Genericity by functionalization: defining data as functions!

Raymond Boute INTEC — Ghent University

Overview

0. Principle
1. Origin (induction: collecting useful functionals)
2. Making the functionals generic (design: generalizing the functionals)

3. Applications in programming (deduction: applying the new functionals)
List of application areas, 2 examples discussed

4. Issues to be further explored

Prepared for the 2002 Summer School and Workshop on Generic Programming.

0

0 Principle

e Genericity
One program, applicable to various data types

e Genericity by parametrization
Program adapted to the various data types

e Genericity by functionalization
Data adapted by (re)definition as functions: uniform type interface concept

1 Origin: modelling continuous and discrete systems

1.0 Need for point-wise and point-free expressions
e Central issue: eliminating the time variable
e Motivation: may be quite different, e.g.,

a. In Funmath (Functional Mathematics) [Boute, 1992]:
transforming behavioural specifications into structural realizations

b. In FRP (Functional Reactive Programming) [Hudak et al.]:
avoiding time leaks and space leaks

FRP chosen for comparison due to its familiarity to the Haskell community.
Other formalisms: Silage (Hilfinger) for DSP, LabVIEW (National Instruments)
for control etc.

e Results in diverging developments: respectively,

a. In Funmath: subsequent generalization to generic functionals

b. In FRP: specialization to a DSL (domain-specific language)

2

1.1 Example: potential genericity of function composition
e Application A: expressing behaviour of memoryless devices

— Principle: extend static behaviours of type A — B to dynamic behaviours
S — Sp for signals.
The type for signals is Sx = T — X (for suitable time domain T).

— Specification (semantics): operator ~ defined by
fst=f(st)forany f:A— B and s:84

— Realizations

+ In Funmath: direct extension operator — defined by f s = fos
with o defined as expected by (fog)z = f(g)

« In FRP: operator arr, writing arr £ for the signal behavour

— Remark: similar operator ~ with (z x y)t = xt * yt for dyadic *.

e Application B: structural cascade connection

— Principle: — ¢ - f

— Realization:
* In Funmath: again using composition: f o g for any functions
x In FRP: operator >>>, writing g >>> £ for signal behavours only
— Remark: property fog = f og (proof: exercise), sugar g; f = fog.
e Application C: function map

Assuming tuples as functions in the sense that (a,b)0 =a and (a,b)1 =10
If © = 20,21 then fxg, fo1 = fox = fax. Structural interpretation:

- f /o
o i— —- 733
- f fa

1.2 Example: potential genericity of function transposition
e Purpose: swapping the arguments of a higher-order function
flyz=fay

Nomenclature obviously borrowed from matrix theory (up to curruing)

e Structural interpretations:

a. From a family of signals to a tuple-valued signal,
b. Signal fanout

! ﬁ = fo fox
L S B— T — L, fo
FHEH) T

2 Making the functionals generic

2.0 Principle: adding the “most general” type information
e Conventions regarding functions

— Function = domain (D f) and mapping (unique f x for every x in D f).
— Function equality = equality of the domains and the mappings. Formally:
f=9g=Df=DgANVe:DfNDg.fr=gx
Remark: in point-free style, f =g = Df=DgAV(f =g)

e Making functionals generic

— Motivation: in Funmath, sharing by many more objects than usual.
— Shortcomings of traditional operators: restrictions on the arguments, e.g.,
e the usual fog requires R g C D f, in which case D (fog) =Dy
e the usual f~ requires f injective, in which case D f~ =R f
— Approach here: no restrictions on the arguments, but refine domain of the
result function such that its mapping definition does not contain out-of-
domain applications for values in this domain (guarded)
6

2.1 Functionals designed generically

For transforming and combining functions: for any func. f, pred. P, set .S,

l
|

o

&
I

o~

)
0

Filtering
Restriction
Composition
Dispatching
Parallel
Extension
Override
Merge

flP=xDfNDPAPzx.fx

f1S=f1(S°1)

fog=x:DghgxeDf.f(gx)
f&g=x:DfNDg.fzx,gx
filg=(z,y):DfxDyg.fz,gy
frxg=x:DfNDgA(fr,gx) ED(*).frxgx
fog=xDfUDg.(xeDf)?frtgx
fUg=a2:DfUDgNh(xeDfNDg= fr=gzx).(fogx

Relational functionals: for any func. f, pred. P, set S,

© Compatibility fog = f|Dg=g|Df
C Subfunction

fC9=[f=g]IDf

Examples of algebraic properties:

JC9g=DjfCDgNfogand fog= fog=fUg=[f&g
C is a partial order (reflexive, antisymmetric, transitive)

For equality: fog =V (f=g)and f=g=Df=DgA fOgy.

7

2.2 Elastic extensions for generic operators
e Elastic operators in general
— Principle: functionals replacing the common ad hoc abstractors, e.g.,
Ve:X and X7 and lim,_,,
— Simple examples: VP = P=DP*landdP = P#DP*0

— Syntactic properties: (i) together with function abstraction, they yield
familiar forms of expressions, e.g., Vox: X . Pxand > i:m .. n.x;
(ii) with tuples: x Ay = V (z,y), i.e., V is elastic extension of A, etc.

e A typical elastic generic functional: transposition (—T)

— Intersecting variant: for any family f of functions,

fT=y:(Nx:Df.D(fx)).2:Df.fay
This is an elastic extension of & since f& g = (f, g)T

— Uniting variant: for any family f of functions,
fVY=y:Ux:Df.D(fr)).s:DfAyc fao.fay
e Analogous elastic extensions: || for |, U for U, © for ©, etc.

8

e A generic type constructor

— Purpose: formalizing tolerances for functions: a function f meets toler-
ance Tifft Df =DTAVx:DfNDT.fxecTux. llustration:

A .
Gain

> Frequency

— Generalized Functional Cartesian Product X: for any family T" of sets,
fexXT = Df=DTAVx:DfNnDT.fxeTux. (1)

— Properties of (1):
« The usual Cartesian product as a special case: X (A,B)=AXx B
* Dependent types as a special case: X (a:A.B,)

9

e More about the funcart operator X

— “Workhorse” for typing all structures unified by functional mathematics.
* Recall Ax B= X(A,B)Also A— B = X(A*B)
« Array types A" = X ((On* A), list types A*=Un:N. A",
* Record types: instead of using projection/selection functions (Haskell,

Scheme etc.), we define records as first-class functions.
Domain = enumeration type for field labels. Example: given

Person := X (name — A" UJage — N),

person : Person satisfies person name € A* and person age € N.
Sugar: defining record : fam (fam 7)) — P F with record ' = X (J F),
we can write Person :=record (name — A* age+— N),

— |Is a genuine functional, not an ad hoc abstractor! Noteworthy: inverse.
* Choice axiom XT # 0 = Va:DT.T x #) characterizes Bdom X
« Implicit image definition: If XT # 0, then X~ (XT) =T
* Explicitimage definition: X=S =x:Dom S.{fx | f:S}forS:D X~

10

3

Applications in programming

3.0 Typical applications

(Presented at the 2002 Working Conference on Generic Programming)
Applications in:

0.

ARl

Functional programming: composition, inversion, transposition of lists,
pattern matching as function inverse

Aggregate data types and structures

Overloading and polymorphism various styles
Functional predicate calculus point-free and point-wise
Formal semantics

Relational databases functional style

Relation algebra

11

3.1 Two illustrations

— Using generic functionals in the relational theory of data types

« Example A Let relations be defined as boolean-valued functions (as
in programming, logic) and write p f for the relation representing func-
tion f (ypfx = y = fx). Backhouse's definition for — is then

fR—Sg = RC(pf) *Se(pg)

Using generic functionals: (pf)~«Se(pg) = (S)o(f19).
*x Example B With data types as functions, commuting datatypes can
be expressed as follows. Given f,g: FAXGB

- Transformation via F' (A x G B) to F' (G (A x B)) by broadcasting
yields successively x:D f . (fx,g) and x:D f.y:Dg.(fx,qy)
- Transformation via G (F' A x B) to G (F' (A x B)) by broadcasting
yields successively y:Dg.(f,gy) andy:Dg.x:Df.(fx,gy)
Clearly (z:Df.y:Dg.(fz,9y))" =y:Dg.2:Df.(fz,gvy)

12

— Using generic functionals in abstract syntax description
Reason for this example: archetype for expressing structures as functions.

x For aggregate constructs and list productions: functional record and *.
Thisis Xactually: record F' = X (JUF)and A* =Un:N. X({On*A).

« For choice productions needing disjoint union: generic elastic Poperator
For any family F' of types,

|[F=Uxz:DF {o—y|y:Fa} (2)

ldea: analogy withU F=U(z:DF.Fz)=Ux:DF . {y|y:Fx}.
Remarks

- Variadic shorthand: A | B = |(A, B)={0—a|a:A}U{l—b|b: B}
- Using x — y rather than the common z, y yields more uniformity.
- Same 3 operators can describe directory and file structures, XML,

- For program semantics, disjoint union is often “overengineering”.

13

« Typical examples: (with field labels from an enumeration type)

def Program :=record (declarations — Dlist, body — Instruction)
def Dlist := D*

def D :=record (v Variable,t — Type)

def Instruction := Skip U Assignment U Compound U etc.

A few items are left undefined here (easily inferred).
If disjoint union wanted: Skip | Assignment | Compound | etc.
Instances of programs, declarations, etc. can be defined as

def p: Program with p = declarations — dl\J body — instr

Observation: very similar to Haskell data type definitions.

14

4 Issues to be further explored

e Data types directly expressed as function types (e.g., records, lists, trees): no
problem, but functional data types derived from recursive definitions would be
more convenient in uncurried form (domain = set of paths)

e Expressing data as functions does not affect decidability issues, but may require
defining a special class of (more than first-class) functions

e Feasibility of full implementation of domain computations in current languages
is unclear (small experiment with shallow embedding in Haskell recently as-
signed to a student)

15

