Proxima - a generic presentation-oriented XML editor

Martijn Schrage, Johan Jeuring, Lambert Meertens, Doaitse Swierstra

March /April 2003

23221

1 « <> » «[]O0X



j

Editing structured documents )

All editing is structure editing. Sometimes the structure is very simple, for
example when editing text.

In 1999 we started on the Proxima project, with the goal to build a generic,
presentation-oriented editor for XML documents.

With XML documents we mean structured documents, and with generic we mean
that the editor can handle structured documents of arbitrary type (for XML
documents: with a DTD or a Schema).

Presentation-oriented means that we always see a presentation of the document.
The presentation might be the ‘raw’ XML presentation, but also a more advanced
presentation of a document.

1 « <> » «[]O0X



" This talk

In this talk | will

» Discuss example instances of Proxima.

» Give a list of requirements for Proxima.

» Briefly give the architecture of Proxima.

« <> » «[]O0X

-



A Program Editor )

Suppose we want an editor for a programming language such as Haskell. Then we
want:

» Syntax highlighting on a semantic level (distinguishing for example type
variables from expression variables);

» Derived information, such as the type of functions (including type errors), and
variables in scope, to appear in the presentation of the document;

» Automatic layout, but also user-specified layout;

» Structured edit operations, such as cutting and pasting declarations, as well as
text input, without mode switching or new windows.

let x=1;
y=2
in (x+y)/2

» Rename a variable.

3 « <> » «[]O0X



4

Word processing

We want an improved MS Word.

» Structural view on the document: How do | edit this? versus
<bf><it>How</it> do I edit</bf> this?

» Edit operations on derived information: edit a title in the table of contents, or
even move a chapter in the table of contents.

4 « <> » «[]O0X



j

An Equation editor

Equations usually possess a lot of structure (compared with texts).

» Advanced two-dimensional presentations.

» Both text input as well as structure edit operations, without mode switching.
For example, typing 2+3*8 has the same effect as constructing this expression
via selecting +, *, and the appropriate integers.

It is not clear to us (yet) how to textually input two-dimensional formulae.
» Easy drag and drop of subexpressions.

» Domain specific transformations: a*(b+c) = axb+ax*c.

The equation editor can be seemlessly integrated in any desired editor.

5 « <> » «[]O0X



A Tree Browser |

A tree browser is a hierarchical view on tree structures. The Java Swing library
has an implementation. We want to be able to specify the presentation of a tree
browser.

Y>node i

<leaf 4
- YAHDO'

] People Search

< leaf 1

=node 2

@leaf 3

case a of

1 — "One"
&

'a’ - "Twenty"

6 « <> » «[]O0X

S



4

A Tree Browser |l

» For program sources, the tree view can be used in a separate window to
navigate through code.

» The ‘state’ of the tree view is kept locally at presentation level, and saved on
exit.

» Drag and drop are supported.

» The tree view is customizable: it can be changed to horizontal instead of
vertical, for example.

7 « <> » «[]O0X



A Tax Form )

A tax form is designed by the tax office, and filled out by tax payers. Both kinds
of users use the same document type, but different presentations.

A tax form requires a table-oriented layout, with support for user interface widgets
such as text fields, radio buttons, and selection lists.

» It should be possible to let the structure of the presentation depend on values
in the document. For example, if you fill out 2 in the text field for number of
jobs, two text fields for job particulars should appear.

» Only the tax office can edit the structure of the tax form, tax payers can only
fill out text fields etc.

8 « <> » «[]O0X



4

Requirements for Proxima

Proxima

» is a generic structure editor for XML documents that are valid with respect to

some DTD;
» supports computations over the document;
» has a graphical presentation language with a powerful mapping formalism;
» supports edit actions on all levels, including the level of derived structures;
» supports modeless editing;

» supports local state.

9 « <> » «[]O0X



4

An Architecture for Proxima

Proxima has a layered architecture:

» Document
» Document extended with computations
» Presentation

» Arrangement

Each of the layers has a local state, and a computation sheet.

The computation sheet is used to either compute the extended document from
the document, or the presentation from the extended document.

10 «« <> » «[]0 X



j

A layer

Between each pair of layers there is a mapping from the upper layer to the lower
layer using the computation sheet, and a mapping that translates edit actions on
the lower layer to edit actions on the upper layer. Document nodes have a name,
which is preserved throughout the layer structure.

Edit actions are applied at the level where they should be applied: an edit action
that changes the layout of a program never reaches the document level, a
structure transformation skips all levels except the document level.

11 «« <> » «[]0 X



¢

Related work

A lot!

» Syntax-directed editors: Synthesizer generator, . ..
» Syntax-recognizing editors: Pan, Ensemble, ...

» Editor toolkits: Amaya, Thot, Visual Studio, ...
» XML editors: XMetal, XML Spy, ...

Proxima improves upon these editors on important requirements.

12 «« <> » «[]0 X



¢ Conclusions and Future work
A prototype version (Windows only) is available on CD.
A lot of implementation work remains to be done (platform independence).

We want to produce a number of example editors, to obtain a domain-specific
language for specifying (particular kinds of?) editors.

Explore the transformation capabilities of the editor.

13 «« <> » «[]0 X



