Genericity by functionalization: defining data as functions¹

INTEC — Ghent University

Overview

- 0. Principle
- 1. **Origin** (induction: collecting useful functionals)
- 2. Making the functionals generic (design: generalizing the functionals)
- 3. **Applications in programming** (deduction: applying the new functionals) List of application areas, 2 examples discussed
- 4. Issues to be further explored

¹Prepared for the 2002 Summer School and Workshop on Generic Programming.

0 Principle

• Genericity

One program, applicable to various data types

• Genericity by parametrization

Program adapted to the various data types

• Genericity by functionalization

Data adapted by (re)definition as functions: uniform type interface concept

- **1** Origin: modelling continuous and discrete systems
- 1.0 Need for point-wise and point-free expressions
 - Central issue: eliminating the time variable
 - Motivation: may be quite different, e.g.,
 - a. In Funmath (*Functional Mathematics*) [Boute, 1992]: transforming behavioural *specifications* into structural *realizations*
 - b. In FRP (*Functional Reactive Programming*) [Hudak et al.]: avoiding time leaks and space leaks

FRP chosen for comparison due to its familiarity to the Haskell community. Other formalisms: Silage (Hilfinger) for DSP, LabVIEW (National Instruments) for control etc.

- Results in diverging developments: respectively,
 - a. In Funmath: subsequent generalization to generic functionals
 - b. In FRP: specialization to a DSL (domain-specific language)

- 1.1 Example: potential genericity of function composition
 - Application A: expressing behaviour of memoryless devices
 - Principle: extend static behaviours of type $A \rightarrow B$ to dynamic behaviours $S_A \rightarrow S_B$ for signals.

The type for signals is $\mathcal{S}_X = \mathbb{T} \to X$ (for suitable time domain \mathbb{T}).

- Specification (semantics): operator defined by $\overline{f} \ s \ t = f \ (s \ t)$ for any $f : A \to B$ and $s : S_A$
- Realizations
 - * In Funmath: direct extension operator defined by $\overline{f} \ s = f \circ s$ with \circ defined as expected by $(f \circ g) \ x = f \ (g \ x)$
 - * In FRP: operator arr, writing arr f for the signal behavour
- Remark: similar operator $\hat{}$ with $(x \stackrel{\sim}{\star} y) t = x t \stackrel{\sim}{\star} y t$ for dyadic \star .

• Application B: structural cascade connection

- Principle:
$$\longrightarrow$$
 g \longrightarrow f

- Realization:

* In Funmath: again using composition: $f \circ g$ for any functions

* In FRP: operator >>>, writing g >>> f for signal behavours only

- Remark: property $\overline{f \circ g} = \overline{f} \circ \overline{g}$ (proof: exercise), sugar $g; f = f \circ g$.
- Application C: function map

Assuming tuples as functions in the sense that (a, b) 0 = a and (a, b) 1 = bIf $x = x_0, x_1$ then $f x_0, f x_1 = f \circ x = \overline{f} x$. Structural interpretation:

1.2 Example: potential genericity of function transposition

• Purpose: swapping the arguments of a higher-order function

$$f^{\mathsf{T}}y \, x = f \, x \, y$$

Nomenclature obviously borrowed from matrix theory (up to curruing)

- Structural interpretations:
 - a. From a family of signals to a tuple-valued signal,
 - b. Signal fanout

- 2 Making the functionals generic
- 2.0 Principle: adding the "most general" type information
 - Conventions regarding functions
 - Function = domain $(\mathcal{D} f)$ and mapping (unique f x for every x in $\mathcal{D} f$).
 - Function equality \equiv equality of the domains and the mappings. Formally: $f = g \equiv \mathcal{D} f = \mathcal{D} g \land \forall x : \mathcal{D} f \cap \mathcal{D} g . f x = g x$ Remark: in point-free style, $f = g \equiv \mathcal{D} f = \mathcal{D} g \land \forall (f \cong g)$
 - Making functionals generic
 - Motivation: in Funmath, sharing by many more objects than usual.
 - Shortcomings of traditional operators: restrictions on the arguments, e.g.,
 - the usual $f \circ g$ requires $\mathcal{R} g \subseteq \mathcal{D} f$, in which case $\mathcal{D} (f \circ g) = \mathcal{D} g$
 - the usual f^- requires f injective, in which case $\mathcal{D} f^- = \mathcal{R} f$
 - Approach here: no restrictions on the arguments, but refine domain of the result function such that its mapping definition does not contain out-ofdomain applications for values in this domain (guarded)

2.1 Functionals designed generically

For transforming and combining functions: for any func. f, pred. P, set S,

$$\begin{array}{ll} \downarrow & \text{Filtering} & f \downarrow P = x : \mathcal{D} f \cap \mathcal{D} P \wedge P x . f x \\ \rceil & \text{Restriction} & f \rceil S = f \downarrow (S \bullet 1) \\ \circ & \text{Composition} & f \circ g = x : \mathcal{D} g \wedge g x \in \mathcal{D} f . f (g x) \\ \& & \text{Dispatching} & f \& g = x : \mathcal{D} f \cap \mathcal{D} g . f x, g x \\ \parallel & \text{Parallel} & f \parallel g = (x, y) : \mathcal{D} f \times \mathcal{D} g . f x, g y \\ \uparrow & \text{Extension} & f \land g = x : \mathcal{D} f \cap \mathcal{D} g \wedge (f x, g x) \in \mathcal{D} (\star) . f x \star g x \\ \oslash & \text{Override} & f \oslash g = x : \mathcal{D} f \cup \mathcal{D} g . (x \in \mathcal{D} f) ? f x \nmid g x \\ \cup & \text{Merge} & f \cup g = x : \mathcal{D} f \cup \mathcal{D} g \wedge (x \in \mathcal{D} f \cap \mathcal{D} g \Rightarrow f x = g x) . (f \otimes g) x \end{array}$$

Relational functionals: for any func. f, pred. P, set S,

- \bigcirc Compatibility $f \odot g \equiv f \mid \mathcal{D} g = g \mid \mathcal{D} f$
- $\subseteq \quad \textbf{Subfunction} \quad f \subseteq g \equiv f = g \,] \, \mathcal{D} \, f$

Examples of algebraic properties:

$$\begin{split} &f \subseteq g \ \equiv \ \mathcal{D} \, f \subseteq \mathcal{D} \, g \wedge f \odot g \text{ and } f \odot g \Rightarrow f \otimes g = f \cup g = f \otimes g \\ &\subseteq \text{ is a partial order (reflexive, antisymmetric, transitive)} \\ &\text{For equality: } f \odot g \ \equiv \ \forall \, (f \cong g) \text{ and } f = g \ \equiv \ \mathcal{D} \, f = \mathcal{D} \, g \wedge f \odot g. \end{split}$$

2.2 Elastic extensions for generic operators

- Elastic operators in general
 - Principle: functionals replacing the common ad hoc abstractors, e.g., $\forall x : X$ and $\sum_{i=m}^{n}$ and $\lim_{x \to a}$
 - Simple examples: $\forall P \equiv P = \mathcal{D}P^{\bullet}1$ and $\exists P \equiv P \neq \mathcal{D}P^{\bullet}0$
 - Syntactic properties: (i) together with function abstraction, they yield familiar forms of expressions, e.g., ∀x:X.Px and ∑i:m.n.x_i
 (ii) with tuples: x ∧ y ≡ ∀(x, y), i.e., ∀ is *elastic extension* of ∧, etc.
- A typical elastic generic functional: transposition $(-^{T})$
 - Intersecting variant: for any family f of functions, $f^{\mathsf{T}} = y : (\cap x : \mathcal{D} f \cdot \mathcal{D} (f x)) \cdot x : \mathcal{D} f \cdot f x y$ This is an elastic extension of & since $f \& g = (f, g)^{\mathsf{T}}$
 - Uniting variant: for any family f of functions, $f^{U} = y : (\bigcup x : \mathcal{D} f \cdot \mathcal{D} (f x)) \cdot x : \mathcal{D} f \land y \in f x \cdot f x y$
- Analogous elastic extensions: \parallel for \parallel , \cup for \cup , \bigcirc for \odot , etc.

- A generic type constructor
 - Purpose: formalizing tolerances for functions: a function f meets tolerance T iff $\mathcal{D} f = \mathcal{D} T \land \forall x : \mathcal{D} f \cap \mathcal{D} T . f x \in T x$. Illustration:

- Generalized Functional Cartesian Product \times : for any family T of sets,

$$f \in \mathbf{X}T \equiv \mathcal{D}f = \mathcal{D}T \land \forall x : \mathcal{D}f \cap \mathcal{D}T \cdot f x \in T x.$$
(1)

– Properties of (1):

- * The usual Cartesian product as a special case: $\times (A, B) = A \times B$
- * Dependent types as a special case: $\times (a: A \cdot B_a)$

- ullet More about the funcart operator \times
 - "Workhorse" for typing all structures unified by functional mathematics.

* Recall $A \times B = \mathbf{X}(A, B)$ Also $A \to B = \mathbf{X}(A \bullet B)$

- * Array types $A^n = \mathbf{X} (\Box n \bullet A)$, list types $A^* = \bigcup n : \mathbb{N} \cdot A^n$,
- Record types: instead of using projection/selection functions (Haskell, Scheme etc.), we define *records as first-class functions*.
 Domain = *enumeration type* for field labels. Example: given

 $Person := \mathsf{X} (\texttt{name} \mapsto \mathbb{A}^* \cup \texttt{age} \mapsto \mathbb{N}),$

person: Person satisfies person name $\in \mathbb{A}^*$ and person age $\in \mathbb{N}$. Sugar: defining record: fam (fam \mathcal{T}) $\rightarrow \mathcal{PF}$ with record $F = \times (\cup F)$, we can write Person := record (name $\mapsto \mathbb{A}^*$, age $\mapsto \mathbb{N}$).

- Is a genuine functional, not an ad hoc abstractor! Noteworthy: inverse.
 - * Choice axiom $\times T \neq \emptyset \equiv \forall x : \mathcal{D}T . Tx \neq \emptyset$ characterizes Bdom \times
 - * Implicit image definition: If $XT \neq \emptyset$, then $X^{-}(XT) = T$
 - * Explicit image definition: $\times^{-} S = x : Dom S : \{f x \mid f : S\}$ for $S : \mathcal{D} \times^{-}$

3 Applications in programming

3.0 Typical applications

(Presented at the 2002 Working Conference on Generic Programming) Applications in:

- 0. **Functional programming:** composition, inversion, transposition of lists, pattern matching as function inverse
- 1. Aggregate data types and structures
- 2. Overloading and polymorphism various styles
- 3. Functional predicate calculus point-free and point-wise
- 4. Formal semantics
- 5. Relational databases functional style
- 6. Relation algebra

3.1 Two illustrations

- Using generic functionals in the relational theory of data types
 - * Example A Let relations be defined as boolean-valued functions (as in programming, logic) and write ρf for the relation representing function $f (y \rho f x \equiv y = f x)$. Backhouse's definition for \rightarrow is then

$$f R \rightarrow S g \equiv R \sqsubseteq (\rho f)^{\smile} \bullet S \bullet (\rho g)$$

Using generic functionals: $(\rho f)^{\smile} \bullet S \bullet (\rho g) = (S) \circ (f \parallel g).$

- * Example B With data types as functions, commuting datatypes can be expressed as follows. Given $f, g: F A \times G B$
 - Transformation via $F(A \times GB)$ to $F(G(A \times B))$ by broadcasting yields successively $x : \mathcal{D}f \cdot (fx, g)$ and $x : \mathcal{D}f \cdot y : \mathcal{D}g \cdot (fx, gy)$
 - Transformation via $G(FA \times B)$ to $G(F(A \times B))$ by broadcasting yields successively $y : \mathcal{D}g \cdot (f, gy)$ and $y : \mathcal{D}g \cdot x : \mathcal{D}f \cdot (fx, gy)$ Clearly $(x : \mathcal{D}f \cdot y : \mathcal{D}g \cdot (fx, gy))^{\mathsf{T}} = y : \mathcal{D}g \cdot x : \mathcal{D}f \cdot (fx, gy)$

- Using generic functionals in abstract syntax description
 Reason for this example: archetype for expressing structures as functions.
 - * For aggregate constructs and list productions: functional record and *. This is \times actually: record $F = \times (\bigcup F)$ and $A^* = \bigcup n : \mathbb{N} . \times (\Box n \bullet A)$.
 - * For choice productions needing disjoint union: generic elastic poperator For any family F of types,

$$F = \bigcup x : \mathcal{D}F . \{x \mapsto y \mid y : Fx\}$$
(2)

Idea: analogy with $\cup F = \cup (x : \mathcal{D}F \cdot Fx) = \cup x : \mathcal{D}F \cdot \{y \mid y : Fx\}$. Remarks

- · Variadic shorthand: $A \mid B = |(A, B) = \{0 \mapsto a \mid a : A\} \cup \{1 \mapsto b \mid b : B\}$
- · Using $x \mapsto y$ rather than the common x, y yields more uniformity.
- \cdot Same 3 operators can describe directory and file structures, XML, \ldots
- \cdot For program semantics, disjoint union is often "overengineering".

* Typical examples: (with field labels from an enumeration type)

 $def Program := record (declarations \mapsto Dlist, body \mapsto Instruction)$ $def Dlist := D^*$ $def D := record (v \mapsto Variable, t \mapsto Type)$ $def Instruction := Skip \cup Assignment \cup Compound \cup etc.$

A few items are left undefined here (easily inferred). If disjoint union wanted: *Skip* | *Assignment* | *Compound* | etc. Instances of programs, declarations, etc. can be defined as

def p: Program with $p = declarations \mapsto dl \cup body \mapsto instr$

Observation: very similar to Haskell data type definitions.

4 Issues to be further explored

- Data types directly expressed as function types (e.g., records, lists, trees): no problem, but functional data types derived from recursive definitions would be more convenient in uncurried form (domain = set of paths)
- Expressing data as functions does not affect decidability issues, but may require defining a special class of (more than first-class) functions
- Feasibility of full implementation of domain computations in current languages is unclear (small experiment with shallow embedding in Haskell recently assigned to a student)