Generic Properties of Datatypes

Roland Backhouse and Paul Hoogendijk Generic Programming Summer School Oxford, August 2002

Outline

- Theorems For Free
- Commuting Datatypes ("Zips")
- Relators, Fans and Membership
- Properties of Zips
- Conclusion

Parametric Polymorphism

Summary: parametric polymorphism is a verifiable form of (type) genericity.

Common Type $=$ Common Properties

length : $\langle\forall \alpha:: \mathbb{N} \leftarrow$ List. $\alpha\rangle$
For all types A and B and all functions f of type $A \leftarrow B$,

$$
\text { length }_{A} \circ \text { List.f }=\text { length }_{B}
$$

Let $s q$ denote the function that squares a number.

$$
\begin{aligned}
& \text { sq。length }:\langle\forall \alpha:: \mathbb{N} \leftarrow \text { List. } \alpha\rangle \\
& \left(s q \circ \text { length }_{A}\right) \circ \text { List.f }=\text { sq} \circ \text { length }_{B} .
\end{aligned}
$$

Suppose copycat appends a copy of a list to itself.

$$
\text { length } \circ \text { copycat : }\langle\forall \alpha:: \mathbb{N} \leftarrow \text { List. } \alpha\rangle
$$

$$
\left(\text { length }_{A} \circ \operatorname{copycat}_{A}\right) \circ \text { List.f }=\text { length }_{B} \circ \operatorname{copycat}_{B}
$$

Polymorphism

Consider the type expressions defined by the following grammar:

$$
\operatorname{Exp}::=\operatorname{Exp} \times \operatorname{Exp}|\operatorname{Exp} \leftarrow \operatorname{Exp}| \text { Const } \mid \text { Var. }
$$

Here, Const denotes a set of constant types, like \mathbb{N} (the natural numbers) and \mathbb{Z} (the integers). Var denotes a set of type variables. We use Greek letters to denote type variables.

A term t is said to have polymorphic type $\langle\forall \alpha:: T . \alpha\rangle$, where T is a type expression parameterised by type variables α, if t assigns to each type A a value t_{A} of type T.A.

Mapping Relations to Relations

Type expressions are extended to denote functions from relations to relations.

$$
\begin{aligned}
& R \times S: A \times B \sim C \times D \Leftarrow R: A \sim C \wedge S: B \sim D \\
& ((a, b),(c, d)) \in R \times S \equiv(a, c) \in R \wedge(b, d) \in S . \\
& R \leftarrow S:(A \leftarrow B) \sim(C \leftarrow D) \Leftarrow R: A \sim C \wedge S: B \sim D \\
& (f, g) \in R \leftarrow S \equiv\langle\forall b, d::(f . b, g . d) \in R \Leftarrow(b, d) \in S\rangle .
\end{aligned}
$$

The constant type A is read as the identity relation id_{A} on A.

$$
(x, y) \in A \equiv x=y .
$$

Example

$$
\begin{aligned}
& R \times R \leftarrow R:(A \times A \leftarrow A) \sim(B \times B \leftarrow B) \Leftarrow R: A \sim B \\
& (f, g) \in R \times R \leftarrow R \\
& =\quad\{\quad \text { definition of } \leftarrow \text { on relations } \quad\} \\
& \langle\forall a, b::(f . a, \text { g.b) } \in R \times R \Leftarrow(a, b) \in R\rangle \\
& =\quad\{\quad \text { definition of } \times \text { on relations } \quad\} \\
& \langle\forall \mathrm{a}, \mathrm{~b}:: \\
& \text { (fst.(f.a), fst.(g.b)) } \in \mathrm{R} \wedge \text { (snd.(f.a), snd.(g.b)) } \in \mathrm{R} \\
& \Leftarrow(a, b) \in R
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { id }_{\text {Bool }} \leftarrow R \times R:(\text { Bool } \leftarrow A \times A) \sim(B o o l \leftarrow B \times B) \Leftarrow R: A \sim B \\
&=(f, g) \in \text { id }_{\text {Bool }} \leftarrow R \times R \\
&=\quad \text { definition of } \leftarrow \text { and } \times \text { on relations }\} \\
&=\quad\left\langle\forall a, a^{\prime}, b, b^{\prime}::\left(f .\left(a, a^{\prime}\right), g \cdot\left(b, b^{\prime}\right)\right) \in \text { id }_{\text {Bool }} \Leftarrow(a, b) \in R \wedge\left(a^{\prime}, b^{\prime}\right) \in R\right\rangle \\
& \quad\left\{\quad \text { definition of id }{ }_{B o o l}\right\} \\
&\left\langle\forall a, a^{\prime}, b, b^{\prime}:: f .\left(a, a^{\prime}\right)=g .\left(b, b^{\prime}\right) \Leftarrow(a, b) \in R \wedge\left(a^{\prime}, b^{\prime}\right) \in R\right\rangle
\end{aligned}
$$

Parametric

A term t of polymorphic type $\langle\forall \alpha:: \mathrm{T} . \alpha\rangle$ is said to be parametrically polymorphic if, for each instantiation of relations R to type variables, $\left(t_{A}, t_{B}\right) \in T . R$, where R has type $A \sim B$.
fst : $\langle\forall \alpha, \beta:: \alpha \leftarrow \alpha \times \beta\rangle$
Suppose $R: A \sim B$ and $S: C \sim D$.

$$
\left(\mathrm{fst}_{A, C}, \mathrm{fst}_{B, D}\right) \in R \leftarrow R \times S
$$

$=\quad\{\quad$ definition of \leftarrow and \times on relations $\}$

$$
\left\langle\forall a, b, c, d::\left(f s t_{A, c} \cdot(a, c), f s t_{B, D} \cdot(b, d)\right) \in R \Leftarrow(a, b) \in R \wedge(c, d) \in S\right\rangle
$$

$=\quad\{\quad$ definition of fst $\}$
$\langle\forall a, b, c, d::(a, b) \in R \quad \Leftarrow(a, b) \in R \wedge(c, d) \in S\rangle$
$=\quad$ \{ calculus $\}$
true

Ad Hoc Polymorphism

Suppose "==" denotes a polymorphic "equality" operator. That is,

$$
==:\langle\forall \alpha:: \text { Bool } \leftarrow \alpha \times \alpha\rangle
$$

$==$ is parametric
$=\quad\{\quad$ definition $(R$ ranges over relations of type $A \leftarrow B)\}$

$$
\left\langle\forall R::\left(==_{A},==_{B}\right) \in \text { id }_{\text {Bool }} \leftarrow R \times R\right\rangle
$$

$=\quad\{\quad$ definition of \leftarrow and \times on relations, and of id Bool $\}$

$$
\left\langle\forall R::\left\langle\forall u, v, x, y::\left(u==_{A} v\right)=\left(x==_{B} y\right) \Leftarrow(u, x) \in R \wedge(v, y) \in R\right\rangle\right\rangle
$$

$\Rightarrow \quad\{\quad$ take R to be an arbitrary function f

$$
\text { (so }(u, x) \in R \equiv u=f . x \text { and }(v, y) \in R \equiv v=f . y \quad\}
$$

$$
\left\langle\forall f::\left\langle\forall x, y:: \quad\left(f . x==_{A} f . y\right)=(x==y)\right\rangle\right\rangle
$$

Conclusion: all functions in the language of terms are injective, or "equality" is not both real equality and parametric.

Commuting Datatypes

Roland Backhouse and Paul Hoogendijk Generic Programming Summer School Oxford, August 2002

Introductory Examples

Zip (of lists)

$$
\begin{aligned}
& \left(\left[a_{1}, a_{2}, \ldots, a_{n}\right],\left[b_{1}, b_{2}, \ldots, b_{n}\right]\right) \mapsto\left[\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right] \\
& \text { Pair • List } \quad \mapsto \quad \text { List • Pair }
\end{aligned}
$$

Matrix Transposition

$$
\text { List } \cdot \text { List } \quad \mapsto \quad \text { List } \cdot \text { List }
$$

Broadcast

$$
\begin{aligned}
& \left(a,\left[b_{1}, b_{2}, \ldots, b_{n}\right]\right) \mapsto\left[\left(a, b_{1}\right),\left(a, b_{2}\right), \ldots,\left(a, b_{n}\right)\right] \\
& A \times \cdot \text { List } \quad \mapsto \quad \text { List } \cdot A \times
\end{aligned}
$$

Primitive

$$
\begin{array}{ll}
(\mathrm{A}+\mathrm{B}) \times(\mathrm{C}+\mathrm{D}) & \mapsto \\
\times \cdot+ & (\mathrm{A} \times \mathrm{C})+(\mathrm{B} \times \mathrm{D}) \\
\times & \mapsto \cdot \times
\end{array}
$$

Structure Multiplication ...

... Generalised ...

... Illustrates Generic Requirements

Multi-Coloured Zips

Broadcasts ...

A broadcast copies a given value across all storage locations of a datatype.

Formally, a family of functions bcst, where

$$
\operatorname{bcst}_{A, B}: F .(A \times B) \leftarrow F . A \times B
$$

is said to be a broadcast for datatype F iff it is parametrically polymorphic in the parameters A and B and $b^{\text {cst }}{ }_{A}, \mathrm{~B}$ behaves coherently with respect to product in the following sense:

... Respect the Unit of Product ...

The following diagram

(where $\operatorname{rid}_{A}: A \leftarrow A \times \mathbb{1}$ is the obvious natural isomorphism) commutes.
... and Associativity of Product
The following diagram

(where $\operatorname{ass}_{A, B, C}: A \times(B \times C) \leftarrow(A \times B) \times C$ is the obvious natural isomorphism) commutes as well.

Unit of Product is a "zip"

Associativity of Product is a "Zip"

Conclusion

- Commuting Datatypes ("Zips") are everywhere!
- Generic specification and proof is (potentially) very effective.
- A relational framework is necessary.
- Challenge: give generic specification of "commuting datatypes" from which "zips" can be constructed calculationally.

Relators, Fans and Membership

Roland Backhouse and Paul Hoogendijk Generic Programming Summer School Oxford, August 2002

Allegories

Categorical formulation of (point-free) relation algebra.

Category (objects A, B, C, arrows -"relations"- R, S)

$$
\begin{aligned}
& R \circ S: A \leftarrow B \Leftarrow R: A \leftarrow C \wedge S: C \leftarrow B, \\
& \operatorname{id}_{A}: A \leftarrow A .
\end{aligned}
$$

Arrows of same type are partially ordered by \subseteq.

$$
\begin{aligned}
& S_{1} \circ T_{1} \subseteq S_{2} \circ T_{2} \Leftarrow S_{1} \subseteq S_{2} \wedge T_{1} \subseteq T_{2} . \\
& X \subseteq R \wedge X \subseteq S \equiv X \subseteq R \cap S .
\end{aligned}
$$

Converse

$$
\begin{aligned}
& R \cup \subseteq S \equiv R \subseteq S \cup, \\
& (R \circ S) \cup=S \cup R \cup, \\
& R \circ S \cap T \subseteq(R \cap T \circ S \cup) \circ S .
\end{aligned}
$$

Relator

Relator: functor that is monotonic and respects converse.
Let \mathcal{A} and \mathcal{B} be allegories. A mapping F from objects of \mathcal{A} to objects of \mathcal{B} and arrows of \mathcal{A} to arrows of \mathcal{B} is a relator iff

$$
\begin{aligned}
& F . R: F . A \leftarrow F . B \Leftarrow R: A \leftarrow B, \\
& F . R \circ F . S=F .(R \circ S) \quad \text { for each } R: A \leftarrow B \text { and } S: B \leftarrow C, \\
& F_{. i d_{A}}=i d_{F . A} \quad \text { for each object } A, \\
& F . R \subseteq F . S \Leftarrow R \subseteq S \text { for each } R: A \leftarrow B \text { and } S: A \leftarrow B, \\
& (F . R) \cup=F .(R \cup) \quad \text { for each } R: A \leftarrow B .
\end{aligned}
$$

Examples: List is an endorelator. \times is a binary relator.

Functions

Relation $R: A \leftarrow B$ is total iff

$$
\mathrm{id}_{\mathrm{B}} \subseteq \mathrm{R} \cup \circ \mathrm{R},
$$

and relation R is single-valued or simple iff

$$
\mathrm{R} \circ \mathrm{R} \cup \subseteq \mathrm{id}_{\mathrm{A}}
$$

A function is a relation that is total and simple.

Relators preserve totality

```
    (F.R)\cup\circF.R
= { relators respect converse }
    F.(Ru)\circF.R
= { relators distribute through composition }
    F.(R\cup\circR)
\ { assume id }\mp@subsup{\textrm{i}}{\textrm{B}}{}\subseteqR\cup\textrm{R}\circ\textrm{R},\mathrm{ relators are monotonic }
    F.id}\mp@subsup{|}{B}{
= { relators preserve identities }
    idF.B .
```

Similarly, relators preserve simplicity. Hence relators preserve functions.

Parametricity - point-free

Recall

$$
(f, g) \in R \leftarrow S \equiv\langle\forall c, d::(f . c, g . d) \in R \Leftarrow(c, d) \in S\rangle .
$$

Point-free:

$$
(f, g) \in R \leftarrow S \equiv f \circ \circ R \circ g \supseteq S .
$$

Equivalently, using shunting rule:

$$
(f, g) \in R \leftarrow S \equiv R \circ g \supseteq f \circ S
$$

Relators are Parametric

Type:

$$
F . R: F . A \leftarrow F . B \Leftarrow R: A \leftarrow B .
$$

That is,

$$
F:\langle\forall \alpha, \beta::(F . \alpha \leftarrow F . \beta) \leftarrow(\alpha \leftarrow \beta)\rangle .
$$

F is parametric iff, for all relations R and S, and all functions f and g,

$$
(\text { F.f , F.g }) \in \mathrm{F} . \mathrm{R} \leftarrow \mathrm{~F} . S \quad \Leftarrow \quad(\mathrm{f}, \mathrm{~g}) \in \mathrm{R} \leftarrow S
$$

Exercise: verify that this is the case using point-free definition of $\mathrm{R} \leftarrow S$.

Natural Transformations

Parametricity of reverse function, rev, on lists, and of fork:

$$
\begin{aligned}
& \text { List.R॰ } \operatorname{rev}_{B} \supseteq \operatorname{rev}_{A} \circ \text { List.R } \\
& R \times R \circ \text { fork }_{B} \supseteq \text { fork }_{A} \circ R
\end{aligned}
$$

In fact,

$$
\text { List.R } \circ \operatorname{rev}_{B}=\operatorname{rev}_{A} \circ \text { List.R. }
$$

But, it is not the case that, for all R,

$$
R \times R \circ \text { fork }_{B}=\text { fork }_{A} \circ R .
$$

For example,

$$
\{(0,0),(1,0)\} \times\{(0,0),(1,0)\} \circ \text { fork }_{B} \neq \text { fork }_{A} \circ\{(0,0),(1,0)\}
$$

fork is a (lax) natural transformation, rev is a proper natural transformation.

Natural Transformations

$$
\begin{aligned}
& \theta: F \hookleftarrow G=F \cdot R \circ \theta_{B} \supseteq \theta_{A} \circ G \cdot R \quad \text { for each } R: A \leftarrow B \\
& \theta: F \hookrightarrow G=F \cdot R \circ \theta_{B} \subseteq \theta_{A} \circ G \cdot R \quad \text { for each } R: A \leftarrow B .
\end{aligned}
$$

Facts:

$$
\left(F . f \circ \theta_{B}=\theta_{A} \circ G . f \quad \text { for each function } f: A \leftarrow B\right) \Leftarrow \theta: F \hookleftarrow G .
$$

In a "tabular allegory",

$$
\theta: F \hookleftarrow G \Leftarrow\left(F . f \circ \theta_{B}=\theta_{A} \circ G . f \quad \text { for each function } f: A \leftarrow B\right) .
$$

In words, $\theta: F \hookleftarrow G$ iff θ is a (categorical) natural transformation in the underlying category of maps.

Conclusion: we take $\theta: \mathrm{F} \hookleftarrow \mathrm{G}$ to be the definition of a natural transformation in an allegory.

Division

An allegory is locally complete if for each set \mathcal{S} of relations of type $A \leftarrow B$, the union $\cup \mathcal{S}: A \leftarrow B$ exists and, furthermore, intersection and composition distribute over arbitrary unions.
$\Perp_{A, B}$ is the smallest relation of type $A \leftarrow B$ and $\Pi_{A, B}$ is the largest relation of the same type.

In a division allegory, composition distributes through union. That is, there are two division operators """ and "/", such that, for all $R: A \leftarrow B, S: B \leftarrow C$ and $T: A \leftarrow C$,

$$
\begin{aligned}
& R \circ S \subseteq T \equiv S \subseteq R \backslash T, \\
& R \circ S \subseteq T \equiv R \subseteq T / S, \\
& S \subseteq R \backslash T \equiv R \subseteq T / S
\end{aligned}
$$

Domain and Range

The range of a relation R is the set of all x such that $(x, y) \in R$ for some y.

Formally, the range operator " $<$ " is defined by, for all $R: A \leftarrow B$ and all $X \subseteq \operatorname{id}_{\mathrm{A}}$,

$$
R<\subseteq X \equiv R \subseteq X \circ \Pi_{A, B} .
$$

The domain $\mathrm{R}>$ is defined by

$$
R>=(R \cup)<.
$$

Membership

The membership relation of a relator F is a family of relations mem A_{A}, indexed by objects A, such that

$$
\operatorname{mem}_{A}: A \leftarrow F . A, \text { and }
$$

for all A, all $X \subseteq i d_{A}$ and $Y \subseteq i d_{\text {F. }}$,

$$
\text { F. } X \supseteq Y \equiv\left(m^{\prime} \supseteq m_{A} \circ Y\right)<\subseteq X .
$$

In words, F.X is the largest subset Y of F -structures, each of type F.A, such that the data stored in elements is in the set X.

Weakest Liberal Precondition

For all $X \subseteq \operatorname{id}_{A}$ and $Y \subseteq \operatorname{id}_{F \text {. } A, ~}$,

$$
\begin{aligned}
& \left(m_{A} \circ Y\right)<\subseteq X \\
& =\quad\{\quad \text { definition of range }\} \\
& \operatorname{mem}_{A} \circ \mathrm{Y} \subseteq \mathrm{X} \circ \Pi \\
& =\quad\{\quad \text { division }\} \\
& Y \subseteq m_{A} \backslash(X \circ T) \\
& =\quad\left\{\quad \mathrm{Y} \subseteq \mathrm{id}_{\mathrm{F} . \mathrm{A}}\right\} \\
& Y \subseteq \operatorname{mem}_{A} \backslash(X \circ \Pi) \cap \operatorname{id}_{F . A} .
\end{aligned}
$$

For those familiar with the wp calculus: $\operatorname{mem}_{\mathcal{A}} \backslash(X \circ \Pi) \cap \mathrm{id}_{\mathrm{F} . \mathrm{A}}$ is the weakest liberal precondition guaranteeing a state satisfying X after "execution" of mem.

Properties of F structures

For all A, all $X \subseteq i d_{A}$ and $Y \subseteq i d_{\text {F.A }}$,

$$
F . X \supseteq Y \equiv \operatorname{mem}_{A} \backslash(X \circ \Pi) \cap \operatorname{id}_{F . A} \supseteq Y .
$$

So,

$$
F . X=\operatorname{mem}_{\mathcal{A}} \backslash(X \circ \Pi) \cap i d_{F . A} .
$$

Interpreting $X \subseteq i d_{A}$ as a property of values of type A, F.X is a property of values of type F.A. The identity says that a property of an F -structure is characterised by properties of the values stored in the structure (its "members").

Largest Natural Transformations

Recall: for each object A,

$$
\operatorname{mem}_{A}: A \leftarrow F . A .
$$

Membership is parametric: for all R,

$$
\text { R॰mem } \supseteq \text { mem } \circ F . R .
$$

Equivalently,

$$
\text { mem }: I d \hookleftarrow F .
$$

Also,

$$
\text { mem } \backslash \mathrm{id}: F \hookleftarrow \mathrm{Id} .
$$

Theorem: The fan of relator F, mem $\backslash i d$, is the largest natural transformation of type $F \hookleftarrow I d$. The membership of relator F is the largest natural transformation of type $\mathrm{Id} \hookleftarrow \mathrm{F}$.

Understanding Natural Transformations

Theorem: Suppose F and G are relators with memberships mem.F and mem.G respectively. Then the largest natural transformation of type $F \hookleftarrow G$ is mem. $F \backslash$ mem. G.

Interpretation: A natural transformation of type $F \hookleftarrow G$ changes structure only. Stored values may be lost or duplicated, but no computation is performed on them.

A proper natural transformation to F from G changes the structure without loss or duplication of stored values.

The Specification of a Generic Zip

Roland Backhouse and Paul Hoogendijk Generic Programming Summer School Oxford, August 2002

(Lower Order) Naturality

```
zip.F.G : G\bulletF\leftarrowF\bulletG .
```

A zip is a proper natural transformation.

A zip transforms one structure to another without loss or duplication of values.
(Higher Order) Naturality
zip. $F:(\bullet F) \leftarrow(F \bullet)$.

Categorical Nat Trans (Revision)

A natural transformation is an arrow in the functor category. I.e.,

$$
\eta: F \leftarrow G
$$

means that the following diagram commutes (for all A, B and $f: A \leftarrow B)$

Now, if F is a functor, $(\bullet F)$ and $(F \bullet)$ are endofunctors on the functor category.
$(\bullet F)$ maps functor (object) G to $G \bullet F$ and natural transformation
(arrrow) η to $\eta \bullet F$, where $(\eta \bullet F)_{\mathcal{A}}=\eta_{F . A}$.
($\mathrm{F} \bullet$) maps functor (object) G to $\mathrm{F} \bullet \mathrm{G}$ and natural transformation (arrrow) η to $F \bullet \eta$, where $(F \bullet \eta)_{\mathcal{A}}=F .\left(\eta_{A}\right)$.

Categorical NT Revision (Continued)

Diagram defining $\eta: F \leftarrow G$

instantiated for zip. $F:(\bullet F) \leftarrow(F \bullet)$

where $\theta: \mathrm{G} \leftarrow \mathrm{H}$ is a natural transformation.

Allegorical Naturality

Recall that parametricity was defined in terms of relations.
Recall also that, in the particular case that t has type $\langle\forall \alpha:: F . \alpha \leftarrow G . \alpha\rangle$, t is parametric is equivalent to t is a natural transformation (in the underlying category of maps).

This is a stroke of luck for functional programmers, BUT their luck has run out!

The equality in

$$
(\theta \bullet F) \circ \text { zip.F.H }=\text { zip.F.G } \circ(F \bullet \theta)
$$

is too severe - because

- θ may be nondeterministic.
- Zips are partial.

Nondeterminism

Take $\mathrm{F}:=$ List and $\mathrm{G}=\mathrm{H}:=\times$.
zip.F.H and zip.F.G are both the inverse of conventional zips. They unzip a list of pairs to a pair of lists.

Take $\theta:=\mathrm{id} \cup$ swap.
θ nondeterministically swaps the elements of a pair or not.
$(\theta \bullet F) \circ$ zip.F.H unzips a list of pairs into a pair of lists and swaps the lists or not.
zip.F.G $\circ(\mathrm{F} \bullet \theta)$ first swaps some of the elements of a list of pairs and then unzips it into a pair of lists.

$$
(\theta \bullet F) \circ \text { zip.F.H } \subset \text { zip.F.G } \circ(F \bullet \theta) .
$$

Partiality

View both paths through the diagram as partial relations of type List. List. A) \leftarrow List. (Tree. A).

The lower path (via List.(List.A)) includes the upper path (via Tree.(List.A)).

Reason: for the lower path, the sizes of the trees must be the same; for the upper path, the trees must have the same shape.

zip. F is parametric.

That is, for all $\theta: G \hookleftarrow H$,

$$
(\theta \bullet F) \circ \text { zip.F.H } \subseteq \text { zip.F.G॰ } \circ(F \bullet \theta) .
$$

Compositionality

Informally, zip.F is a monoid homomorphism.
(Note: more than this: zip.F should respect pointwise extension of relators. For full discussion see Hoogendijk's thesis.)

$$
\text { zip.F. }(\mathrm{G} \bullet H)=(\mathrm{G} \bullet \text { zip.F.H }) \circ(\text { zip.F.G•H). }
$$

$$
\text { zip.F.Id }=\text { id•F. }
$$

Zips

Definition 1 (Half Zip) Consider a fixed relator F and a pointwise closed class of relators \mathcal{G}. Then the members of the collection zip.F.G, where G ranges over \mathcal{G}, are called half-zips iff (a) zip.F.G: $G \cdot F \leftarrow F \cdot G$, for each G in \mathcal{G},
(b) $(\theta \bullet F) \circ$ zip.F.H \subseteq zip.F. $G \circ(F \bullet \theta)$ for each $\theta: G \hookleftarrow H$, (c) zip.F. $(\mathrm{G} \bullet \mathrm{H})=(\mathrm{G} \cdot$ zip.F.H) $\circ($ zip.F.G•H) for all G and H , (d) zip.F.ld $=i d \bullet F$.

Definition 2 (Commuting Relators) The half-zip zip.F.G is said to be a zip of (F, G) if there exists a half-zip zip.G.F such that
zip.F.G = (zip.G.F)

We say that datatypes F and G commute if there exists a zip for (F, G).

Constructing Zips

See Hoogendijk's thesis for how these are calculated:

$$
\begin{aligned}
& \text { zip. } \mathrm{K}_{\mathrm{A}} . \mathrm{G}=\text { fan. } G \cdot \mathrm{~K}_{\mathrm{A}} \text {, } \\
& \text { zip.+.G }=\text { G.inl } \nabla \text { G.inr , } \\
& \text { zip.×.G }=(\text { G.outl } \triangle \text { G.outr }) \cup \text {, } \\
& \text { zip.T.G }=\left(\operatorname{iid}_{G} \otimes ; G . i n \circ(z i p . \otimes . G \cdot \operatorname{Id} \Delta T)\right] \text {. }
\end{aligned}
$$

where T is the tree relator with pattern relator \otimes.

$$
\begin{aligned}
\text { fan. } K_{A} & =\Pi_{A,-} \\
\text { fan. }+ & =(\text { id } \nabla \mathrm{id}) \cup \\
\text { fan. } \times & =\text { id } \triangle \text { id } \\
\text { fan. } T & =(\operatorname{id} \otimes ;(\text { fan. } \otimes) \cup]) \cup
\end{aligned}
$$

where T is the tree relator with pattern relator \otimes.

