Summer School on Generic Programming 2002, Oxtord, UK

-

o

General Aims \

B To teach basics of category theory.

B Study categorical models of programming language syntax
with binding.

e We only cover the category theory we need.

e Some categorical machinery is simplified — you read the
abstract stuff after these lectures.

e We study syntax by examples — not the general theory.

e Syntax with binding is a hot research topic...

_/

Summer School on Generic Programming 2002, Oxtord, UK

-

Basics of Algebraic and Binding Syntax

See OHP for Examples

B Each symbol has an aritya € N.
B These generate (finife) expressions such as
C3 eO c e Ea_]_

B ... from datatypes of the form

datatype Exp = ... GC3EXp... EXp

Ienzﬁh a

~

B Algebraic syntax specified by constructor symbols C;.

_/

Summer School on Generic Programming 2002, Oxtord, UK

/ B Binding syntax subsumes algebraic syntax.

B Each symbol has arity a € N and a binding depth
b(i)eNforO<i<a-1

B These generate (finite) expressions such as
C(V°, .. VPO gy . (W0, WPED e)

B ... from datatypes of the form

datatype Exp = ... C...(V, ...V, Exp)...
Ieng?r:b(i)

N J/

Ienzj?h a

o

~

B Binding syntax is specified by constructor symbols C

_/

Summer School on Generic Programming 2002, Oxtord, UK

/ Learning Outcomes: You Should \

e know how examples of programming language syntax with
binding can be specified inductively;

e be able to define basic categorical structures;
e know, by example, how to compute simple initial algebras;

e understand simple absiract models of syntax and know how
to manufacture categorical models from syntax;

e be able to prove these models are essentially the same;

e understand current issues concerning variable binding and
read the literature.

. i

Summer School on Generic Programming 2002, Oxtord, UK

-

A

o

Definition of a Category

category C is specified by:

B A collection ob C of objects;

A BC...

B A collection mor C of morphisms;

f,g, h...

B Foreach f a source src(f)inobC and a target tar(f)

in ob C. Write

frsre(f) — tar(f)

or

f:A—=B

_/

Summer School on Generic Programming 2002, Oxtord, UK

/I f and g composable if tar (f) = src(g). \

B If f:A— Bandg.B— Cthenthereisgo f:A— C, called the
composition.

B For any object A there is an identity morphism ida: A — A.
For any f

idtar(f)Of — f
foidsrc(f) = f

B oisassociative: given f:A— B,g:B— Cand h:C — D,

(hog)of = ho(gof)

- /

Summer School on Generic Programming 2002, Oxtord, UK

-

Examples of Categories
B Consider Exp::=V V| S Exp| A Exp Exp with typical
elements

VP VR A(S (V) (VA

B There is a category with typical morphisms

2 1
6[Vv4,Vv,Vv,S(Vv5)14

, (A (AVVO) VI AVEVO AVO (S W0)] .

Summer School on Generic Programming 2002, Oxtord, UK

-

If

SV AT A (AVOVE) VEAVEVO AVO (SV)]

p L Py L 3

the composition is

[A (A (SVO) (AVPWR)) (AP WY),
A (AVOVP) (SW),
A (SVO) (S (AVVO))]

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Set

B The objects are sets.

B Morphisms are triples (A, f,B) where f CAxBisa
graph of a function:

(Vae A)(3'be B)((a,b) € f)

B Composition is given by

def

(B,g,C) o (A, f,B) (A,go f,C)

W idais (A id,A).

~

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

(X, <)

B (X,<)isapreordered set: < is reflexive and transitive.
B The collection of objects is the set X.

B The collection of morphisms is the set <. Typical
morphism (X, X).
B Composition is given by (Y, z) o (X,Y) « (X,2).

mid % (X, X).

10

Summer School on Generic Programming 2002, Oxtord, UK

-

Preset

B The objects are the preordered sets.

B The morphisms are the monotone functions.

A morphism (X, <x) — (Y, <y) is specified by a
function f: X — Y such that

x<xX = f(x) <y f(X)

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B The set of objects of F is N,

e Weregard ne Nastheset{0,...,n—1}forn>1, and

0is the empty set &.

B A morphism p:n— 1 is any set-theoretic function.

_/

12

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Isomorphisms and Equivalences

B A morphism f:A— Bis an isomorphism if there is
some g: B — Afor which

fog=idg A gof =ida

B Wesaygis an inverse for f and vise versa.

B WesayAis isomorphic to B,
f . A=ZB . ¢
if such a mutually inverse pair of morphisms exists.

B f and gwitness the isomorphism.

~

13

Summer School on Generic Programming 2002, Oxtord, UK

-

~

Examples of Isomorphisms

B Bijections in Set are isomorphisms.

B In (X, <)

e if <isa partial order, the only isomorphisms are the
identities, or

e if <isapreorderandxye Xwehavex=Zyiffx<y
and y < x, with only one witness:

(xy) @ x=y (V,X)

14

Summer School on Generic Programming 2002, Oxtord, UK

-

A

o

Definition of a Functor \

functor F:C — D is specified by

B assigning an object FAin D to any object Ain C, and

B assigning a morphism F f:FA— FBin D, to any
morphism f:A— BinC,

for which

B F(idy) = idra

B F(gof)=FgoFf

15

Summer School on Generic Programming 2002, Oxtord, UK

-

Define F: Set — Set by

An Example of a Functor

mFAY [A], the finite lists over A
mFri% map(f) where

map(f):|A] — [B] is defined by

map(f)(as) ® case asof

€ —E

[ag,...,a_1] — [f(ag),...

16

Summer School on Generic Programming 2002, Oxtord, UK

-

To see that F(go f) = Fgo F f note that

F(go f)([ao,- -, a-1])

17

Summer School on Generic Programming 2002, Oxtord, UK

-

o

More Examples

B The functors between two preorders A and B are
precisely the monotone functions from Ato B.

B We can define a functor P: Set — Set by setting
f:A—-B —~ Pf:P(A)—>P(B),
where the function P f is defined by
PrA) % (f(a)cBlacA)

where A' € P (A).

18

Summer School on Generic Programming 2002, Oxtord, UK

-

Definition of a Natural Transformation

Let F,G:C — D be functors. Then a natural
transformation

oF —G is (aa:FA—GA | Ain obC)

such that for any f:A— BinC,

04
FA_— 2, GA
E f Gf
EB GB
0B

~

19

Summer School on Generic Programming 2002, Oxtord, UK

-

o

An Example of a Natural Transformation

o Recall F:Set — Set where FA% [A]and F f % map(f).

e There is a natural transformation rev:F — F with

components reva: [A] — [A]

reva(as) e case asof ¢

e Naturality is

Fforeva(lag,...,a-1])

defined by

,
€ — €&

lag,...,a-1] — [a_1,...,a0]

\

= [f(&-1),-.., f(a0)]
= revgoFf(|ag,...,a_1])

~

20

Summer School on Generic Programming 2002, Oxtord, UK

/ Another Example

e Define Fx:Set — Set by

— Fx(A)E (X = A) x X
- Fx(f):(X—=A) x X — (X — B) x X where
(9. = (fog,x)

(idset(f)oeva)(g,X) = f(g

e Then ev:Fx — idse defined by eva(g, X) o g(x) is natural

21

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Definition of Functor Category

B letF, G HbefunctorsC — D and o.F — G and
B:G — H be natural transformations.

B DefineBooa:F — H by
(Boo)a = Bacoa

B Then D is the functor category of C and D, where

e objects are functors C — D,

e morphisms are natural trans o:F — G:C — D

_/

22

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

B Anisomorphism in a functor category is referred to
as a natural isomorphism.

B If there is a natural isomorphism between the
functors F and G, then we say that F and G are naturally
isomorphic, written

O:F=Gy

with witnesses the natural transformations ¢ and .

_/

23

Summer School on Generic Programming 2002, Oxtord, UK

-

(Property ®(P))

Motivating Binary Products

e Given any two sets Aand B,

e therearefunctions:P — A, ': P — B such that:

/a'h\

A——FP
T T

given any f.:C — A, g:C — B there is a unique h:C — P s.t.

~

24

Summer School on Generic Programming 2002, Oxtord, UK

-

B Suppose that AY {a,b} and B o {c,d,e}.

n
o LetPbe AxB® {(x,y)|xcAyeB}and

e 7wand ' be coordinate projections.

B Let f:C— Aand g:C — Bbe any two functions. Define

h.C—P z— (1(2),9(2))

B We can check (Property ®(P)) ...

o

25

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Now define P % {1,2 3 4,5 6} and

B pP — Aandg:P — Bwhere

p(1), p(2), pB)=a (1), a(4)=c
p(4), p(5), p(6)=D q(2), q(5 =d
a3), a)=e
B We can check (Property ®(P)) ...
B ... therequired function h:C — P’ exists and is

unique: for example, x e Cand f(x) =aand g(x) =d
forces h(x) = 2

B Note P ={(ac),(ad),(ae),(bc),(bd)),(be}=P

_/

26

Summer School on Generic Programming 2002, Oxtord, UK

-

Definition of Binary Products

A binary product of objects Aand B in a category C is
specified by

B an object A x BofC, together with

B two projection morphisms ma:Ax B — Aand
ng.AxX B — B,

for which given any object C and morphisms f:C — A,
g:C — B, there is a unique morphism (f,g):C — A x B for
which ao (f,g) = f and ngo (f,g) = 0.

o

~

27

Summer School on Generic Programming 2002, Oxtord, UK

-

B Diagrams are helptul

C
/3! <f,gN
A < Ax B - B
TTA B

B The unique morphism (f,g):C — A x Bis called the
mediating morphism

o

_/

28

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

B A property involving existence of a unique morphism
leading to a structure determined up to isomorphismis a
universal property.

B Call (f,g) the pair of f and g.
B C hasbinary products if there is A x B for any Aand B

e C has specified binary products if there is a
canonical choice.

o InSettake AxBE [(a,b) | acAbecB} with

standard projections.

_/

29

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Examples of Binary Products

B Preset Given A% (X, <x)and BE (Y,<y),
AxB% (X xY,<xxy)
where X x Y is cartesian product, and
(X,Y) Sxxy (X,Y) <= X<x XAy <yY
The projection
mal (X XY, <xxy) — (X, <x)

is given by (X,y) — X, and is monotone

30

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Part Given Aand B,
PE (AxB)U(Ax {+a})U(Bx {*a})

e A (AXB)UAXx{xa})U(Bx{*g}) —A
isundefined on Bx {*g}, t on A X { *a }

e ma(a,xp) =aforallacA,...

B [The product of nand mis written n x mand is given
by nxm, that is, the set {0,...,(nxm)—1}.

_/

31

Summer School on Generic Programming 2002, Oxtord, UK

/ Additional Notation

B Candefine AxBxCand (f,g,h)
B Take f:A— Band f: A — B'. We write

def

fx f’ (fom f'or’y : AxA —-BxB

B Universal property means

whereg:B—Candg:B — C'.

B Write A%or f2forAxAand f x f

o

ida xidy =idayy and (gxg)o(fxf')=gofxgof’

_/

32

Summer School on Generic Programming 2002, Oxtord, UK

-

Another Example — Presheaves on [

F % Set™ If F and F/ are presheaves, F x F":[F — Set

defined by

(FxF)n) % (Fn)x(F'n)
forninFandifp:n—n’
def
(FxF)(p) = (Fp)x(F'p)
Also
TCF:FXF/—>F (TCF)nd:efTCFn

~

33

Summer School on Generic Programming 2002, Oxtord, UK

/ Definition of Binary Coproducts

A binary coproduct of A and B is specified by

B an object A+ B, together with

B two insertion morphisms1a:A — A-+Band
g.B— A+ B,
such that there is a unique | f, g| for which

1 1
A A+B-— B

C

A

Kfor all such f and g

34

Summer School on Generic Programming 2002, Oxtord, UK

-

Example of Binary Coproducts

B Set For sets A and B define
A+B% (Ax {11)U(Bx {2}

and
n:A—A+B a— (a,1)

Given f:A— Cand g:B — C, then [f,g]:A+B —Cis
defined by

f,0)(8) € caselof

1a(Ea) = (Ga, 1) = F(EA)
18(GB) = (SB,2) — f(CB)

~

35

Summer School on Generic Programming 2002, Oxtord, UK

/ Additional Notation

B Can define A+ B+ C with the cotupling [f, g, h|
B Take morphisms f:A— Band f": A" — B'. We write

def

f+ f gof,igof] : A+A —B+B

B Universality means

whereg:B—Candg:B — C'.

B [f[:C—Dthenlo[f,gl=][lof,log]

o

idA—I—idA/ — idA_|_A/ and (g—|—gl)0(f —+ f/) = (go f —I—g/O f/

_/

36

Summer School on Generic Programming 2002, Oxtord, UK

-

o

More Examples

B [The coproduct of nand mis n4+mwhere we
interpret + as addition on N.

B F IfF andF’ are presheaves then F + F’ is defined
by
(F+F)E S (FE)+ (F'E)

for any object or morphism ¢ in F, and

. F+F —=F (1F)n X en: (Fn)+ (F'n) — Fn

Sometimes say + is defined pointwize.

_/

37

Summer School on Generic Programming 2002, Oxtord, UK

-

Definition of Algebras

B LetF:C — C. An algebra for the functor F is a pair
(A,opa) where oo FA — A,

B Aninitial F-algebra (I, o)) is an algebra for which
given any other (A,ca),

G
Fl -
Ff Jr f
FA - A
oA

~

38

Summer School on Generic Programming 2002, Oxtord, UK

/ Motivation for Initial Algebras

B (Some) Datatypes are initial algebras

B The datatype
Exp::=VV |SExp|AExpExp
is modeled by an object E such that

E=V+E+4+(ExE) T
B We show how to solve Tin Set.

B IfX:Set — Set is Zid:erJrﬁJr (€ x §), then the
solution we construct is an initial algebra (og, E).

o

39

Summer School on Generic Programming 2002, Oxtord, UK

-

o

An Initial Algebra for 1+ (—): Set — Set

B 1 Set — Setis defined by

f:A—=B — idigi{*}—{*}

B 1-+(—)isdefined by

f:A—-B ~ 1d1+f:1+A—1+8B

B The initial algebra is N up to isomorphism.

40

Summer School on Generic Programming 2002, Oxtord, UK

-

o

| WesetSod:eanndS(+1d:efl+Sr.

B Note thereis an insertioni1s:S§ — S41.

B Notealso thati;:§ <— S, 1 whereg aef 9 — S, and

. def . .
lrr1 = Idy +1y.

B Wealsowritei:S < T where T o UrS

B T is the object part of an initial algebra for 1+ (—).

_/

41

Summer School on Generic Programming 2002, Oxtord, UK

-

B AsoT:14 T — T then o1 must be a copair.

B Wesetor e [k,kK']wherek:1 - Tandk:T =T

B Note that

|
1 -14+0=5 1 .7

def .
and we set k = ij o1s.

o

42

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Note that
i/

1 1
§ — 14§ =S4 —~T

def .
and we setk; =i}, ;o1s.

H
e Infactkl ,oir =k byinductiononr.

e Hence can legitimately define k': T — T by setting
K'(€) € K (€) for any r such that & € S.

43

Summer School on Generic Programming 2002, Oxtord, UK

B We define a family of functions f,:§ — A

29 oA A T € [fol, fotaof,]

e Infactf, q0ir=f,.

o

1oy
—h|
Py
o)
N—"

e Hence we can legitimately define f: T — Aby f (&)

/ B We checkinitiality \

K for any r where & € S. J

44

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B To check that the diagram commutes, we have to
prove that
folk K]=fo(idi+f)

B By the universal property of coproducts, this is
equivalent to showing

[fok, fok]=[fo1y,forpof]

which we can do by checking that the respective
components are equal.

B We give details for fok/ = foipo f.

45

Summer School on Generic Programming 2002, Oxtord, UK

o

~

B fok = foipof. Take any element & € T. Then we
have

fK(©E) = f(s(©)
fri1(5(8))
[folg, forao f](1s(€))
= f(a(f(8)))
f(a(f(€)))

The first equality is by definition of k' and k;; the second
by definition of f; the third by definition of f,_ ;.

B Youcheckthat T = N.

_/

46

Summer School on Generic Programming 2002, Oxtord, UK

/ Some Results for Use in Modelling Syntax \

B LetF and F’ be two presheaves in F . Suppose for any
nin¥, F'ncFn ,and

F'n c Fn
F'p Fp
F'n" c Fn

commutes for any p:n —n'.

B Thereis a natural transformation

IF' —F

- /

47

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

B We define
OF —F

Suppose that F is an object in F . Then ¢ F is defined by

pon—n +— F(p+id):F(n+1) — F(n+1)

B Ifo:F — F'inF, then the components of 6 o are

given by

(0 0)n & Oln+1

48

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

Ir:S < S.1. Then there is a union presheaf T in F, such
thati/:S < T. We sometimes write U;S for T.

B (S |r>0)isafamily of presheaves in F , with

B Letp:n—n'. Then

Tn_USn

and Tp: Tn— Tn' is defined by

(TP)(&) £ (Sp)(©)

where € Tn, and € S(n) for somerr.

49

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Let(¢;:S — A|r >0) be natural transformations in
F, the S as before, and such that ¢, oi; = ¢;. Then
there is a unique natural transformation

o:T — A
such that ¢oi; = ¢y.
B The functions ¢,: Tn — An defined by

on(&) € (0)n(E) E€Sn

yield the required natural transformation.

~

50

Summer School on Generic Programming 2002, Oxtord, UK

o

/ Syntax with Distinguished Variables and without Binding \

B The set of expressions Exp is inductively defined by

Exp::=VV |SExp|AExpExp

B V' occurs in eis written V' € e.
B The set of (free) variables of any eis denoted by fv(e).
B We will want to consider expressions e for which

fv(e) c {\P°,... v 1}

and we give an inductive definition of such expressions./

51

Summer School on Generic Programming 2002, Oxtord, UK

b def 11
M9 ewheren>1,T" =W, ... v lisalist, and of
course eis an expression.

B WerefertoI" as an environment of variables.
My pnpdbge Mrdaed

B One can then prove by rule induction that if I™ -db g
then fv(e) C I'". We prove by Rule Induction

(V¥ (T, e) € -8 [(fv(e) c T

- /

/ B First we define inductively a set of judgements \

52

Summer School on Generic Programming 2002, Oxtord, UK

/ Syntax with Distinguished Variables and Binding \
B Consider

Exp::=VV|LVExp|EExpExp

B We inductively define a set of judgements I'" 4" e
where n > 0and I'V is the empty list.

MEPy ppdb e M®Eed

B One can then prove by rule induction that if " 4% e

then fv(e) C T™.
_ _/

53

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Notice that the rule for introducing abstractions

L v eforces a distinguished choice of binding variable.

B The advantage of distinguished binding is that the
expressions correspond exactly to the terms of the
A-calculus, without the need to define a-equivalence.

B In essence, we are forced to pick a representative of
each a-equivalence class.

54

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

Syntax with Arbitrary Variables and Binding

B Expressions are still defined by

Exp::=VV|LVEXxp|EExpExp

B Now let A range over all non-empty finite lists of variables
which have distinct elements. Thus a typical non-empty A is
vi v vi0 w2 c [V]. Let x,y,... range over V.

B Define A2 eby

X< A AxFPe ARPe AR

AF®Xx AR | xe AP Eed

_/

55

Summer School on Generic Programming 2002, Oxtord, UK

-

~

B We define simultaneous substitution — used to define
o.-equivalence, and to construct mathematical models.

B We will define by recursion over expressions e, new
expressions e{e/e} and e{A’ /A}, where len(A) = len(A").

B For example,

(LVB (AVIOVZ) (V3 VBB VP = LV (AVIO\B)

56

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

B We inductively define the relation ~, of
o-equivalence

e Single axiom (schema) L xe~q L X' e{x'/x} with

X ¢ fv(e)
e Rules such as
e~y & e~y e e~y &
e~y € L Xxe~y Lxé

B Note that the terms of the A-calculus are given by the

o € {€ | € ~ €}

_/

57

Summer School on Generic Programming 2002, Oxtord, UK

-

A Programme for Modelling Syntax

Step 1 define an abstract endofunctor Xy on F X St
(similar to the datatype in question);

Step 2 construct an initial algebra T for Zy;
Step 3 show that the syntax yields a functor Exp:[F — Set;

Step 4 show that T = Exp

o

58

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

Modelling Exp::=V V | SExp | A Exp Exp
Step 1

B First, we define the functor V:[F — Set. Let p:m— nin
F. Then we set

VmE 0, A (V) BV
B Define a functor Zy: Set” — Set” by setting

SyE L Vg8

59

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Step 2

mTEY s
H S ® 2 , the empty presheat, and
SE S =V+S5+F

B Needtochecki;:S — Sy qforallr > 0. We use
induction overr.

B [tisimmediate thatip:SH — S.

60

Summer School on Generic Programming 2002, Oxtord, UK

-

-

~

B Now suppose thati,:S — S . 1. We are required to
show that i, 1:S11 — S, thatis,

Vn+Sn+(Sn? C Vn+S,in+(S4an)?
Vp+Sp+(Sp)? Vp+Si1p+(S41p)2

Y Y

V' +Sn+(SN)? c VN +S.an +(S4an')?

B yi, =idy+ir+i2 Thus we have i, 1 = Zvir.

61

Summer School on Generic Programming 2002, Oxtord, UK

-

~

B We define the structure map ot o e, K K V+T+T?2 =T

B S =V+0+22% andso Sn=Vnx {1}. Therefore V=S,
sothatk: V=5 —T.

B We define ¥’ by

1
K S > - V+S 4+ =S4T

62

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B We checkinitiality

o
V4T4+T2 21T
V—I—G—I—Gzl (%) \G
2 (x
V4+A+A2Z — A

B Todefineo: T — Awe specify a family o;: S — A.

B Please see the notes; the details are similar in principle to
the corresponding ones for initiality of 67:1+T = T given in
the third lecture.

_/

63

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Step 3

B Suppose that p:n— ' is any function. We define
Exp. n® fe| M-P el

B We can define (Exp, p)eby recursion over g, by
setting

o (Expyp)(VV)EVpi
o (Expgsp)(S e) = S (Expg; p)e
o (Exp;p)(Ae€) L A (Exp,; pe (Expg p)€

~

_/

64

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B ... and then showing that if e € Exp n, then
(Expg; p)e € Expg 1.

B Thus we have a function
EXpgs p: EXPgy N — EXpys 1
foranyp:n—n'.

B Note that there are natural transformations

S:Exp: — Exp; A AExpg 2 — Exp,

65

Summer School on Generic Programming 2002, Oxtord, UK

-

-

Step 4 \

B We now show that T =2 Exp, inF

B Wedefine ¢: T — Exp,; and y:Exp;; — T, such that

Oon TN=EEXpzn @ wyy

B To specily ¢: T — Exp,;; define a family ¢,:S — Exp,; .
e (o:SH =9 — Exp; has components (¢o)n: @ — Expi N

e Recursively we define

b1 = [V,500r,A007 ¢ S11=V+S+F— Exp,

/

66

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B To specity y:Exp; — T, for any nin F we define
functions
VUn EXpgzn—Tn

as follows.

o yn(VV)E (V,1) € Sin

o ynh(Se = tsn(wn(e)) where r > 11is the height of the
deduction of S e

e yYp(Ae¥) « Lsn2((Wn(€), wn(€'))) wherer > 1is the
height of the deduction of A e€.

~

_/

67

Summer School on Generic Programming 2002, Oxtord, UK

-

We next check that for any nin F,

R |5

n

A

68

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Modelling Exp::=V V | L V Exp | E Exp Exp
Case I 9P e with Distinguished Binding

B Siep I The abstract endofunctor Zy:F — F is

SvE E V4§42

Motto: Any constructor with 1 argument and which
binds b variables is modelled by €. Thus

Split Pas (X,y) in E

would be modelled by § — £ x 606 §

69

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

B Siep 2 We can show that the functor Xy has an initial
algebra o1:ZyT — T, by adapting the previous methods.

B Have to define
GTd:ef [, %, K] d:er+5T+T><T—>T

via

1
KidS o e Vi8S + =S T

dS

ETINET+1) =S+ =JES)IN=(J5S)n

_/

70

Summer School on Generic Programming 2002, Oxtord, UK

/I Step 3 Suppose p:n— n'. Define
Exp, nE {e| T+ e)
B Letp{n/n}:n+1—n"+1be

o{n/ny(j) & p(j) if 0<j<n-1

Consider
o (Exp,, p)(LV'e) E LV (Exp,, p{r'/n})(e) and
o (Exp, p)(Ee€) L E ((Exp, p)e) ((Exp,, p)€)

B IfI"+%®eandp:n—n, thenT™ F (Exp,, p)eyielding a
K functor Exp,, in F .

71

Summer School on Generic Programming 2002, Oxtord, UK

/ B There are natural transformations

L:SExp,, - Exp A E:Exp® — Exp

B The components are functions

Lh:Exp, (N+1) - Exp,n — e—LV'e

B Naturality is

72

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Note that at the element g, this requires that
LV (Expy, p{n/n})e= LV ((Exp,, (p+idy))e)
B This equality holds if and only if
p{n'/n} =p+idy
B ...whichistrueifand onlyifinF

11:1—->m+1 x—m Im-M—m+1 |- pi

B Siep 4 Aroutine calculation that T = Exp,,

73

Summer School on Generic Programming 2002, Oxtord, UK

-

o

~

Modelling Exp::=V V | L V Exp | E Exp Exp
Case A 2P ewith Arbitrary Binding

B Siep I The abstract endofunctor Zy:F — F is

SyE L V458482
Note: The functor is the SAME as before

B Siep 2Thus solving for the initial algebra is the same
as betore!

_/

74

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B Siep 3We define Exp,, . For nin F we set

Exp,, NE {[elo | T"HP e}

B Nowlet p:n— n'. We define
(Exp,, p)([lo) € [e{v®°,... WD AL 1y,

B One has to check that this is well defined ... see the
notes.

75

Summer School on Generic Programming 2002, Oxtord, UK

-

~

B Siep 4 Note that current Step 2 was same as before.
Rather than prove Exp,, = T as a final step, we could in
fact make use of the previous work, which proved that
Exp,, = T. Thus we omit Step 2, and instead show

¢:EXp,, = EXpy, 1V

76

Summer School on Generic Programming 2002, Oxtord, UK

-

o

B The components of y are functions yn: Exp,, n — Exp,, n

given by yn(€) € [

B We consider the naturality of y at a morphism p:n— n,
computed at an element & of Exp,, n. We show naturality for
thecaseE =L V'e.

(Exp,, p)own(S) = (Bxp,,p)[L V"€l
(L e){vP0, ... W=D A0 -1
e 5

Let us consider the case when renaming takes place.

B Suppose that there is a j for which p(j) =nand V! € fv(e).

77

Summer School on Generic Programming 2002, Oxtord, UK

-

B Then
(L V" e){vp(o), . ,VP(”_l)/VO, . ,V”_l} —

LvWe{wQ) =D a0 oyl ym

e w=1+Maxindex(e; p(0),...,p(n—1)) thus p(i) < wfor all

0<i<n-1
e Butfv(e) c\,...,vPandn=p(j) € p(0),...,p(n—1).
e Alsop(i) <, and so we must havew < n',

o Ifw<n, thenV" is not free in
e{wO -1 Wwh0 -1y and otherwise w=rY.

_/

78

Summer School on Generic Programming 2002, Oxtord, UK

-

and so

Either way (why!?),

LV efwPO, .. W=D\ AO

LV (Expy, p{N'/n})€la
Wiy © (Expy, p)(C)

LW e{wO =D Wwh0 o yn=1yny
~g LV e{vP NV USRIV

WLy

7Vn_1avn}]0c

79

Summer School on Generic Programming 2002, Oxtord, UK

-

_

B Next we define ¢n: Exp,, n — Exp,, n by setting
On([€lo) «© R"(e) where

e R"(VX) ® v x
o RM(Lxe) % L vnR™1(e[vm/x})
e R'Eed)® ER(e) R"(€)

B This is best understood by a simple example...

B The verification that

¢ EXp,, = EXpy, Y

is omitted from the lectures. See the notes.

80

Summer School on Generic Programming 2002, Oxtord, UK

-

v/ (LV2 (EV/ (EV (LW (EVAV)))))

Lv3R4(Lv3(Ev (EVO (L VP (E V2 V3)
Lv3 RHL VG (Ev3 (EVP (LVP (EV2VP)
VFRP(EV3 (EVP (L VP (E V2 Vo)
VH(EV3 (EVP (RP(L VP (Ev2 Vv
Vv (EV3 (EVP (L v RP(E V2 VA
(EV3(EVP (LV° (RP(EV2 VA
(EVZ (EV? (LV° (EVv? V)

L
L

L v4

v (L
(L
(L
(
(L v

%%%%

\V°
\V°

81

Summer School on Generic Programming 2002, Oxtord, UK

-

o

Where to Now? You might

B learn more Category Theory;
B learn more Type Theory;
B learn more Categorical Type Theory;

B spend some time trying to understand the key
problems and issues concerning modelling and
reasoning about binding syntax; and

B read the current research literature on modelling and

implementing binding syntax.

_/

82

