Calculating Requirements: an
Approach Based on Architecture
Style

Dave Wile
Teknowledge Corp.
Dwile(@teknowledge.com

RE Calculi Candidates

Performance
Reliability
Security

Robustness

but, over what atoms?

The “Requirements”

 Integrate the functionality of:
— Cell Phone (CP)
— PDA
— Digital Camera (DC)
— GPS
— Watch
— Compass
— Voice recorder
— Email machine
— Internet node

« Size, weight, resiliency, security, performance are
important

Too Implementation Oriented?

Functional spec 1nstead:

Take and store pictures: time, date, position, and
orientation-stamped.

Call people: dial, voice activated, from address book,
and from GPS DB.

Receive calls from people: live, callback, recorded
message.

Take memos: voice, text, positions.
Keep track of addresses and phone numbers

More Functions

Manipulate to-do list, with alarms.

Keep track of date book with appointment alarms
Send and receive email.

Internet access.

Find businesses and friends close to where I am.
Provide driving instructions.

Check time easily.

Pretty Brittle!

Engineering

Incremental evolution from known solutions
Error analysis
Sensitivity analysis — performance envelope

Non-functional requirements

UDL OUlLwdlCO AALLLItceturod 101
Non-functional Requirement

. Specification
Basics

— Components

— Connectors

— Types

— Attachments of connectors to components
— Subarchitectures

— Properties

Associate structure with the connectors
Analyzers for non-functional properties

But, calculation too hard in general (requires
catamorphism over cyclic structures - Gibbons)

BUT...

(Ta da) Architecture Styles

May be much more constrained in their use of connectors
Example: Model / View / Controller
MV 1dea is to separate

— Information (model)
— From the way it 1s displayed (view)
— From the GUI for selecting it (controller)

Our specifications will represent components of these three
types (as sets)

Connected by 5 operators

Normally, we would have a graphical representation, but
sometimes 1000 words produces prodigiously large pictures!

“Models:” Operators Intuitions

+ - Each model is kept separate:
e.g. addressList + memos.

| - Only one model will be chosen 1n the specification:
e.g. addresses | phones.

< - The right model overrides the left one:
e.g. PDA.time < GPS.time.

- An 1ntegration or synchronization activity 1s
necessary to put the two models together:
e.g. CP.phoneNums # PDA.addresses

Views:
Operator Intuitions

+ - Each view 1s kept separate:
e.g. calendar + time.

| - Only one view will be chosen in the specification:
e.g. addressList | todoList.

< - The right view overwrites the left one:
e.g. hormal < alarm.

- An Integration activity 1s necessary to put the two
views together:
e.g. map # currentPosition

Controllers:
Operator Intuitions

+ -Each event 1s possible 1n parallel:
e.g. CtiIKey + |/{Akey, ... ,Zkey}

| - Only one event will occur:

e.g. scrollUp | scrollDown.

< - The right event overrides the left one:
e.g. onOff < reset.

- An Integration activity 1s necessary to put the two
controls together:
e.g. placeCall # selectAddress

Conventions

+/{a,....z} =a+ ...+ z

{a, b} instead of {a} +{b}

{a: x} means a has the structure of x

{Type ...} means a set of elements of that type.

| x means x | |/ x. E.g. a directory (x) 1s shown or one
of the elements of x.

X.y 1s used to refer to some attribute y of x

operator precedence 1s strictly left-to-right

nesting 1s indicated by parentheses

Singleton confusion: a# S = {a} # S (when obvious)

Graphical Representation

* Would allow properties to be attached to each
application of an operator

 Would also connect
— the views with the models viewed
— the views with the controllers

— Here, connection indicated as additional properties —
¢.g. ModelFor(‘showAddressList’)

* (Would eliminate parentheses)

Example PDA MVC Spec

 Models: {addresses: {Address...},
toDos: {ToDo ...},
appointments: {Appointment ...},
memos: {Memo...},
time, preferences}

e Views: { |[toDos, ||addresses, |[memos, preferences,
/{appointments.day, appointments.month,
appolintments.year, appointments.current} }

* Controls: |/{grafitti, keyboard, find, viewAppointments,
viewToDos, viewAddresses,

viewMemos, viewFind, viewPreferences,
onOff}

Example CP MVC Spec

 Models: {phones: {Phone ...},

missedCall: {Call...},
dialingNumber, time, preferences}

* Views: |/{ |[phones, ||missedCall,
|loutgoingCalls, |[iIncomingCalls,
dialingNumber}

+ (time < preferences)

* Controls: |/{enterDigit, answer, hangUp,
selectPhones, selectMissed,
selectOutgoing, Selectincoming,
viewPreferences, onOff}

A Composite Specification

* Electronic Swiss Army Knife (ESAK)

« May want to write:
DC #GPS #PDA #CP
(leaving all implementation decisions to the
implementer!)

e More controlled spec:
— M ESAK =M DC +M GPS +M PDA +M CP
— VESAK =V DC |V GPS [V PDA |V CP
— CESAK =CDC+C GPS +C PDA +C CP

Introduce - Operator

* (CESAK =onOff +
(C DC- DC.onOff) +
(C GPS- GPS.onOff) +
(C PDA- PDA.onOff) +
(C CP- CP.onOfY)

(note singleton confusion)

e ESAK.onOff=
DC.onOff # GPS.onOff # PDA.onOff # CP.onOff

« M ESAK =
...T (CP.phones <PDA .addresses) +...

A Calculus (almost)

* Positive Selection Operators in a formula

« Number of Selects

NS(a+b)
NS(a-b)
NS(a|b)

NS(a<b)
NS(a#b)
NS(a)

Value
NS(a) + NS(b)
NS(a) — NS(b)
NS(a) + NS(b) + 1
NS(a) + NS(b)
NS(a) + NS(b)
0

A Calculus: Tables

Built in homomorphism
F(aopb) = F,, (F(a), F(b))
Sometimes need information from node itself
Built in paramorphism
F(aopb) = F,, (node, F(a), F(b))
Where node = (op,a,b)
E.g. factor of memory used, ifactor

e Resources Used

R

(Maximum) Resources Used

a+b
a-b
alb

a<b
a#b

Apply to R(a), R(b)
where node = (op,a,b)

I

max
A ra,rb . (ratrb) * node.ifactor
A ra,rb . (ratrb) * node.ifactor
node.PR

Across-type Effects

* Need to reference Model from Controller, for
example

— Might use connectors
— Here, use property MCB — model controlled by

« Example, interested 1n resiliency:

— compute Number of Available Controls as memory
components degrade

— Apply NAC to Controllers

Resilience: Number of Available

Controls
« NAC Apply to NAC(a), NAC(b) w/ node free

atb +

a-b -

alb +

a<b Ararb . if AV(node.b.MCB)
then rb else ra

a#b A ra,rb . if AV(node. MCB)
then rb +ra
else 0

a if AV(node.MCB) then 1 else ()

e AV

a+b

alb
a<b
attb

Availability Predicate

Apply to AV(a), AV(b), node free
and
Mra,rb) ra
and
or
and
Exists r: resource |
node.AssignedTo=r and
LiveResource(r)

Samsung SPH-1300 (CP+PDA)

* Models:

(M PDA - PDA .addresses - PDA . time) +
(M CP + outgoingCalls +
incomingCalls - CP.phones - CP.time) +

((CP.phones + voiceData)

PDA .addresses.phones) + [[1]]
(PDA .addresses -

PDA .addresses.phones)) + [12]]
(PDA.time < CP.time)) + [[3]]

{ CP.thisNumber, CP.serviceNumber,
CP.speedDial}

Notes

. Voice data added to phone list and then
integrated with address book phones

2. Remainder of the address book information

Separate memories used

(All this 1s known because PDA/CP died)

Problems

* Equational reasoning:

— 1interfered with by using node-specific properties. E.g.
/a # |/b = |/(a#b)
may not hold 1f properties are attached to #.
— property equivalence classes ~ comments

— may need to consider other relationships between
architectural elements that are not described by connectors,
MCB, similarly

* Normal architectures have more complex (cyclic)
structures — graph paramorphism as limit on tree
paramorphisms

More Work

Formalize — imprecise semantics of operators
leads to sloppiness

Abstraction wo / MVC

Flesh out MVC style

Calculus for another style with less hierarchy
Promotion theorems

