# Transforming Types 

Johan Jeuring

Joint work with Rui Guerra

## Introduction

$\rightarrow$ Information possesses structure (has a type), and structural information is used to store, edit, view, and search in data.
$\rightarrow$ There are many applications in which you want to view (values of) certain types as other types, or transform types to other types:

- when two types are isomorphic, you want to use functionality on one type also on the other type;
- to suggest program corrections in type checking;
- cut \& paste;
- coercive subtyping;
- schema/data type evolution;
- ...


## Isomorphic types

Suppose you want to use of two different libraries with functionality on dates. The first one defines Date by
data Date $=$ Date Day Month Year
data Day = Day Int
data Month $=$ Month Int
data Year = Year Int
the second by:
data Date ${ }^{\prime}=$ Date $^{\prime}(\operatorname{Int}, \operatorname{Int}, \operatorname{lnt})$
How can I mix functions from the two libraries in a single program?

## Suggesting program corrections I

The following example is inspired by 'How to Repair Type Errors Automatically' from Bruce McAdam (Trends in functional programming, 2002). Consider the following program

```
square :: Int }->\mathrm{ Int
square i= i\stari
squareList :: Int }->\mathrm{ [Int]
squareList n = map ([1..n],square)
```

This program is incorrect, the programmer probably meant:

```
square :: Int }->\mathrm{ Int
square i}=i\star
squareList :: Int }->\mathrm{ [Int]
squareList n = map square [1..n]
```

but didn't know how to use map properly.

## Suggesting program corrections II

The type of map in the prelude is

$$
(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow[\mathrm{a}] \rightarrow[\mathrm{b}]
$$

map's expected type is

$$
([a], a \rightarrow b) \rightarrow[b]
$$

These types are isomorphic under (un)currying and product commutativity.

## Cut \& Paste

$\rightarrow$ In an editor you want to cut and paste data from one place to another. But what if the types don't match?

## Cut \& Paste

$\rightarrow$ In an editor you want to cut and paste data from one place to another. But what if the types don't match?
$\rightarrow$ Transform!

## Cut \& Paste

$\rightarrow$ In an editor you want to cut and paste data from one place to another. But what if the types don't match?
$\rightarrow$ Transform!
$\rightarrow$ If, for example, I paste
Date ${ }^{\prime}(20,02,2005)$
to a location that expects values of type Date, I want it to be transformed silently to
Date (Day 20) (Month 02) (Year 2005)

## Cut \& Paste

$\rightarrow$ In an editor you want to cut and paste data from one place to another. But what if the types don't match?
$\rightarrow$ Transform!
$\rightarrow$ If, for example, I paste
Date ${ }^{\prime}(20,02,2005)$
to a location that expects values of type Date, I want it to be transformed silently to
Date (Day 20) (Month 02) (Year 2005)
$\rightarrow$ This problem has been studied in the structure editors community. For example: Akpotsui, Quint, Roisin. Type Modelling for Document Transformation in Structured Editing Systems.

## Coercive subtyping

$\rightarrow$ Kiessling and Luo (Coercions in Hindley-Milner systems, Types 2004): 'Coercive subtyping is a framework of abbreviation for dependent type theories.'
$\rightarrow$ If you want to silently coerce an integer to a float, you can write the following code in Kiessling and Luo's system:

```
int2float :: Int }->\mathrm{ Float
int2float = ...
cdec int2float :: Int }->\mathrm{ Float
```


## Schema evolution

The database community has been working (a lot) on Schema transformation, integration, and translation.

## Approaches to type transformations

In all these examples we want to have a function that transforms values of one type to another type, with as little effort as possible.
$\rightarrow$ Obviously, generic transformations between isomorphic types are of no help for non-isomorphic types.

## Approaches to type transformations

In all these examples we want to have a function that transforms values of one type to another type, with as little effort as possible.
$\rightarrow$ Obviously, generic transformations between isomorphic types are of no help for non-isomorphic types.
$\rightarrow$ The suggestions for type corrections do not generate transformations.

## Approaches to type transformations

In all these examples we want to have a function that transforms values of one type to another type, with as little effort as possible.
$\rightarrow$ Obviously, generic transformations between isomorphic types are of no help for non-isomorphic types.
$\rightarrow$ The suggestions for type corrections do not generate transformations.
$\rightarrow$ The type transformations in structure editors are built-in, and only described informally.

## Approaches to type transformations

In all these examples we want to have a function that transforms values of one type to another type, with as little effort as possible.
$\rightarrow$ Obviously, generic transformations between isomorphic types are of no help for non-isomorphic types.
$\rightarrow$ The suggestions for type corrections do not generate transformations.
$\rightarrow$ The type transformations in structure editors are built-in, and only described informally.
$\rightarrow$ The Hindley-Milner system extended with coercions only allows a single coercion between two types.

## This talk

A 'type system' and a 'transformation inference algorithm':
$\rightarrow$ Type transformation rules.
$\rightarrow$ An algorithm for calculating the minimum cost type transformation.
$\rightarrow$ Soundness and completeness claims.
Given two types, the minimum cost type transformation between these types is inferred.

It is a different problem to refactor a given type to a different type

## Type transformations

Definition 1 (Type Transformation) A type transformation between types a and b is a t such that $\mathrm{a} \mapsto_{t} \mathrm{~b}$ is derivable using the following rules.

## Basic type transformation rules

$$
\begin{gathered}
\mathrm{a} \mapsto_{i d} \mathrm{a} \\
\frac{\mathrm{a} \mapsto_{m} \mathrm{~b} \quad \mathrm{~b} \mapsto_{n} \quad \mathrm{c}}{\mathrm{a} \mapsto_{\operatorname{trans}}(m, n) \mathrm{c}}
\end{gathered}
$$

## Placeholder transformation rules: example

If two types don't match, I still want to be able to transform values from one to the other.

Int $\mapsto_{\text {string }}$ String
This should be expensive.
Alternatively, it should be possible to add special-purpose coercions, together with their cost, to the type transformation system.

## Placeholder transformation rules

$$
\begin{array}{ccc}
\hline a \mapsto_{\text {unit }} & \text { Unit } \\
\hline a & \mapsto_{\text {string }} & \text { String } \\
\bar{a} \mapsto_{\text {int }} & \text { Int }
\end{array}
$$

## Product transformation rules

$$
\begin{gathered}
\frac{\mathrm{a} \quad \mathrm{~b}}{\mapsto_{\text {prodIntro }} \mathrm{a} \times \mathrm{b}} \\
\overline{\mathrm{a} \times \mathrm{b}} \mapsto_{f_{s t} \quad \mathrm{a}}^{\mathrm{a} \times \mathrm{b} \mapsto_{\text {snd }} \quad \mathrm{a}} \\
\frac{\mathrm{a} \times \mathrm{b}}{\mapsto_{\text {swapprod }} \quad \mathrm{b} \times \mathrm{a}} \\
\frac{\mathrm{a} \mapsto_{m} \mathrm{a}^{\prime} \quad \mathrm{b} \mapsto_{n} \mathrm{~b}^{\prime}}{\mathrm{a} \times \mathrm{b} \mapsto_{\text {prod }}(m, n)} \mathrm{a}^{\prime} \times \mathrm{b}^{\prime}
\end{gathered}
$$

## Sum transformation rules

$$
\begin{gathered}
\hline \mathrm{a} \mapsto_{\text {suminl }} \mathrm{a}+\mathrm{b} \quad \mathrm{~b} \mapsto_{\text {sumInr }} \mathrm{a}+\mathrm{b} \\
\frac{\mathrm{a} \mapsto_{m} \quad \mathrm{c} \quad \mathrm{~b} \mapsto_{n} \quad \mathrm{c}}{\mathrm{a}+\mathrm{b}} \mapsto_{\text {either }}(m, n) \quad \mathrm{c} \\
\frac{\mathrm{a}+\mathrm{b}}{\mapsto_{\text {swapsum }}} \mathrm{b}+\mathrm{a} \\
\frac{\mathrm{a} \mapsto_{m} \quad \mathrm{a}^{\prime} \quad \mathrm{b} \mapsto_{n} \quad \mathrm{~b}^{\prime}}{\mathrm{a}+\mathrm{b} \mapsto_{\text {sum }}(m, n) \quad \mathrm{a}^{\prime}+\mathrm{b}^{\prime}}
\end{gathered}
$$

## Function transformation rules

$$
\begin{gathered}
\overline{\mathrm{a} \times \mathrm{b} \rightarrow \mathrm{c} \mapsto_{\text {curry }} \quad \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c}} \\
\overline{\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \mapsto_{\text {uncurry }} \mathrm{a} \times \mathrm{b} \rightarrow \mathrm{c}} \\
\overline{\mathrm{a} \mapsto_{\text {const }} \text { Unit } \rightarrow \mathrm{a}} \overline{\text { Unit } \rightarrow \mathrm{a} \mapsto_{\text {unconst }} \mathrm{a}} \\
\frac{\mathrm{a} \mapsto_{m} \quad \mathrm{a}^{\prime} \quad \mathrm{b} \mapsto_{n} \mathrm{~b}^{\prime}}{\mathrm{a}^{\prime} \rightarrow \mathrm{b} \mapsto_{\text {fun }}(m, n) \quad \mathrm{a} \rightarrow \mathrm{~b}^{\prime}}
\end{gathered}
$$

## Constructor transformation rules

$$
\begin{gathered}
\overline{\text { Con } c \text { a } \mapsto_{r m C o n s t r ~} \mathrm{a}} \\
\overline{\mathrm{a} \mapsto_{\text {addConstr }} \quad \text { Con } \mathrm{ca}} \\
\overline{\mathrm{a} \mapsto_{m} \mathrm{a}^{\prime}} \\
\overline{\text { Con } c \mathrm{a} ~} \mapsto_{\operatorname{con}(m)} \text { Con } c \mathrm{a}^{\prime}
\end{gathered}
$$

## About the rules

Are these rules the minimal set of type rules?
$\rightarrow$ The sum and product rules are the standard monoidal iso's.

## About the rules

Are these rules the minimal set of type rules?
$\rightarrow$ The sum and product rules are the standard monoidal iso's.
$\rightarrow$ The function rules correspond to the laws of the exponentials. The rule

$$
\overline{(\mathrm{a}+\mathrm{b}) \rightarrow \mathrm{c}} \mapsto_{\text {sumprod }} \quad(\mathrm{a} \rightarrow \mathrm{c}) \times(\mathrm{b} \rightarrow \mathrm{c})
$$

and its converse are derivable, and therefore omitted. However, we might want to add them because we want these transformations to be 'cheap'.

## About the rules

Are these rules the minimal set of type rules?
$\rightarrow$ The sum and product rules are the standard monoidal iso's.
$\rightarrow$ The function rules correspond to the laws of the exponentials. The rule

$$
\overline{(\mathrm{a}+\mathrm{b}) \rightarrow \mathrm{c}} \mapsto_{\text {sumprod }} \quad(\mathrm{a} \rightarrow \mathrm{c}) \times(\mathrm{b} \rightarrow \mathrm{c})
$$

and its converse are derivable, and therefore omitted. However, we might want to add them because we want these transformations to be 'cheap'.
$\rightarrow$ I suspect I want to add rules about subtyping.

## Minimum cost type transformations

Suppose there exists an ordering on transformations.

Definition 2 (Minimum cost type transformation) $A$ minimum cost type transformation between types a and b is a type transformation $t$ between a and b such that for any other type transformation $t^{\prime}$ between a and $\mathrm{b}, t \leqslant t^{\prime}$.

Theorem 1 Given any two types a and b , there exists a minimum cost type transformation.

In general this minimum cost type transformation will not be unique. The ordering on transformations should be such that:

Theorem 2 Given two canonically isomorphic types a and b , the minimum cost type transformation between a and b corresponds (in some sense) to the isomorphism between a and b .

## Inferring minimum cost type transformations

I'd like to have a function that automatically infers a (or the) minimum cost type transformation TYPETRANSFORM between two types.

Frank Atanassow and I have shown how to generate the unique isomorphism between two isomorphic types.

We want to use similar techniques to infer a minimum cost type transformation.
[We haven't looked at the situation in which multiple solutions exist yet.]

## TYPETRANSFORM is a generic function

$\rightarrow$ TYPETRANSFORM takes two types as arguments, and returns a function, the structure of which depends on the structure of the arguments types.

## TYPETRANSFORM is a generic function

$\rightarrow$ TYPETRANSFORM takes two types as arguments, and returns a function, the structure of which depends on the structure of the arguments types.
$\rightarrow$ TYPETRANSFORM is a generic function that depends on two type arguments.

## TYPETRANSFORM is a generic function

$\rightarrow$ TYPETRANSFORM takes two types as arguments, and returns a function, the structure of which depends on the structure of the arguments types.
$\rightarrow$ TYPETRANSFORM is a generic function that depends on two type arguments.
$\rightarrow$ Generic functions in Generic Haskell take a single type as argument.

## TYPETRANSFORM is a generic function

$\rightarrow$ TYPETRANSFORM takes two types as arguments, and returns a function, the structure of which depends on the structure of the arguments types.
$\rightarrow$ TYPETRANSFORM is a generic function that depends on two type arguments.
$\rightarrow$ Generic functions in Generic Haskell take a single type as argument.
$\rightarrow$ We can get around this restriction by

- producing a representation of the source value in a universal language (a generic function depending on the type Source),
- and calculating the minimum cost type transformation from that representation to the target type (a generic function depending on the type Target).


## High level structure

```
typetransform :: Source }->\mathrm{ Target
typetransform =mctt\langleTarget\rangle.reduce\langleSource\rangle
reduce\langlet ::\star\rangle :: t }->\mathrm{ Univ
mctt\langlet::\star\rangle :: Univ }->\textrm{t
```


## Reducing to a universal value

Function reduce $\langle\mathrm{t}\rangle$ reduces a value of type t to a value of a universal data type, defined by, for example
data Univ = UUnit Unit
| UInt Int
| UStr String
| USum Opt Univ
| UProd Univ Univ
| UCon ConDescr Univ
data Opt $=$ ULeft $\mid$ URight
reduce $\langle\mathrm{t}:: \star\rangle$ :: $\mathrm{t} \rightarrow$ Univ

## Costs

We define a data type Cost:

| data Cost $=$ | IdCost |
| ---: | :--- |
|  | $\mid$ TransCost Cost Cost |
|  | $\mid$ UnitCost |
|  | $\mid$ IntCost |
|  | $\mid$ StringCost |
|  | $\mid \ldots$ |
| $\min$ Cost $::$ | $[$ Cost $] \rightarrow$ Cost |

Furthermore, we have two obvious mappings, cost $2 t t$ and $t t 2 \cos t$, from Cost to type transformations and vice versa.

## The minimum cost type transformation

Function $m c t t\langle\mathrm{t}\rangle$ returns the minimum cost type transformation. It is a kind of parsing function with type:

$$
\operatorname{mctt}\langle\mathrm{t}:: \star\rangle::[\text { Univ }] \rightarrow(\mathrm{t}, \text { Cost, [Univ }])
$$

It implements the type rules given at the beginning of this talk. It is a large function, with arms of the form:

```
mctt\langleInt\rangle univ@((UInt int) : rest) =
    let id = (int,IdCost,rest)
        phint =(0, IntCost,univ)
    in minCost2nd [id,phint]
```


## Soundness and optimality

We want to prove the following theorem:

Theorem 3 (TYPETRANSFORM is sound and optimal) If
typetransform source $=($ target, cost, []$)$
then cost2tt cost is a minimum cost type transformation.

## Completeness

We would like to have the following result:

Theorem 4 (TYPETRANSFORM is complete) If tis a minimum cost type transformation, then
typetransform source $=($ target, cost,[]$)$
where $t t 2 \cos t=$ cost .

However, since I expect that the minimum cost type transformation is not unique in general, this is unlikely to hold.

## Conclusions and future work

$\rightarrow$ Finish the implementation, and develop some heuristics to increase efficiency.
$\rightarrow$ Work out some more realistic examples.
$\rightarrow$ (Dis)prove the theorems.

