
1

Generic Properties of Datatypes

Roland Backhouse and Paul Hoogendijk

Generic Programming Summer School

Oxford, August 2002

2

Outline

• Theorems For Free

• Commuting Datatypes (“Zips”)

• Relators, Fans and Membership

• Properties of Zips

• Conclusion

3

Parametric Polymorphism

Summary: parametric polymorphism is a verifiable form of (type)
genericity.

4

Common Type = Common Properties

length : 〈∀α :: IN ← List.α〉

For all types A and B and all functions f of type A←B,

lengthA ◦List.f = lengthB .

Let sq denote the function that squares a number.

sq ◦ length : 〈∀α :: IN ← List.α〉

(sq ◦ lengthA) ◦ List.f = sq ◦ lengthB .

Suppose copycat appends a copy of a list to itself.

length ◦ copycat : 〈∀α :: IN ← List.α〉

(lengthA ◦ copycatA) ◦ List.f = lengthB ◦ copycatB .

5

Polymorphism

Consider the type expressions defined by the following grammar:

Exp ::= Exp×Exp | Exp←Exp | Const | Var .

Here, Const denotes a set of constant types, like IN (the natural
numbers) and ZZ (the integers). Var denotes a set of type variables.
We use Greek letters to denote type variables.

A term t is said to have polymorphic type 〈∀α :: T.α〉 , where T is a
type expression parameterised by type variables α, if t assigns to
each type A a value tA of type T.A.

6

Mapping Relations to Relations

Type expressions are extended to denote functions from relations to
relations.

R×S : A×B∼C×D ⇐ R : A∼C ∧ S : B∼D

((a, b) , (c, d)) ∈ R×S ≡ (a, c)∈R ∧ (b, d)∈S .

R←S : (A←B) ∼ (C←D) ⇐ R : A∼C ∧ S : B∼D

(f, g) ∈ R←S ≡ 〈∀b,d :: (f.b , g.d)∈R ⇐ (b, d)∈S〉 .

The constant type A is read as the identity relation idA on A.

(x , y)∈A ≡ x=y .

7

Example

R×R←R : (A×A← A) ∼ (B×B ← B) ⇐ R : A∼B

(f, g) ∈ R×R←R
= { definition of ← on relations }

〈∀a,b :: (f.a , g.b) ∈ R×R ⇐ (a, b)∈R〉

= { definition of × on relations }

〈∀a,b ::

(fst.(f.a) , fst.(g.b))∈R ∧ (snd.(f.a) , snd.(g.b))∈R

⇐(a, b)∈R

〉

8

Example

idBool←R×R : (Bool ← A×A) ∼ (Bool ← B×B) ⇐ R : A∼B

(f, g) ∈ idBool←R×R
= { definition of ← and × on relations }

〈∀a,a ′,b,b ′ :: (f.(a, a ′) , g.(b, b ′))∈ idBool ⇐ (a, b)∈R ∧ (a ′, b ′)∈R〉

= { definition of idBool }

〈∀a,a ′,b,b ′ :: f.(a, a ′)=g.(b, b ′) ⇐ (a, b)∈R ∧ (a ′, b ′)∈R〉

9

Parametric

A term t of polymorphic type 〈∀α :: T.α〉 is said to be parametrically
polymorphic if, for each instantiation of relations R to type variables,
(tA , tB) ∈ T.R, where R has type A∼B.

fst : 〈∀α,β :: α ← α×β〉

Suppose R : A∼B and S : C∼D.

(fstA,C , fstB,D) ∈ R←R×S
= { definition of ← and × on relations }

〈∀a,b,c,d :: (fstA,C.(a, c) , fstB,D.(b, d))∈R ⇐ (a, b)∈R ∧ (c, d)∈S〉

= { definition of fst }

〈∀a,b,c,d :: (a, b)∈R ⇐ (a, b)∈R ∧ (c, d)∈S〉

= { calculus }

true

10

Ad Hoc Polymorphism

Suppose “==” denotes a polymorphic “equality” operator. That is,

== : 〈∀α :: Bool ← α×α〉

== is parametric

= { definition (R ranges over relations of type A←B) }

〈∀R :: (==A , ==B) ∈ idBool←R×R〉
= { definition of ← and × on relations, and of idBool }

〈∀R :: 〈∀u,v,x,y :: (u==A v) = (x==B y) ⇐ (u, x)∈R ∧ (v, y)∈R〉〉⇒ { take R to be an arbitrary function f

(so (u, x)∈R ≡ u=f.x and (v, y)∈R ≡ v=f.y }

〈∀f :: 〈∀x,y :: (f.x ==A f.y) = (x==y)〉〉

Conclusion: all functions in the language of terms are injective, or
“equality” is not both real equality and parametric.

1

Commuting Datatypes

Roland Backhouse and Paul Hoogendijk

Generic Programming Summer School

Oxford, August 2002

2

Introductory Examples

Zip (of lists)

([a1 , a2 , . . . , an] , [b1 , b2 , . . . , bn]) 7→ [(a1 , b1) , (a2 , b2) , . . . , (an , bn)]

Pair · List 7→ List · Pair

Matrix Transposition

List · List 7→ List · List

Broadcast

(a , [b1 , b2 , . . . , bn]) 7→ [(a ,b1) , (a ,b2) , . . . , (a ,bn)]

A× · List 7→ List · A×

Primitive

(A+B)× (C+D) 7→ (A×C)+ (B×D)

× · + 7→ + · ×

3

Structure Multiplication ...

List.A×List.B

	�
�
�
�
� @

@
@
@
@R

List.(List.A×B) List.(A×List.B)

List.(List.(A×B))
?

� - List.(List.(A×B))
?

4

... Generalised ...

F.A×G.B

	�
�
�
�
� @

@
@
@
@R

G.(F.A×B) F.(A×G.B)

G.(F.(A×B))
?

� - F.(G.(A×B))
?

5

... Illustrates Generic Requirements

F.A×G.B

	�
�
�
�
�

((F.A)×)↔ G
@
@
@
@
@

(×(G.B))↔ F

R
G.(F.A×B) F.(A×G.B)

���
��
�
F·(A×)↔ G

��
��
�

G.(F.(A×B))

×B ↔ F

?
�
F ↔ G

F.(G.(A×B))
?

A×↔ G

6

Multi-Coloured Zips

F.A×G.B

	�
�
�
�
�

(zip.((F.A)×).G)B
@
@
@
@
@

(zip.(×(G.B)).F)A

R
G.(F.A×B) F.(A×G.B)

���
��
�

(zip.(F·(A×)).G)B
��
��
�

G.(F.(A×B))

G.(zip.(×B).F)A

?
�

(zip.F.G)A×B
F.(G.(A×B))

?

F.(zip.(A×).G)B

7

Broadcasts ...

A broadcast copies a given value across all storage locations of a
datatype.

Formally, a family of functions bcst, where

bcstA,B : F.(A×B)← F.A×B

is said to be a broadcast for datatype F iff it is parametrically
polymorphic in the parameters A and B and bcstA,B behaves
coherently with respect to product in the following sense:

8

... Respect the Unit of Product ...

The following diagram

F.(A×11) �
bcstA,11

F.A×11

@
@
@
@
@

(F·rid)A
R 	�

�
�
�
�

(rid·F)A

F.A

(where ridA : A←A×11 is the obvious natural isomorphism)
commutes.

9

... and Associativity of Product

The following diagram

F.A× (B×C) �
assF.A,B,C

(F.A×B)×C

F.(A×B)×C
?

bcstA,B× idC

bcstA ,B×C

?

F.(A× (B×C)) �
F·assA,B,C

F.((A×B)×C)
?

bcstA×B ,C

(where assA,B,C : A× (B×C)← (A×B)×C is the obvious natural
isomorphism) commutes as well.

10

Unit of Product is a “zip”

F.(A×11) �
(zip.(×11).F) ·KA

F.A×11

@
@
@
@
@

F.(zip.(×11).(KA))
R 	�

�
�
�
�

zip.(×11).(KF.A)

F.A

11

Associativity of Product is a “Zip”

F.A× (B×C) �
(zip.(×C).((F.A)×))B

(F.A×B)×C

F.(A×B)×C
?

(zip.(×B).F)A× idC

(zip.(×(B×C)).F)A

?

���
��
�

(zip.(×C).(F·(A×)))B
��
��
�

F.(A× (B×C)) �
F.(zip.(×C).(A×))B

F.((A×B)×C)
?

(zip.(×C).F)A×B

12

Conclusion

• Commuting Datatypes (“Zips”) are everywhere!

• Generic specification and proof is (potentially) very effective.

• A relational framework is necessary.

• Challenge: give generic specification of “commuting datatypes”
from which “zips” can be constructed calculationally.

1

Relators, Fans and Membership

Roland Backhouse and Paul Hoogendijk

Generic Programming Summer School

Oxford, August 2002

2

Allegories

Categorical formulation of (point-free) relation algebra.

Category (objects A, B, C, arrows —”relations”— R, S)

R◦S : A←B ⇐ R : A←C ∧ S : C←B ,

idA : A←A .

Arrows of same type are partially ordered by ⊆.

S1◦T1 ⊆ S2◦T2 ⇐ S1 ⊆ S2 ∧ T1 ⊆ T2 .

X ⊆ R ∧ X ⊆ S ≡ X ⊆ R∩S .

Converse

R∪ ⊆ S ≡ R ⊆ S∪ ,

(R◦S)∪ = S∪ ◦R∪ ,

R◦S ∩ T ⊆ (R ∩ T◦S∪)◦S .

3

Relator

Relator: functor that is monotonic and respects converse.

Let A and B be allegories. A mapping F from objects of A to objects
of B and arrows of A to arrows of B is a relator iff

F.R : F.A← F.B ⇐ R : A←B ,

F.R ◦ F.S = F.(R◦S) for each R : A←B and S : B←C ,

F.idA = idF.A for each object A ,

F.R ⊆ F.S ⇐ R ⊆ S for each R : A←B and S : A←B ,

(F.R)∪ = F.(R∪) for each R : A←B .

Examples: List is an endorelator. × is a binary relator.

4

Functions

Relation R : A←B is total iff

idB ⊆ R∪ ◦R ,

and relation R is single-valued or simple iff

R ◦R∪ ⊆ idA .

A function is a relation that is total and simple.

5

Relators preserve totality

(F.R)∪ ◦ F.R

= { relators respect converse }

F.(R∪) ◦ F.R

= { relators distribute through composition }

F.(R∪ ◦R)

⊇ { assume idB ⊆ R∪ ◦R, relators are monotonic }

F.idB

= { relators preserve identities }

idF.B .

Similarly, relators preserve simplicity. Hence relators preserve
functions.

6

Parametricity — point-free

Recall

(f, g) ∈ R←S ≡ 〈∀ c,d :: (f.c , g.d)∈R ⇐ (c, d)∈S〉 .

Point-free:

(f, g) ∈ R←S ≡ f∪ ◦R ◦g ⊇ S .

Equivalently, using shunting rule:

(f, g) ∈ R←S ≡ R◦g ⊇ f◦S .

7

Relators are Parametric

Type:

F.R : F.A← F.B ⇐ R : A←B .

That is,

F : 〈∀α,β :: (F.α ← F.β)← (α←β)〉 .

F is parametric iff, for all relations R and S, and all functions f and g,

(F.f , F.g) ∈ F.R← F.S ⇐ (f, g) ∈ R←S .

Exercise: verify that this is the case using point-free definition of
R←S.

8

Natural Transformations

Parametricity of reverse function, rev, on lists, and of fork:

List.R ◦ revB ⊇ revA ◦List.R

R×R ◦ forkB ⊇ forkA ◦R

In fact,

List.R ◦ revB = revA ◦List.R .

But, it is not the case that, for all R,

R×R ◦ forkB = forkA ◦R .

For example,

{(0, 0) , (1, 0)} × {(0, 0) , (1, 0)} ◦ forkB 6= forkA ◦ {(0, 0) , (1, 0)} .

fork is a (lax) natural transformation, rev is a proper natural
transformation.

9

Natural Transformations

θ : F←↩G = F.R ◦θB ⊇ θA ◦G.R for each R : A←B
θ : F ↪→G = F.R ◦θB ⊆ θA ◦G.R for each R : A←B .

Facts:

(F.f ◦θB = θA ◦G.f for each function f : A←B) ⇐ θ : F←↩G .

In a “tabular allegory”,

θ : F←↩G ⇐ (F.f ◦θB = θA ◦G.f for each function f : A←B) .

In words, θ : F←↩G iff θ is a (categorical) natural transformation in
the underlying category of maps.

Conclusion: we take θ : F←↩G to be the definition of a natural
transformation in an allegory.

10

Division

An allegory is locally complete if for each set S of relations of type
A←B, the union ∪S : A←B exists and, furthermore, intersection
and composition distribute over arbitrary unions.

⊥⊥A,B is the smallest relation of type A←B and >>A,B is the largest
relation of the same type.

In a division allegory, composition distributes through union. That
is, there are two division operators “\” and “/”, such that, for all
R : A←B, S : B←C and T : A←C,

R◦S ⊆ T ≡ S ⊆ R\T ,

R◦S ⊆ T ≡ R ⊆ T/S ,

S ⊆ R\T ≡ R ⊆ T/S .

11

Domain and Range

The range of a relation R is the set of all x such that (x,y)∈R for
some y.

Formally, the range operator “<” is defined by, for all R : A←B and
all X ⊆ idA,

R< ⊆ X ≡ R ⊆ X ◦>>A,B .

The domain R> is defined by

R> = (R∪)< .

12

Membership

The membership relation of a relator F is a family of relations memA,
indexed by objects A, such that

memA : A← F.A , and

for all A, all X⊆ idA and Y⊆ idF.A,

F.X ⊇ Y ≡ (memA◦Y)< ⊆ X .

In words, F.X is the largest subset Y of F-structures, each of type F.A,
such that the data stored in elements is in the set X.

13

Weakest Liberal Precondition

For all X⊆ idA and Y⊆ idF.A,

(memA◦Y)< ⊆ X

= { definition of range }

memA ◦Y ⊆ X ◦>>

= { division }

Y ⊆ memA\(X ◦>>)

= { Y⊆ idF.A }

Y ⊆ memA\(X ◦>>) ∩ idF.A .

For those familiar with the wp calculus: memA\(X ◦>>) ∩ idF.A is the
weakest liberal precondition guaranteeing a state satisfying X after
“execution” of mem.

14

Properties of F structures

For all A, all X⊆ idA and Y⊆ idF.A,

F.X ⊇ Y ≡ memA\(X ◦>>) ∩ idF.A ⊇ Y .

So,

F.X = memA\(X ◦>>) ∩ idF.A .

Interpreting X⊆ idA as a property of values of type A, F.X is a
property of values of type F.A. The identity says that a property of
an F-structure is characterised by properties of the values stored in
the structure (its “members”).

15

Largest Natural Transformations

Recall: for each object A,

memA : A← F.A .

Membership is parametric: for all R,

R◦mem ⊇ mem ◦ F.R .

Equivalently,

mem : Id←↩ F .

Also,

mem\id : F←↩ Id .

Theorem: The fan of relator F, mem\id, is the largest natural
transformation of type F←↩ Id. The membership of relator F is the
largest natural transformation of type Id←↩ F.

16

Understanding Natural Transformations

Theorem: Suppose F and G are relators with memberships mem.F

and mem.G respectively. Then the largest natural transformation of
type F←↩G is mem.F\mem.G.

Interpretation: A natural transformation of type F←↩G changes
structure only. Stored values may be lost or duplicated, but no
computation is performed on them.

A proper natural transformation to F from G changes the structure
without loss or duplication of stored values.

1

The Specification of a Generic Zip

Roland Backhouse and Paul Hoogendijk

Generic Programming Summer School

Oxford, August 2002

2

(Lower Order) Naturality

zip.F.G : G•F ← F•G .

A zip is a proper natural transformation.

A zip transforms one structure to another without loss or duplication
of values.

3

(Higher Order) Naturality

zip.F : (•F)← (F•) .

4

Categorical Nat Trans (Revision)

A natural transformation is an arrow in the functor category. I.e.,

η : F←G
means that the following diagram commutes (for all A, B and
f : A←B)

F.A �
ηA

G.A

F.B

F.f

6

�
ηB

G.B

6

G.f

Now, if F is a functor, (•F) and (F•) are endofunctors on the functor
category.

(•F) maps functor (object) G to G•F and natural transformation
(arrrow) η to η•F, where (η•F)A=ηF.A.

(F•) maps functor (object) G to F•G and natural transformation
(arrrow) η to F•η, where (F•η)A= F.(ηA).

5

Categorical NT Revision (Continued)

Diagram defining η : F←G
F.A �

ηA
G.A

F.B

F.f

6

�
ηB

G.B

6

G.f

instantiated for zip.F : (•F)← (F•)

G•F �
zip.F.G

F•G

H•F

θ•F

6

�
zip.F.H

F•H

6

F•θ

where θ : G←H is a natural transformation.

6

Allegorical Naturality

Recall that parametricity was defined in terms of relations.

Recall also that, in the particular case that t has type
〈∀α :: F.α ← G.α〉, t is parametric is equivalent to t is a natural
transformation (in the underlying category of maps).

This is a stroke of luck for functional programmers, BUT their luck
has run out!

The equality in

(θ•F) ◦ zip.F.H = zip.F.G ◦ (F•θ)

is too severe — because

• θ may be nondeterministic.

• Zips are partial.

7

Nondeterminism

Take F := List and G = H := ×.

zip.F.H and zip.F.G are both the inverse of conventional zips. They
unzip a list of pairs to a pair of lists.

Take θ := id∪ swap.

θ nondeterministically swaps the elements of a pair or not.

(θ•F) ◦ zip.F.H unzips a list of pairs into a pair of lists and swaps the
lists or not.

zip.F.G ◦ (F•θ) first swaps some of the elements of a list of pairs and
then unzips it into a pair of lists.

(θ•F) ◦ zip.F.H ⊂ zip.F.G ◦ (F•θ) .

8

Partiality

List.(List.A) �
listifyList.A Tree.(List.A)

List.(List.A)

(zip.List.List)A

6

�
List.(listifyA)

List.(Tree.A)

6

(zip.List.Tree)A

View both paths through the diagram as partial relations of type
List.(List.A)←List.(Tree.A).

The lower path (via List.(List.A)) includes the upper path (via
Tree.(List.A)).

Reason: for the lower path, the sizes of the trees must be the same;

for the upper path, the trees must have the same shape.

9

zip.F is parametric.

That is, for all θ : G←↩H,

(θ•F) ◦ zip.F.H ⊆ zip.F.G ◦ (F•θ) .

10

Compositionality

Informally, zip.F is a monoid homomorphism.

(Note: more than this: zip.F should respect pointwise extension of
relators. For full discussion see Hoogendijk’s thesis.)

G•H•F �
zip.F.(G•H)

F•G•H

I@
@
@
@
@

G • zip.F.H
	�
�
�
�
�

zip.F.G • H

G•F•H

zip.F.(G•H) = (G • zip.F.H) ◦ (zip.F.G •H) .

zip.F.Id = id•F .

11

Zips

Definition 1 (Half Zip) Consider a fixed relator F and a
pointwise closed class of relators G. Then the members of the
collection zip.F.G, where G ranges over G, are called half-zips iff
(a) zip.F.G : G•F← F•G, for each G in G,
(b) (θ•F) ◦ zip.F.H ⊆ zip.F.G ◦ (F•θ) for each θ : G←↩H ,
(c) zip.F.(G•H) = (G • zip.F.H) ◦ (zip.F.G •H) for all G and H,
(d) zip.F.Id = id•F .
2

Definition 2 (Commuting Relators) The half-zip zip.F.G is
said to be a zip of (F ,G) if there exists a half-zip zip.G.F such that

zip.F.G = (zip.G.F)∪

We say that datatypes F and G commute if there exists a zip for
(F ,G).
2

12

Constructing Zips

See Hoogendijk’s thesis for how these are calculated:

zip.KA.G = fan.G •KA ,

zip.+.G = G.inl5G.inr ,

zip.×.G = (G.outl4G.outr)∪ ,

zip.T.G = ([idG⊗ ; G.in ◦ (zip.⊗.G • Id∆T)]) .

where T is the tree relator with pattern relator ⊗.

fan.KA = >>A,
fan.+ = (id5id)∪

fan.× = id4id

fan.T = ([id⊗ ; (fan.⊗)∪])∪

where T is the tree relator with pattern relator ⊗.

