
Generic Container Programming in Haskell

Bruno Oliveira

Generic Container Programming in Haskell – p.1/21

Introduction

One of the goals for this first year is:

• capture existing template meta-programming techniques within
datatype-generic programming

The main goal of this work, is to check for possible features in
programming languages for doing generic programming.

For doing that, we’ll try to explore STL Iterators and Concepts.
Moreover, we will, more generically, explore some morphisms over
containers.

Generic Container Programming in Haskell – p.2/21

Generic Programming in Haskell

Currently, there are a few projects in the functional programming
community that are trying to do (or are related somehow) to generic
programming. We point out some of them:

• Scrap your boilerplate
• Template Haskell
• Generic Haskell
• Dependent Types

Generic Container Programming in Haskell – p.3/21

Generic Programming in Haskell

Technique Interpreter Compiler
GF DTT GF DTT

Scrap your boilerplate Limited* No Limited* No
Template Haskell Yes** Yes** Spec Spec
Generic Haskell Yes No Spec No

Dependent Types Yes Yes Yes Yes
* Generic traversal mechanisms only.
** We assume that Template Haskell can simulate Generic
Programming by making use of their template mechanisms.

Generic Container Programming in Haskell – p.4/21

Scrap your boilerplate

• Scrap boilerplate is an approach that focus on term traversal as
the prime idiom of generic programming.

• It aims at a smooth integration of generic programming with
Haskell.

• Supports a combinator style of generic programming.
• It is pretty much lightweight version of generic programming when

compared to other alternatives (such as Generic Haskell).

The intriguing gfoldl :

gfoldl :: forall a c.
(Data a) => (forall a1 b. (Data a1) =>
c (a1 -> b) -> a1 -> c b) ->

(forall g. g -> c g) -> a -> c a

Generic Container Programming in Haskell – p.5/21

Polynomial Data-types

Consider the (annotated) polynomial data-type Γ:

Γa0 a1 ... an−1 = Π0 + Π1 + ... + Πm−1 = Σm−1

0
Πi

We can split Πi into Constructor Ci,non-recursive part Ii and
recursive part Ri.

split (Π) = C × I × R

mapΣ split (Σm−1

0
(Πi)) = Σm−1

0
(Ci × Ii × Ri)

Thus, Γ can be represented as:

Γ a0 a1 ... = C0 × I0 × R0 + ... = Σm−1

0
Ci × Ii × Ri

Generic Container Programming in Haskell – p.6/21

polynomial Data-types

Consider the generic types Υ, Φ and θ. Υ represents the constructors
of the data-type, Φ is the non-recursive information of the equation and
θ represents the powers for the recursive part of the equation:

Υ = mapΣ fst (Σm−1

0
(Ci × Ii × Ri)) = Σm−1

0
Ci

Φ = mapΣ snd (Σm−1

0
(Ci × Ii × Ri)) = Σm−1

0
Ii

θ = mapΣ (powerIndex ◦ thr) Σm−1

0
(Ci × Ii × Ri) = Σm−1

0
Int

Generic Container Programming in Haskell – p.7/21

Polynomial Data-types

We can combine Υ , Φ and θ obtaining:

Ω = mapΣ (id×id×powerIndex) (Σm

0 (Ci×Ii×Ri)) = Σm

0 (Ci×Ii×Int)

Using the first definition of Γ we can apply map-fusion:

Ω = mapΣ ((id×id×powerIndex) ◦ split) (Σm

0
(Πi)) = Σm

0
(Ci×Ii×Int)

The operations fst, snd, thr and id are just the same ones we know
from Algebra of Programming. The operations powerIndex and split
are normal functions applied to a data-type that defines data-types.

split :: Prod -> (Constr, Prod, Prod)
powerIndex :: Prod -> Int
powerIndex = length

Generic Container Programming in Haskell – p.8/21

Polynomial container

The generics types Ω, Φ, Υ, θ depend on Γ:

Γ → Ω, Γ → Υ, Γ → Φ, Γ → θ

In Haskell it is not possible to express the operations needed, in order
to produce those types automatically. However, one can express the
dependency relation, thru functional dependencies.
We can express a container as:

class Container Γ Φ | Γ → Φ

Moreover, this definition allow us to consider a type with kind
(∗ → ∗ → ... → ∗) as a kind ∗. Φ is, in fact, representing the contents of
the container.

Generic Container Programming in Haskell – p.9/21

Polynomial Container - A few examples

“A container is an Object that stores other Objects (its elements) and
that has methods for accessing its elements...”

Def. from “Generic Programming and the STL”

According to what we have before we should have, for some standard
data-types, something like:

instance Container [a] (1 + a)
instance Container [(a,a)] (1 + a × a)
instance Container (Tree a) (1 + a)
instance Container (ExpTree op a) (a + op + op)

However, in the coming sections we will have a more relaxed version:

instance Container [a] (a)
instance Container [(a,a)] (a × a)
instance Container (Tree a) (a)
instance Container (ExpTree op a) (a + op)

Generic Container Programming in Haskell – p.10/21

polynomial Data-types - Visitors

Having the two following generic functions:

value<Γ,Ω> :: Γ -> Φ
succs<Γ,Ω> :: Γ -> [Γ]

• value - retrieves the value of the current element of Γ.
• succs - retrieves the successors of Γ.

One could define a function gvisitor:

gvisitor<Γ,Ω> :: (Φ -> c* -> c) -> Γ -> c

On this definition c*, represents 0 or more c’s, the number of c’s can
be calculated with θ.

Generic Container Programming in Haskell – p.11/21

polynomial Data-types - Visitors

In Haskell, it is not possible to define generic functions such as value
and succs, however Haskell type classes, do allow us to simulate its
behavior.

class Container Γ Φ => InputIterator Γ Φ where
value :: Γ -> Maybe Φ
succs :: Γ -> Maybe [Γ]

The definition of gvisitor would be:

gvisitor :: InputIterator Γ Φ =>
(Maybe Φ -> [c] -> c) -> Γ -> c

gvisitor f x =
case succs x of

Nothing -> f (value x) []
Just s -> f (value x) (map (gvisitor f) s)

Generic Container Programming in Haskell – p.12/21

polynomial Data-types - Visitors

Using the previous definition of gvisitor, one could define a whole
series of families of gvisitor-like functions:

gvisitor2 :: InputIterator a b =>
(Maybe b -> c -> d) -> (c -> d -> c) -> c -> a -> d

gvisitor2 f g k = gvisitor (\i j -> f i (foldl g k j))

gvisitor3 :: InputIterator a b =>
(Maybe b -> c -> d) -> (d -> c -> c) -> c -> a -> d

gvisitor3 f g k = gvisitor (\i j -> f i (foldr g k j))

gvisitor4 :: InputIterator a b =>
(b -> c -> c) -> (c -> c -> c) -> c -> a -> c

gvisitor4 f g k =
gvisitor (\i j -> fapply2 f i (foldr (g) k j)

gvisitor5 :: InputIterator a b =>
(b -> b -> b) -> b -> a -> b

gvisitor5 f k = gvisitor4 f f k
Generic Container Programming in Haskell – p.13/21

Visitors - Simple Examples

We can now give a few simple examples of generic functions over
polynomial containers:

• gelems - Number of elements of a Container;

gelems :: InputIterator a b => a -> Int
gelems = gvisitor4 (\x y -> succ y) (+) 0

• gdepth - Depth of a Container;

gdepth :: InputIterator a b => a -> Int
gdepth = gvisitor3 (\x y -> succ y) max 0

• gsum - Sum of a numeric Container.

gsum :: (Num b,InputIterator a b) => a -> b
gsum = gvisitor5 (+) 0

Generic Container Programming in Haskell – p.14/21

polynomial Data-types - Iterators

Moreover, if we also have:

write<Γ,Ω> :: Φ -> Γ* -> Γ

The function write will construct a type Γ. This function is closely
related to the constructors (as well as inΓ).
One could define a function itmap (metamorphism):

itmap<Γ1,Γ2,Ω> :: (Φ1-> Φ2) -> Γ1-> Γ2

In Haskell, we would again use type classes:

class OutputIterator Γ Φ | Γ -> Φ where
write :: Maybe Φ -> [Γ] -> Γ

itmap :: (InputIterator a b, OutputIterator c d) =>
(b -> d) -> a -> c

itmap f = gvisitor (\j k -> write (apply f j) k)
where apply f x = maybe Nothing (Just . f) x

Generic Container Programming in Haskell – p.15/21

Iterators - Simple Examples

• convert - Converts an InputIterator into an OutputIterator.

convert :: (InputIterator a b,OutputIterator c b) => a -> c

convert = itmap id

This is an overloaded function (generic function), so in order to use it,
you must explicitly type the result.

> (convert atree) :: [Integer]

• flatten - Converts an InputIterator into a Haskell list.

flatten :: (InputIterator a b,OutputIterator [b] b) => a -> [b]

flatten = itmap id

In this case, you define the final type in the function signature, so you
don’t need to explicitly type the result.

Generic Container Programming in Haskell – p.16/21

Zipper

Gerard Huet’s paper "The Zipper" presents an elegant representation
of tree like data, decomposed into the focus of the tree and its
one-hole context. The focus of the tree is the current subtree that we
are visiting, and the one-hole context is the tree with a hole in the
position of the focus subtree.

�

�

�
�

�

�

�

�
�

	

�
�

=

�

�
�

�

�

�

�

�
�

+ �

�
�

Generic Container Programming in Haskell – p.17/21

Zipper

We can define a zipper for a polynomial data-type, using:

data Path a b = Top | Node [a] (Maybe b,Path a b) [a]

type Location a b = Maybe (a,Path a b)

With the functions value and succs defined for the InputIterator is
possible define the functions down, left and right of the Zipper.

down (Just (t,p)) = case succs t of
Nothing -> Nothing
Just s -> Just (head s,Node [] (value t,p) (tail s))

left (Just (t,p)) = case p of
Top -> Nothing
Node [] _ _ -> Nothing
Node (x:xs) u r -> Just (x,Node xs u (t:r))

Generic Container Programming in Haskell – p.18/21

Zipper

In order to be able to go up, we will need one extra generic function:

build<Γ,Ω> :: Γ -> Maybe Φ -> [Γ] -> [Γ] -> Γ

The function build will take, the current recursive element in the Zipper,
plus the value for that element, the elements on its left and right and
produce the element on top.
In Haskell, we could define the Zipper as:

class InputIterator Γ Φ => Zipper Γ Φ where
build :: Γ -> Maybe Φ -> [Γ] -> [Γ] -> Γ

up would then be defined as:

up (Just (t,p)) = case p of
Top -> Nothing
Node l u r -> Just (build t

(fst u) (reverse l) r,snd u)

Generic Container Programming in Haskell – p.19/21

Proposed Features

• Data-type transformers (DTT) support:

θ :: Type → Type

• Generic Functions with support for DTT:

value<Γ,Ω> :: Γ -> Φ

• Multi-parameters:

write<Γ,Ω> :: Φ -> Γ* -> Γ

Generic Container Programming in Haskell – p.20/21

Conclusions and future work

• Check for the feasibility of the proposed features;
• Explore possible syntax, as well as type checking issues for the

features proposed;
• If feasible, implement them in a Generic Programming tool;
• Improve the theory presented, in order to be extensible to any

data-type.

Generic Container Programming in Haskell – p.21/21

	{Introduction}
	{Generic Programming in Haskell}
	{Generic Programming in Haskell}
	{Scrap your boilerplate}
	{Polynomial Data-types}
	{polynomial Data-types}
	{Polynomial Data-types}
	{Polynomial container}
	{Polynomial Container - A few examples}
	{polynomial Data-types - Visitors}
	{polynomial Data-types - Visitors}
	{polynomial Data-types - Visitors}
	{Visitors - Simple Examples}
	{polynomial Data-types - Iterators}
	{Iterators - Simple Examples}
	{Zipper}
	{Zipper}
	{Zipper}
	{Proposed Features}
	{Conclusions and future work}

