Genericity by functionalization: defining data as functions ${ }^{1}$

Overview
0 . Principle

1. Origin (induction: collecting useful functionals)
2. Making the functionals generic (design: generalizing the functionals)
3. Applications in programming (deduction: applying the new functionals) List of application areas, 2 examples discussed
4. Issues to be further explored
[^0]
0 Principle

- Genericity

One program, applicable to various data types

- Genericity by parametrization

Program adapted to the various data types

- Genericity by functionalization

Data adapted by (re)definition as functions: uniform type interface concept

1 Origin: modelling continuous and discrete systems

1.0 Need for point-wise and point-free expressions

- Central issue: eliminating the time variable
- Motivation: may be quite different, e.g.,
a. In Funmath (Functional Mathematics) [Boute, 1992]:
transforming behavioural specifications into structural realizations
b. In FRP (Functional Reactive Programming) [Hudak et al.]:
avoiding time leaks and space leaks
FRP chosen for comparison due to its familiarity to the Haskell community. Other formalisms: Silage (Hilfinger) for DSP, LabVIEW (National Instruments) for control etc.
- Results in diverging developments: respectively,
a. In Funmath: subsequent generalization to generic functionals
b. In FRP: specialization to a DSL (domain-specific language)

1.1 Example: potential genericity of function composition

- Application A: expressing behaviour of memoryless devices
- Principle: extend static behaviours of type $A \rightarrow B$ to dynamic behaviours $\mathcal{S}_{A} \rightarrow \mathcal{S}_{B}$ for signals.
The type for signals is $\mathcal{S}_{X}=\mathbb{T} \rightarrow X$ (for suitable time domain \mathbb{T}).
- Specification (semantics): operator ${ }^{-}$defined by $\bar{f} s t=f(s t)$ for any $f: A \rightarrow B$ and $s: \mathcal{S}_{A}$
- Realizations
* In Funmath: direct extension operator - defined by $\bar{f} s=f \circ s$ with \circ defined as expected by $(f \circ g) x=f(g x)$
* In FRP: operator arr, writing arr f for the signal behavour
- Remark: similar operator ${ }^{\text {^ }}$ with $(x 夭 y) t=x t 夭 y t$ for dyadic \star.
- Application B: structural cascade connection
- Principle:
- Realization:
* In Funmath: again using composition: $f \circ g$ for any functions
* In FRP: operator >>>, writing g >>> f for signal behavours only
- Remark: property $\overline{f \circ g}=\bar{f} \circ \bar{g}$ (proof: exercise), sugar $g ; f=f \circ g$.
- Application C: function map

Assuming tuples as functions in the sense that $(a, b) 0=a$ and $(a, b) 1=b$ If $x=x_{0}, x_{1}$ then $f x_{0}, f x_{1}=f \circ x=\bar{f} x$. Structural interpretation:

1.2 Example: potential genericity of function transposition

- Purpose: swapping the arguments of a higher-order function

$$
f^{\top} y x=f x y
$$

Nomenclature obviously borrowed from matrix theory (up to curruing)

- Structural interpretations:
a. From a family of signals to a tuple-valued signal,
b. Signal fanout

2 Making the functionals generic

2.0 Principle: adding the "most general" type information

- Conventions regarding functions
- Function $=$ domain $(\mathcal{D} f)$ and mapping (unique $f x$ for every x in $\mathcal{D} f$).
- Function equality \equiv equality of the domains and the mappings. Formally: $f=g \equiv \mathcal{D} f=\mathcal{D} g \wedge \forall x: \mathcal{D} f \cap \mathcal{D} g . f x=g x$
Remark: in point-free style, $f=g \equiv \mathcal{D} f=\mathcal{D} g \wedge \forall(f \widehat{\equiv})$
- Making functionals generic
- Motivation: in Funmath, sharing by many more objects than usual.
- Shortcomings of traditional operators: restrictions on the arguments, e.g., - the usual $f \circ g$ requires $\mathcal{R} g \subseteq \mathcal{D} f$, in which case $\mathcal{D}(f \circ g)=\mathcal{D} g$
- the usual f^{-}requires f injective, in which case $\mathcal{D} f^{-}=\mathcal{R} f$
- Approach here: no restrictions on the arguments, but refine domain of the result function such that its mapping definition does not contain out-ofdomain applications for values in this domain (guarded)

2.1 Functionals designed generically

For transforming and combining functions: for any func. f, pred. P, set S,
\downarrow Filtering $\quad f \downarrow P=x: \mathcal{D} f \cap \mathcal{D} P \wedge P x . f x$
\rceil Restriction $\quad f\rceil S=f \downarrow(S \bullet 1)$

- Composition $f \circ g=x: \mathcal{D} g \wedge g x \in \mathcal{D} f . f(g x)$
\& Dispatching $\quad f \& g=x: \mathcal{D} f \cap \mathcal{D} g . f x, g x$
$\| \quad$ Parallel $\quad f \| g=(x, y): \mathcal{D} f \times \mathcal{D} g . f x, g y$
- Extension $\quad f \not{\star} g=x: \mathcal{D} f \cap \mathcal{D} g \wedge(f x, g x) \in \mathcal{D}(\star) . f x \star g x$
\otimes Override $\quad f \otimes g=x: \mathcal{D} f \cup \mathcal{D} g .(x \in \mathcal{D} f) ? f x \dagger g x$
- Merge $\quad f \cup g=x: \mathcal{D} f \cup \mathcal{D} g \wedge(x \in \mathcal{D} f \cap \mathcal{D} g \Rightarrow f x=g x) .(f \otimes g) x$

Relational functionals: for any func. f, pred. P, set S,
© Compatibility f © $g \equiv f\rceil \mathcal{D} g=g\rceil \mathcal{D} f$
\subseteq Subfunction $\quad f \subseteq g \equiv f=g\rceil \mathcal{D} f$
Examples of algebraic properties:
$f \subseteq g \equiv \mathcal{D} f \subseteq \mathcal{D} g \wedge f \odot g$ and $f \odot g \Rightarrow f \otimes g=f \cup g=f \otimes g$
\subseteq is a partial order (reflexive, antisymmetric, transitive)
For equality: $f \odot g \equiv \forall(f \widehat{\cong})$ and $f=g \equiv \mathcal{D} f=\mathcal{D} g \wedge f \odot g$.

2.2 Elastic extensions for generic operators

- Elastic operators in general
- Principle: functionals replacing the common ad hoc abstractors, e.g., $\forall x: X$ and $\sum_{i=m}^{n}$ and $\lim _{x \rightarrow a}$
- Simple examples: $\forall P \equiv P=\mathcal{D} P^{\bullet} 1$ and $\exists P \equiv P \neq \mathcal{D} P^{\bullet} 0$
- Syntactic properties: (i) together with function abstraction, they yield familiar forms of expressions, e.g., $\forall x: X . P x$ and $\sum i: m \ldots n . x_{i}$
(ii) with tuples: $x \wedge y \equiv \forall(x, y)$, i.e., \forall is elastic extension of \wedge, etc.
- A typical elastic generic functional: transposition (- ${ }^{\top}$)
- Intersecting variant: for any family f of functions,

$$
f^{\top}=y:(\cap x: \mathcal{D} f \cdot \mathcal{D}(f x)) \cdot x: \mathcal{D} f . f x y
$$

This is an elastic extension of \& since $f \& g=(f, g)^{\top}$

- Uniting variant: for any family f of functions,

$$
f^{\cup}=y:(\cup x: \mathcal{D} f . \mathcal{D}(f x)) \cdot x: \mathcal{D} f \wedge y \in f x . f x y
$$

- Analogous elastic extensions: || for $\|, \cup$ for \cup, © for © etc.
- A generic type constructor
- Purpose: formalizing tolerances for functions: a function f meets tolerance T iff $\mathcal{D} f=\mathcal{D} T \wedge \forall x: \mathcal{D} f \cap \mathcal{D} T . f x \in T x$. Illustration:

- Generalized Functional Cartesian Product X : for any family T of sets,

$$
\begin{equation*}
f \in \times T \equiv \mathcal{D} f=\mathcal{D} T \wedge \forall x: \mathcal{D} f \cap \mathcal{D} T . f x \in T x \tag{1}
\end{equation*}
$$

- Properties of (1):
* The usual Cartesian product as a special case: $\times(A, B)=A \times B$
* Dependent types as a special case: $\times\left(a: A . B_{a}\right)$

- More about the funcart operator X

- "Workhorse" for typing all structures unified by functional mathematics.
* Recall $A \times B=\times(A, B)$ Also $A \rightarrow B=\times\left(A^{\bullet} B\right)$
* Array types $A^{n}=\times\left(\square n^{\bullet} A\right)$, list types $A^{*}=\cup n: \mathbb{N} . A^{n}$,
* Record types: instead of using projection/selection functions (Haskell, Scheme etc.), we define records as first-class functions.
Domain $=$ enumeration type for field labels. Example: given

$$
\text { Person }:=X\left(\text { name } \mapsto \mathbb{A}^{*} \cup \text { age } \mapsto \mathbb{N}\right)
$$

person: Person satisfies person name $\in \mathbb{A}^{*}$ and person age $\in \mathbb{N}$. Sugar: defining record : fam $(\operatorname{fam} \mathcal{T}) \rightarrow \mathcal{P} \mathcal{F}$ with record $F=\times(\cup F)$, we can write Person $:=\operatorname{record}\left(\right.$ name $\mapsto \mathbb{A}^{*}$, age $\left.\mapsto \mathbb{N}\right)$.

- Is a genuine functional, not an ad hoc abstractor! Noteworthy: inverse.
* Choice axiom $\times T \neq \emptyset \equiv \forall x: \mathcal{D} T . T x \neq \emptyset$ characterizes Bdom \times
* Implicit image definition: If $\times T \neq \emptyset$, then $\times^{-}(\times T)=T$
* Explicit image definition: $\times^{-} S=x: \operatorname{Dom} S .\{f x \mid f: S\}$ for $S: \mathcal{D} \times^{-}$

3 Applications in programming

3.0 Typical applications
(Presented at the 2002 Working Conference on Generic Programming) Applications in:

0 . Functional programming: composition, inversion, transposition of lists, pattern matching as function inverse

1. Aggregate data types and structures
2. Overloading and polymorphism various styles
3. Functional predicate calculus point-free and point-wise
4. Formal semantics
5. Relational databases functional style
6. Relation algebra

3.1 Two illustrations

- Using generic functionals in the relational theory of data types

* Example A Let relations be defined as boolean-valued functions (as in programming, logic) and write ρf for the relation representing function $f(y \rho f x \equiv y=f x)$. Backhouse's definition for \rightarrow is then

$$
f R \rightarrow S g \equiv R \sqsubseteq(\rho f)^{\smile} \bullet S \bullet(\rho g)
$$

Using generic functionals: $(\rho f)^{\smile} \bullet S \bullet(\rho g)=(S) \circ(f \| g)$.

* Example B With data types as functions, commuting datatypes can be expressed as follows. Given $f, g: F A \times G B$
- Transformation via $F(A \times G B)$ to $F(G(A \times B))$ by broadcasting yields successively $x: \mathcal{D} f .(f x, g)$ and $x: \mathcal{D} f . y: \mathcal{D} g \cdot(f x, g y)$
- Transformation via $G(F A \times B)$ to $G(F(A \times B))$ by broadcasting yields successively $y: \mathcal{D} g \cdot(f, g y)$ and $y: \mathcal{D} g \cdot x: \mathcal{D} f .(f x, g y)$
Clearly $(x: \mathcal{D} f . y: \mathcal{D} g .(f x, g y))^{\top}=y: \mathcal{D} g . x: \mathcal{D} f .(f x, g y)$

- Using generic functionals in abstract syntax description

Reason for this example: archetype for expressing structures as functions.

* For aggregate constructs and list productions: functional record and *. This is \times actually: record $F=\times(\cup F)$ and $A^{*}=\cup n: \mathbb{N} . \times\left(\square n^{\bullet} A\right)$.
* For choice productions needing disjoint union: generic elastic - operator For any family F of types,

$$
\begin{equation*}
\mid F=\cup x: \mathcal{D} F \cdot\{x \mapsto y \mid y: F x\} \tag{2}
\end{equation*}
$$

Idea: analogy with $\cup F=\cup(x: \mathcal{D} F . F x)=\cup x: \mathcal{D} F .\{y \mid y: F x\}$. Remarks

- Variadic shorthand: $A|B=|(A, B)=\{0 \mapsto a \mid a: A\} \cup\{1 \mapsto b \mid b: B\}$
- Using $x \mapsto y$ rather than the common x, y yields more uniformity.
- Same 3 operators can describe directory and file structures, XML,
- For program semantics, disjoint union is often "overengineering".
* Typical examples: (with field labels from an enumeration type)

$$
\begin{aligned}
& \text { def Program }:=\text { record (declarations } \mapsto \text { Dlist, body } \mapsto \text { Instruction) } \\
& \text { def } \text { Dlist }:=D^{*} \\
& \text { def } D:=\operatorname{record}(v \mapsto \text { Variable, } t \mapsto \text { Type }) \\
& \text { def } \text { Instruction }:=\text { Skip } \cup \text { Assignment } \cup \text { Compound } \cup \text { etc. }
\end{aligned}
$$

A few items are left undefined here (easily inferred). If disjoint union wanted: Skip \mid Assignment \mid Compound \mid etc. Instances of programs, declarations, etc. can be defined as

$$
\text { def } p: \text { Program with } p=\text { declarations } \mapsto d l \cup \text { body } \mapsto \text { instr }
$$

Observation: very similar to Haskell data type definitions.

4 Issues to be further explored

- Data types directly expressed as function types (e.g., records, lists, trees): no problem, but functional data types derived from recursive definitions would be more convenient in uncurried form (domain $=$ set of paths)
- Expressing data as functions does not affect decidability issues, but may require defining a special class of (more than first-class) functions
- Feasibility of full implementation of domain computations in current languages is unclear (small experiment with shallow embedding in Haskell recently assigned to a student)

[^0]: ${ }^{1}$ Prepared for the 2002 Summer School and Workshop on Generic Programming.

