
Genericity by functionalization: defining data as functions1

Raymond Boute INTEC — Ghent University

Overview

0. Principle

1. Origin (induction: collecting useful functionals)

2. Making the functionals generic (design: generalizing the functionals)

3. Applications in programming (deduction: applying the new functionals)
List of application areas, 2 examples discussed

4. Issues to be further explored

1Prepared for the 2002 Summer School and Workshop on Generic Programming.

0

0 Principle

• Genericity
One program, applicable to various data types

• Genericity by parametrization
Program adapted to the various data types

• Genericity by functionalization
Data adapted by (re)definition as functions: uniform type interface concept

1

1 Origin: modelling continuous and discrete systems

1.0 Need for point-wise and point-free expressions

• Central issue: eliminating the time variable

• Motivation: may be quite different, e.g.,

a. In Funmath (Functional Mathematics) [Boute, 1992]:
transforming behavioural specifications into structural realizations

b. In FRP (Functional Reactive Programming) [Hudak et al.]:
avoiding time leaks and space leaks

FRP chosen for comparison due to its familiarity to the Haskell community.
Other formalisms: Silage (Hilfinger) for DSP, LabVIEW (National Instruments)
for control etc.

• Results in diverging developments: respectively,

a. In Funmath: subsequent generalization to generic functionals

b. In FRP: specialization to a DSL (domain-specific language)

2

1.1 Example: potential genericity of function composition

• Application A: expressing behaviour of memoryless devices

– Principle: extend static behaviours of type A→B to dynamic behaviours
SA →SB for signals.
The type for signals is SX = T→X (for suitable time domain T).

– Specification (semantics): operator defined by
f s t = f (s t) for any f :A→B and s :SA

– Realizations

∗ In Funmath: direct extension operator defined by f s = f ◦ s
with ◦ defined as expected by (f ◦ g) x = f (g x)

∗ In FRP: operator arr, writing arr f for the signal behavour

– Remark: similar operator ̂ with (x �̂ y) t = x t �̂ y t for dyadic �.

3

• Application B: structural cascade connection

– Principle: � g � f �

– Realization:

∗ In Funmath: again using composition: f ◦ g for any functions

∗ In FRP: operator >>>, writing g >>> f for signal behavours only

– Remark: property f ◦ g = f ◦ g (proof: exercise), sugar g ; f = f ◦ g.

• Application C: function map
Assuming tuples as functions in the sense that (a, b) 0 = a and (a, b) 1 = b

If x = x0, x1 then f x0, f x1 = f ◦ x = f x. Structural interpretation:

�

x

� f

f

f x1

�

f x0

� f x

4

1.2 Example: potential genericity of function transposition

• Purpose: swapping the arguments of a higher-order function

fTy x = f x y

Nomenclature obviously borrowed from matrix theory (up to curruing)

• Structural interpretations:

a. From a family of signals to a tuple-valued signal,

b. Signal fanout

f
� � � � � � �

� � � � � � �

� � � � � � �

t �

fT

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a)

�

x

� f1

f0

f1 x

�

f0 x

� fTx

(b)

5

2 Making the functionals generic

2.0 Principle: adding the “most general” type information

• Conventions regarding functions

– Function = domain (D f) and mapping (unique f x for every x in D f).

– Function equality ≡ equality of the domains and the mappings. Formally:
f = g ≡ D f = D g ∧ ∀x :D f ∩ D g . f x = g x
Remark: in point-free style, f = g ≡ D f = D g ∧ ∀ (f =̂ g)

• Making functionals generic

– Motivation: in Funmath, sharing by many more objects than usual.

– Shortcomings of traditional operators: restrictions on the arguments, e.g.,
• the usual f ◦ g requires R g ⊆ D f , in which case D (f ◦ g) = D g

• the usual f− requires f injective, in which case D f− = R f

– Approach here: no restrictions on the arguments, but refine domain of the
result function such that its mapping definition does not contain out-of-
domain applications for values in this domain (guarded)

6

2.1 Functionals designed generically

For transforming and combining functions: for any func. f , pred. P , set S,

↓ Filtering f ↓ P = x :D f ∩ D P ∧. P x . f x

 Restriction f
S = f ↓ (S • 1)

◦ Composition f ◦ g = x :D g ∧. g x ∈ D f . f (g x)
& Dispatching f & g = x :D f ∩ D g . f x, g x

‖ Parallel f ‖ g = (x, y) :D f ×D g . f x, g y
̂ Extension f �̂ g = x :D f ∩ D g ∧. (f x, g x) ∈ D (�) . f x � g x
>© Override f >© g = x :D f ∪ D g . (x ∈ D f) ? f x g x

∪· Merge f ∪· g = x :D f ∪ D g ∧. (x ∈ D f ∩ D g ⇒ f x = g x) . (f >© g) x

Relational functionals: for any func. f , pred. P , set S,

c© Compatibility f c© g ≡ f
D g = g
D f

⊆ Subfunction f ⊆ g ≡ f = g
D f

Examples of algebraic properties:
f ⊆ g ≡ D f ⊆ D g ∧ f c© g and f c© g ⇒ f >© g = f ∪· g = f <© g

⊆ is a partial order (reflexive, antisymmetric, transitive)
For equality: f c© g ≡ ∀ (f =̂ g) and f = g ≡ D f = D g ∧ f c© g.

7

2.2 Elastic extensions for generic operators

• Elastic operators in general

– Principle: functionals replacing the common ad hoc abstractors, e.g.,
∀x :X and

∑ n
i=m and limx→a

– Simple examples: ∀P ≡ P = D P • 1 and ∃P ≡ P �= D P • 0

– Syntactic properties: (i) together with function abstraction, they yield
familiar forms of expressions, e.g., ∀x :X . P x and

∑
i :m ..n . xi

(ii) with tuples: x ∧ y ≡ ∀ (x, y), i.e., ∀ is elastic extension of ∧, etc.

• A typical elastic generic functional: transposition (—T)

– Intersecting variant: for any family f of functions,
fT = y : (

⋂
x :D f .D (f x)) . x :D f . f x y

This is an elastic extension of & since f & g = (f, g)T

– Uniting variant: for any family f of functions,
fU = y : (

⋃
x :D f .D (f x)) . x :D f ∧. y ∈ f x . f x y

• Analogous elastic extensions: ‖ for ‖,
⋃· for ∪· , c© for c©, etc.

8

• A generic type constructor

– Purpose: formalizing tolerances for functions: a function f meets toler-
ance T iff D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x. Illustration:

�

�

Gain

Frequency�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
��

�
�
�
�
�
�� �

�
�
�
�
�
��

�

�

���� T x

� f x�

x
– Generalized Functional Cartesian Product ×: for any family T of sets,

f ∈ ×T ≡ D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x. (1)

– Properties of (1):

∗ The usual Cartesian product as a special case: ×(A, B) = A×B

∗ Dependent types as a special case: ×(a :A . Ba)

9

• More about the funcart operator ×
– “Workhorse” for typing all structures unified by functional mathematics.

∗ Recall A×B = ×(A, B) Also A→B = ×(A • B)

∗ Array types An = ×(n • A), list types A∗ =
⋃

n : N . An,

∗ Record types: instead of using projection/selection functions (Haskell,
Scheme etc.), we define records as first-class functions.
Domain = enumeration type for field labels. Example: given

Person :=×(name �→A
∗ ∪· age �→N),

person :Person satisfies person name ∈ A∗ and person age ∈ N.
Sugar: defining record : fam (famT)→P F with recordF = ×(

⋃· F),
we can write Person := record (name �→A∗, age �→N).

– Is a genuine functional, not an ad hoc abstractor! Noteworthy: inverse.

∗ Choice axiom ×T �= ∅ ≡ ∀x :D T . T x �= ∅ characterizes Bdom×
∗ Implicit image definition: If ×T �= ∅, then ×− (×T) = T

∗ Explicit image definition: ×− S = x :Dom S . {f x | f :S} for S :D×−

10

3 Applications in programming

3.0 Typical applications

(Presented at the 2002 Working Conference on Generic Programming)
Applications in:

0. Functional programming: composition, inversion, transposition of lists,
pattern matching as function inverse

1. Aggregate data types and structures

2. Overloading and polymorphism various styles

3. Functional predicate calculus point-free and point-wise

4. Formal semantics

5. Relational databases functional style

6. Relation algebra

11

3.1 Two illustrations

– Using generic functionals in the relational theory of data types

∗ Example A Let relations be defined as boolean-valued functions (as
in programming, logic) and write ρ f for the relation representing func-
tion f (y ρf x ≡ y = f x). Backhouse’s definition for → is then

f R→S g ≡ R (ρf)� • S • (ρg)

Using generic functionals: (ρf)� •S • (ρg) = (S) ◦ (f ‖ g).

∗ Example B With data types as functions, commuting datatypes can
be expressed as follows. Given f, g : F A×GB

· Transformation via F (A×GB) to F (G (A×B)) by broadcasting
yields successively x :D f . (f x, g) and x :D f . y :D g . (f x, g y)

· Transformation via G (F A×B) to G (F (A×B)) by broadcasting
yields successively y :D g . (f, g y) and y :D g . x :D f . (f x, g y)

Clearly (x :D f . y :D g . (f x, g y))T = y :D g . x :D f . (f x, g y)

12

– Using generic functionals in abstract syntax description
Reason for this example: archetype for expressing structures as functions.

∗ For aggregate constructs and list productions: functional record and ∗.
This is×actually: recordF = ×(

⋃· F) and A∗ =
⋃

n : N .×(n • A).

∗ For choice productions needing disjoint union: generic elastic -operator
For any family F of types,

F =
⋃

x :D F . {x �→ y | y :F x} (2)

Idea: analogy with
⋃

F =
⋃

(x :D F . F x) =
⋃

x :D F . {y | y : F x}.
Remarks

· Variadic shorthand: A | B = (A, B) = {0 �→ a | a : A}∪{1 �→ b | b : B}
· Using x �→ y rather than the common x, y yields more uniformity.

· Same 3 operators can describe directory and file structures, XML,
...

· For program semantics, disjoint union is often “overengineering”.

13

∗ Typical examples: (with field labels from an enumeration type)

def Program := record (declarations �→Dlist , body �→ Instruction)

def Dlist :=D∗

def D := record (v �→Variable, t �→Type)

def Instruction := Skip ∪ Assignment ∪ Compound ∪ etc.

A few items are left undefined here (easily inferred).
If disjoint union wanted: Skip | Assignment | Compound | etc.
Instances of programs, declarations, etc. can be defined as

def p :Program with p = declarations �→ dl ∪· body �→ instr

Observation: very similar to Haskell data type definitions.

14

4 Issues to be further explored

• Data types directly expressed as function types (e.g., records, lists, trees): no
problem, but functional data types derived from recursive definitions would be
more convenient in uncurried form (domain = set of paths)

• Expressing data as functions does not affect decidability issues, but may require
defining a special class of (more than first-class) functions

• Feasibility of full implementation of domain computations in current languages
is unclear (small experiment with shallow embedding in Haskell recently as-
signed to a student)

15

