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1. Universal property as characterization

Folds:

h = foldF f � h · in = f · F h

Unfolds:

h = unfoldF f � out · h = F h · f

Exact characterizations, but intensional rather than extensional.
Also require second-order quantifications.
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2. Partial extensional characterizations

An injection is a fold:

For injective total function h, there exists a g with g · h = id.
So h = foldF (h · in · F g).

Dually, a surjection is an unfold:

For surjective function h, there exists a g with h · g = id.
So h = unfoldF (F g · out · h).

But these are only implications. Not all folds are injections, nor all
unfolds surjections.
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3. Earlier results (CMCS2001): Folds

Define ker f = f ◦ · f .

Say ‘f is an F-congruence for g’ if g · F f ⊆ f · g.
(Usually used when f is an equivalence.)

Theorem:

Total function h is a fold iff ker h is an F-congruence for in.

For example, ‘safe tail’ function

stail xs = if null xs then xs else tail xs

is not a fold, because lists with equal safe-tails are not closed under cons.

Results dualize too.
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4. Last meeting (#56, September 2001)

Result for folds generalizes to partial functions too.

But the elegant relational proof I had did not generalize.
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5. Quotients and kernels

Define quotients \ and / by

X ⊆ R \ S � R · X ⊆ S

X ⊆ S / R � X · R ⊆ S

Revise definition of kernel to:

ker R = (R \ R)∩ (R \ R)◦

= (R \ R)∩ (R◦ / R◦)

(Coincides with earlier definition for simple and entire R.)

Define

dom R = (R◦ · R)∩ id
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6. When is a partial function a fold?

Theorem:

For simple R, exists simple S with R = foldF S iff

ker (F R) ⊆ ker (R · in) ∧ dom (F R) ⊇ dom (R · in)
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6.1. Lemma: Simple postfactors

Theorem is a direct corollary of this lemma:

For simple R,T , exists simple S with T = S · R iff

ker R ⊆ ker T ∧ dom R ⊇ dom T

(with R := F R and T := R · in).
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6.2. Sublemma

Kernel has a universal property (from definition of quotient):

ker R ⊇ S � R ⊇ R · S ∧ R ⊇ R · S◦

(ie ker R is largest S with R ⊇ R · S ∩ R · S◦).

Hence Q ◦ ·Q ⊆ ker Q for simple Q :

Q ◦ ·Q ⊆ ker Q

� {UP of kernel}
Q ⊇ Q ·Q ◦ ·Q ∧Q ⊇ Q ·Q ◦ ·Q

⇐ {monotonicity}
id ⊇ Q ·Q ◦

�

Q is simple
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6.3. Another sublemma

Q · ker Q ⊆ Q

� {quotient}
ker Q ⊆ Q \Q

� {kernel}
true
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6.4. Proof of lemma: Right to left

Let S = T · R◦.

Then

T = T · dom T ⊆ T · dom R ⊆ T · R◦ · R (= S · R)

and

T · R◦ · R ⊆ T · ker R ⊆ T · ker T ⊆ T

Moreover, S is simple:

S · S◦ = S · R · T◦ = T · T◦ ⊆ id
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6.5. Proof of lemma: Left to right

Conversely, suppose R,S simple, and let T = S · R. Then

ker R ⊆ ker T

�

ker R ⊆ ker (S · R)
� {UP of kernel}

S · R · ker R ⊆ S · R ∧ S · R · ker R ⊆ S · R

⇐ {symmetry; monotonicity}
R · ker R ⊆ R

� {lemma; R simple}
true

and

dom R ⊇ dom T � dom R ⊇ dom (S · R) � true
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7. When is a partial function an unfold?

Define ran R = R · R◦ ∩ id.

Lemma (simple prefactors):

For simple R,T , exists simple S with T = R · S iff

ran R ⊇ ran T

Theorem (a corollary):

For simple R, exists simple S with R = unfold S iff

ran (F R) ⊇ ran (out · R)

(Generalizes ‘surjective function is an unfold’.)
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7.1. Proof of lemma: Right to left

By symmetry, we’d expect to let S = R◦ · T , but in general this is not
simple.

Instead, choose Q ⊆ R◦ such that Q is simple yet dom Q = dom R◦, and
let S = Q · T .

(By Axiom of Choice, any relation has a simple domain-preserving
refinement).

We’ll show that T = R · S = R ·Q · T .
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7.2. Sublemma

For simple relations, equality follows from inclusion and common domain:

For simple R,S ,

R = S ⇐ R ⊆ S ∧ dom R ⊇ dom S

(Note that domain inclusion is equivalent to domain equality here.)

Proof uses shunting for simpletons.
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7.3. Continuing proof of lemma

Want to show that T = R ·Q · T .

By sublemma, suffices to show:
(i) T , R ·Q · T simple,

by construction

(ii) T ⊇ R ·Q · T ,

T = ran T · T ⊆ ran R · T = R · R◦ · T ⊆ T (because R simple)

(iii) dom T ⊆ dom (R ·Q · T).

dom (R ·Q · T) = dom ((dom R) ·Q · T) ⊇
dom ((ran Q) ·Q · T) = dom (Q · T) = dom (dom Q · T) ⊇
dom (ran R · T) = dom (R · R◦ · T) = dom T
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7.4. Proof of lemma: Left to right

Of course, if T = R · S then ran T ⊆ ran R.
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8. Dualization

We have:

For simple R, exists simple S with R = foldF S iff

ker (F R) ⊆ ker (R · in) ∧ dom (F R) ⊇ dom (R · in)

and

For simple R, exists simple S with R = unfold S iff

ran (F R) ⊇ ran (out · R)

They are not each other’s duals, because we broke the symmetry by
insisting on simplicity.

Therefore their respective duals are worth investigating.
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8.1. When is an injection an unfold?

Define img R = ker R◦ = (R / R)∩ (R / R)◦.

Lemma (on injective prefactors):

For injective R,T , exists injective S with T = R · S iff

img R ⊆ img T ∧ ran R ⊇ ran T

(In fact, exists injective such S iff exists any such S .)

Theorem (a corollary):

For injective R, exists injective S with R = unfold S iff

img (F R) ⊆ img (out · R) ∧ ran (F R) ⊇ ran (out · R)
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8.2. When is an injection a fold?

Lemma (on injective postfactors):

For injective R,T , exists injective S with T = S · R iff

dom R ⊇ dom T

(Again, ‘exists injective’ is redundant:
exists injective such S iff exists any such S .)

Theorem (a corollary):

For injective R, exists injective S with R = foldF S iff

dom (F R) ⊇ dom (R · in)

(Generalizes ‘injective total function is a fold’.)


