQ with some other "stuff":

• $U, \neg R(a, b), \exists R.Self, Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$

э

・ロット (母) ・ ヨ) ・ コ)

TIMELINE: FROM *SHIQ* TO *SROIQ*

[2003] SHIQ was extended to RIQ with complex RIAs:

 $\blacksquare \mathbf{R} \circ S \sqsubseteq \mathbf{R} \quad (\text{left-linear})$

1

 $\blacksquare S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$

[2004] \mathcal{RIQ} was extended with more types of complex RIAs:

 $R^- \sqsubseteq R$ (symmetry) $S_1 \circ \cdots \circ S_n \sqsubseteq R$ $R \circ S_1 \circ \cdots \circ S_n \sqsubseteq R$ (left-linear general) $S_1 \circ \cdots \circ S_n \circ R \sqsubset R$ (right-linear general)

 $R \circ R \sqsubset R$ (transitivity)

[2005] SRIQ extends RIQ with some other "stuff":

 $U, \neg R(a, b), \exists R.Self, Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$

[2006] SROIQ = SRIQ + SHOIQcurrently being standardized by W3C as the basis of OWL 2—the Ontology Web Language v. 2

REGULAR RIAS

- The new constructions in tableau-based procedures:
- \blacksquare U, $\neg R(a, b)$, Sym(R), Ref(R), Asy(S), Irr(R), Disj(S₁, S₂)
 - do not break the tree-model property

REGULAR RIAS

- The new constructions in tableau-based procedures:
- $U, \neg R(a, b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$
 - do not break the tree-model property
- $\blacksquare R_1 \circ \cdots \circ R_n \sqsubseteq R$
 - break the tree-model property
 - Cause undecidability when used without restrictions
 - Regularity restrictions 1 5 ensure decidability

(日)

REGULAR RIAS

- The new constructions in tableau-based procedures:
- $U, \neg R(a, b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S_1, S_2)$
 - do not break the tree-model property
- $\blacksquare R_1 \circ \cdots \circ R_n \sqsubseteq R$
 - break the tree-model property
 - Cause undecidability when used without restrictions
 - Regularity restrictions 1 5 ensure decidability

REGULAR RIAS	EXAMPLE	
1 $R \circ R \sqsubseteq R$	$S \circ R \circ S \sqsubseteq R$	— not regular
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$S \circ S \sqsubseteq R$	$ regular by 3when S \prec R$
5 $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ provided that $S_i \prec R$		

5/19

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Yevgeny Kazakov (presented by Birte Glimm) RIQ and RROIQ are Harder than SHOIQ

ヨト・ヨト

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox \mathcal{R} induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $\blacksquare S \circ R \circ S \sqsubseteq R \qquad L_{\mathcal{R}}(R) = \{S^i R S^i \mid i \ge 0\} \qquad - \text{non regular}$

2 $R_i \circ R_i \sqsubseteq R_{i+1}$ $L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_i) \cdot L_{\mathcal{R}}(R_i)$

- regular (because finite)

< 同 > < 回 > < 回 > <

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $\blacksquare S \circ R \circ S \sqsubseteq R \qquad L_{\mathcal{R}}(R) = \{S^i R S^i \mid i \ge 0\} \qquad - \text{non regular}$

- **2** $R_i \circ R_i \sqsubseteq R_{i+1}$ $L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_i) \cdot L_{\mathcal{R}}(R_i)$ — regular (because finite)
 - Unfortunately $|L_{\mathcal{R}}(R)|$ can be exponential in $|\mathcal{R}|$: in 2 one can show that $|L_{\mathcal{R}}(R_i)| \ge 2^i$

A (B) > A (B) > A (B) >

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox *R* induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $\blacksquare S \circ R \circ S \sqsubseteq R \qquad L_{\mathcal{R}}(R) = \{S^i R S^i \mid i \ge 0\} \qquad - \text{non regular}$

- **2** $R_i \circ R_i \sqsubseteq R_{i+1}$ $L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_i) \cdot L_{\mathcal{R}}(R_i)$ — regular (because finite)
 - Unfortunately $|L_{\mathcal{R}}(R)|$ can be exponential in $|\mathcal{R}|$: in 2 one can show that $|L_{\mathcal{R}}(R_i)| \ge 2^i$
 - This causes an exponential blowup in the tableau procedure

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

TABLEAU: THE EXPONENTIAL BLOWUP

Every regular RBox \mathcal{R} induces a regular language:

 $L_{\mathcal{R}}(R) = \{S_1 S_2 \dots S_n \mid S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq_{\mathcal{R}}^* R\}$

Tableau procedures for $\mathcal{RIQ} - \mathcal{SROIQ}$ work with \mathcal{R} via the corresponding automata for $L_{\mathcal{R}}(R)$.

EXAMPLE (CONTINUED)

 $I S \circ R \circ S \sqsubseteq R \quad L_{\mathcal{R}}(R) = \{S^i R S^i \mid i \ge 0\}$ — non regular

- 2 $R_i \circ R_i \sqsubseteq R_{i+1}$ $L_{\mathcal{R}}(R_{i+1}) = \{R_{i+1}\} \cup L_{\mathcal{R}}(R_i) \cdot L_{\mathcal{R}}(R_i)$ - regular (because finite)
 - Unfortunately $|L_{\mathcal{R}}(R)|$ can be exponential in $|\mathcal{R}|$:

in 2 one can show that $|L_{\mathcal{R}}(R_i)| > 2^i$

- This causes an exponential blowup in the tableau procedure
- Can one avoid this blowup?

- Our results imply that is not possible!

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EXPONENTIAL CHAINS IN ALC

Well-known "integer counter" technique:

EXPONENTIAL CHAINS IN ALC

- Well-known "integer counter" technique:
- A counter between 0 and $2^n 1$

→

EXPONENTIAL CHAINS IN \mathcal{ALC}

- Well-known "integer counter" technique:
- A counter between 0 and $2^n 1$
- Bits are encoded by concepts B_1, \ldots, B_n .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

크

EXPONENTIAL CHAINS IN ALC

- Well-known "integer counter" technique:
- A counter between 0 and $2^n 1$
- Bits are encoded by concepts B_1, \ldots, B_n .
- The counter is incremented over *R*:

The bit is flipped iff all the preceding bits = 1

DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"

3 1 4 3

DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
 - Key point: connect corresponding elements using complex RIAs:

 $R_i \circ R_i \sqsubseteq R_{i+1}, 0 \le i \le n$

DOUBLY-EXPONENTIAL CHAINS IN SRIQ

Encode the counter on exponentially-long chains

- The value of X on *i*-th element of the chain encodes the *i*-th bit
- The chains are connected by "last-to-first element"
- Incrementing of the counter
 - Key point: connect corresponding elements using complex RIAs:
 - $\blacksquare R_i \circ R_i \sqsubseteq R_{i+1}, 0 \le i \le n$
 - Complex RIAs connect elements reachable over exactly 2ⁿ roles:

•
$$\underbrace{R \circ R \circ \cdots \circ R}_{l} \sqsubseteq R_{n}$$
 iff $k = 2^{n}$

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

THE HARDNESS RESULT FOR SROID

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:
- Use two counters to encode the coordinates of the grid
- Increment / copy the counters over respective roles
- Ensure that the element with the max coordinates is unique using a nominal
- Ensure that elements with smaller coordinates are unique using inverse functional roles

For SROIQ the construction is exactly the same but using doubly-exponential counters

THE HARDNESS RESULT FOR SROID

- The key idea is like in the NExpTime-hardness for SHOIQ.
- In SHOTQ it is possible to express an exponential grid:

THEOREM

(Finite model) reasoning in *SROIQ* is *N2ExpTime*-hard. The result holds already for inverse functional roles and nominals.

For SROIQ the construction is exactly the same but using doubly-exponential counters

The Hardness Result for \mathcal{SRIQ}

By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by R_n
- Easy to simulate the computation

The Hardness Result for \mathcal{SRIQ}

By reduction from the word problem for an exponential-space alternating Turing machine:

- Configurations are encoded on exponential chains
- Corresponding cells of successive configurations are connected by R_n
- Easy to simulate the computation
- Since AExpSpace = 2ExpTime we have:

Theorem

(Finite model) reasoning in *SRIQ* is 2*ExpTime*-hard. The result holds already without inverse roles and counting.

The Hardness Result for \mathcal{RIQ}

Complex RIAs in *RIQ* can only be of the form:

- $\blacksquare \mathbf{R} \circ S \sqsubseteq \mathbf{R} \quad \text{(left-linear)}$
- $\blacksquare S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$

12/19

The Hardness Result for \mathcal{RIQ}

- Complex RIAs in *RIQ* can only be of the form:
 - **R** \circ *S* \sqsubseteq *R* (left-linear)
 - $\blacksquare S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$
- Difficult to connect only the corresponding chain elements: $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ implies also $S_1 \circ \cdots \circ S_1 \circ S_1 \cdots \circ S_n \circ R \sqsubseteq R$

A (1) > A (2) > A (2) > A

The Hardness Result for \mathcal{RIQ}

- Complex RIAs in *RIQ* can only be of the form:
 - $\blacksquare \mathbf{R} \circ S \sqsubseteq \mathbf{R} \quad (\text{left-linear})$
 - $S \circ \mathbf{R} \sqsubseteq \mathbf{R} \quad (right-linear)$
- Difficult to connect only the corresponding chain elements: $S_1 \circ \cdots \circ S_n \circ R \sqsubseteq R$ implies also $S_1 \circ \cdots \circ S_1 \circ S_1 \cdots \circ S_n \circ R \sqsubseteq R$
- To connect the chain elements we use alternating roles

Theorem

(Finite model) reasoning in \mathcal{RIQ} is 2*ExpTime*-hard. The result holds already without inverses and counting.

(日)

Membership Results

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

THE MEMBERSHIP RESULT FOR SROIQ

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10
- 2 Eliminate axioms of form 10 using NFA
- Translate the other axioms into C²

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r.B$	$\forall x. (A(x) \to \forall y. [r(x, y) \to B(y)])$
2	$A \sqsubseteq \ge n s.B$	$\forall x. (A(x) \to \exists^{\geq n} y. [s(x, y) \land B(y)])$
3	$A \sqsubseteq \leq n s.B$	$\forall x. (A(x) \to \exists^{\leq n} y. [s(x, y) \land B(y)])$
4	$A \equiv \exists s.Self$	$\forall x. (A(x) \leftrightarrow s(x, x))$
5	$A_a \equiv \{a\}$	$\exists^{=1}y.A_a(y)$
6	$\Box A_i \sqsubseteq B_j$	$\forall x. (\bigvee \neg A_i(x) \lor \bigvee B_j(x))$
7	$Disj(s_1, s_2)$	$\forall xy.(s_1(x,y) \land s_2(x,y) \to \bot)$
8	$s_1 \sqsubseteq s_2$	$\forall xy.(s_1(x,y) \to s_2(x,y))$
9	$s_1 \sqsubseteq s_2^-$	$\forall xy.(s_1(x,y) \to s_2(y,x))$
10) $r_1 \circ \cdots \circ r_n$	v_{1} , $n \geq 1$, v is non-simple

The Membership Result for \mathcal{SROIQ}

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10
- 2 Eliminate axioms of form 10 using NFA
- Translate the other axioms into C²

Key property for step 2

Axioms of form 10 can interact only with axioms of form 1, since other axioms contain only simple roles $s_{(i)}$

14/19

THE MEMBERSHIP RESULT FOR SROIQ

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10 (polynom.)
- Eliminate axioms of form 10 using NFA (exponential step!)
- Translate the other axioms into C² (NExpTime-complete)

	Axiom	First-Order Translation
1	$A \sqsubseteq \forall r.B$	$\forall x. (A(x) \to \forall y. [r(x, y) \to B(y)])$
2	$A \sqsubseteq \ge n s.B$	$\forall x. (A(x) \to \exists^{\geq n} y. [s(x, y) \land B(y)])$
3	$A \sqsubseteq \leq n s.B$	$\forall x. (A(x) \to \exists^{\leq n} y. [s(x, y) \land B(y)])$
4	$A \equiv \exists s.Self$	$\forall x. (A(x) \leftrightarrow s(x, x))$
5	$A_a \equiv \{a\}$	$\exists^{=1}y.A_a(y)$
6	$\Box A_i \sqsubseteq B_j$	$\forall x. (\bigvee \neg A_i(x) \lor \bigvee B_j(x))$
7	$Disj(s_1, s_2)$	$\forall xy.(s_1(x,y) \land s_2(x,y) \to \bot)$
8	$s_1 \sqsubseteq s_2$	$\forall xy.(s_1(x,y) \to s_2(x,y))$
9	$s_1 \sqsubseteq s_2^-$	$\forall xy.(s_1(x,y) \to s_2(y,x))$
10) $r_1 \circ \cdots \circ r_n$	$v, n \ge 1, v$ is non-simple

15/19

The Membership Result for \mathcal{SROIQ}

The matching N2ExpTime upper bound for SROIQ is obtained by an exponential translation into C^2 :

Summary:

- Simplify ontology to contain only axioms of forms 1–10 (polynom.)
- Eliminate axioms of form 10 using NFA (exponential step!)
- Translate the other axioms into C² (NExpTime-complete)

Theorem (Upper Complexity for SROIQ)

(Finite model) reasoning in SROIQ is N2ExpTime

Yevgeny Kazakov (presented by Birte Glimm) RI

 \mathcal{RIQ} and \mathcal{SROIQ} are Harder than \mathcal{SHOIQ}

OUTLINE

2 HARDNESS RESULTS

3 MEMBERSHIP RESULTS

4 DISCUSSION

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

SUMMARY

- New complexity results:
 - *SROIQ* and *SROIF* are N2ExpTime;
 - **SRIQ**, RIQ, and R are 2ExpTime-hard.
- Complexity blowup is caused by complex RIAs:
 - either by $S_1 \circ \cdots \circ S_n \sqsubseteq \mathbf{R}$,
 - or by $R \circ S \sqsubseteq R + S \circ R \sqsubseteq R$
- Explains why the exponential blowup in the tableau procedures for SRIQ and SROIQ is unavoidable

SUMMARY

- New complexity results:
 - *SROIQ* and *SROIF* are N2ExpTime;
 - **SRIQ**, RIQ, and R are 2ExpTime-hard.
- Complexity blowup is caused by complex RIAs:
 - either by $S_1 \circ \cdots \circ S_n \sqsubseteq \mathbf{R}$,
 - or by $R \circ S \sqsubseteq R + S \circ R \sqsubseteq R$
- Explains why the exponential blowup in the tableau procedures for SRIQ and SROIQ is unavoidable
- Open questions:
 - **1** Upper bound for *SRIQ* & *RIQ*? Conjecture: 2ExpTime
 - 2 Complexity of \mathcal{RIQ} with only left-linear / right-linear axioms?

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

AVOIDING THE EXPONENTIAL BLOWUP

 Some further restrictions on complex RIAs are known to prevent an exponential blowup

(e.g. when every sequence $R_1 \prec R_2 \prec \cdots \prec R_n$ has a bounded length)

(B) (A) (B) (A)

18/19

AVOIDING THE EXPONENTIAL BLOWUP

 Some further restrictions on complex RIAs are known to prevent an exponential blowup

(e.g. when every sequence $R_1 \prec R_2 \prec \cdots \prec R_n$ has a bounded length)

Only the size of the **RBox** has a high complexity impact:

18/19

QUESTIONS?

Please send difficult questions to

YEVGENY KAZAKOV

yevgeny.kazakov@comlab.ox.ac.uk

- Our contribution:
 - SROIQ and SROIF are N2ExpTime-complete
 SRIQ, RIQ, and R are 2ExpTime-hard
- Thank you for your attention!