General Aims

- To teach basics of category theory.
- Study categorical models of programming language syntax with binding.
- We only cover the category theory we need.
- Some categorical machinery is simplified - you read the abstract stuff after these lectures.
- We study syntax by examples - not the general theory.
- Syntax with binding is a hot research topic ...

Basics of Algebraic and Binding Syntax See OHP for Examples

- Algebraic syntax specified by constructor symbols C_{i}.
- Each symbol has an arity $a \in \mathbb{N}$.
- These generate (finite) expressions such as

$$
\mathrm{C}_{3} e_{0} \ldots e_{a-1}
$$

- ... from datatypes of the form

$$
\text { datatype } \operatorname{Exp}=\ldots C_{3} \underbrace{\text { Exp } \ldots \text { Exp }}_{\text {length a }} \cdots
$$

- Binding syntax subsumes algebraic syntax.
- Binding syntax is specified by constructor symbols C
- Each symbol has arity $a \in \mathbb{N}$ and a binding depth $b(i) \in \mathbb{N}$ for $0 \leq i \leq a-1$
- These generate (finite) expressions such as

$$
\mathrm{C}\left(v^{0}, \ldots v^{b(0)-1}, e_{0}\right) \ldots\left(v^{0}, \ldots v^{b(a-1)-1}, e_{a-1}\right)
$$

- ... from datatypes of the form

Learning Outcomes: You Should

- know how examples of programming language syntax with binding can be specified inductively;
- be able to define basic categorical structures;
- know, by example, how to compute simple initial algebras;
- understand simple abstract models of syntax and know how to manufacture categorical models from syntax;
- be able to prove these models are essentially the same;
- understand current issues concerning variable binding and read the literature.

Definition of a Category

A category C is specified by:

- A collection $o b C$ of objects; $A, B, C \ldots$
- A collection mor C of morphisms; $f, g, h \ldots$

■ For each f a source $\operatorname{src}(f)$ in $o b \mathcal{C}$ and a target $\operatorname{tar}(f)$ in $o b C$. Write

$$
f: \operatorname{src}(f) \longrightarrow \operatorname{tar}(f) \quad \text { or } \quad f: A \rightarrow B
$$

■ f and g composable if $\operatorname{tar}(f)=\operatorname{src}(g)$.
■ If $f: A \rightarrow B$ and $g: B \rightarrow C$ then there is $g \circ f: A \rightarrow C$, called the composition.

■ For any object A there is an identity morphism $i d_{A}: A \rightarrow A$. For any f

$$
\begin{aligned}
i d_{\operatorname{tar}(f)} \circ f & =f \\
f \circ i d_{\operatorname{src}(f)} & =f
\end{aligned}
$$

■ \circ is associative: given $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$,

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Examples of Categories

■ Consider Exp $::=\mathrm{V} \mathbb{V}|\mathrm{S} \operatorname{Exp}| \mathrm{A} \operatorname{Exp} \operatorname{Exp}$ with typical elements

$$
V v^{0} \quad V v^{45} \quad \mathrm{~A}\left(\mathrm{~S}\left(\mathrm{~V} v^{3}\right)\right)\left(\mathrm{V} v^{2}\right)
$$

- There is a category with typical morphisms

$$
\begin{gathered}
6 \xrightarrow{\left[\mathrm{~V} v^{4}, \mathrm{~V} v^{2}, \mathrm{~V} v^{1}, \mathrm{~S}\left(\mathrm{~V} v^{5}\right)\right]} 4 \\
2 \xrightarrow{\left[\mathrm{~A}\left(\mathrm{~A} v^{0} v^{0}\right) v^{1}, \mathrm{~A} v^{1} v^{0}, \mathrm{~A} v^{0}\left(\mathrm{~S} v^{0}\right)\right]} 3
\end{gathered}
$$

If

$$
1 \xrightarrow{\left[\mathrm{~S} v^{0}, \mathrm{~A} v^{0} v^{0}\right]} 2 \xrightarrow{\left[\mathrm{~A}\left(\mathrm{~A} v^{0} v^{1}\right) v^{1}, \mathrm{~A} v^{1} v^{0}, \mathrm{~A} v^{0}\left(\mathrm{~S} v^{1}\right)\right]} 3
$$

the composition is

$$
\begin{aligned}
& {\left[\mathrm{A}\left(\mathrm{~A}\left(\mathrm{~S} v^{0}\right)\left(\mathrm{A} v^{0} v^{0}\right)\right)\left(\mathrm{A} v^{0} v^{0}\right),\right.} \\
& \quad \mathrm{A}\left(\mathrm{~A} v^{0} v^{0}\right)\left(\mathrm{S} v^{0}\right) \\
& \left.\quad \mathrm{A}\left(\mathrm{~S} v^{0}\right)\left(\mathrm{S}\left(\mathrm{~A} v^{0} v^{0}\right)\right)\right]
\end{aligned}
$$

Set

- The objects are sets.
- Morphisms are triples (A, f, B) where $f \subseteq A \times B$ is a graph of a function:

$$
(\forall a \in A)(\exists!b \in B)((a, b) \in f)
$$

- Composition is given by

$$
(B, g, C) \circ(A, f, B) \quad \stackrel{\text { def }}{=} \quad(A, g \circ f, C)
$$

- $i d_{A}$ is $(A, i d, A)$.

(X, \leq)

■ (X, \leq) is a preordered set: \leq is reflexive and transitive.

- The collection of objects is the set X.

■ The collection of morphisms is the set \leq. Typical morphism (x, x^{\prime}).

■ Composition is given by $(y, z) \circ(x, y) \stackrel{\text { def }}{=}(x, z)$.

- $i d_{x} \stackrel{\text { def }}{=}(x, x)$.

Preset

■ The objects are the preordered sets.

- The morphisms are the monotone functions.

A morphism $\left(X, \leq_{X}\right) \longrightarrow\left(Y, \leq_{Y}\right)$ is specified by a function $f: X \rightarrow Y$ such that

$$
x \leq_{X} x^{\prime} \quad \Longrightarrow \quad f(x) \leq_{Y} f\left(x^{\prime}\right)
$$

F

- The set of objects of \mathbb{F} is \mathbb{N}.
- We regard $n \in \mathbb{N}$ as the set $\{0, \ldots, n-1\}$ for $n \geq 1$, and 0 is the empty set \varnothing.
- A morphism $\rho: n \rightarrow n^{\prime}$ is any set-theoretic function.

Isomorphisms and Equivalences

- A morphism $f: A \rightarrow B$ is an isomorphism if there is some $g: B \rightarrow A$ for which

$$
f \circ g=i d_{B} \quad \wedge \quad g \circ f=i d_{A}
$$

- We say g is an inverse for f and vise versa.
- We say A is isomorphic to B,

$$
f: \quad A \cong B \quad: \quad g
$$

if such a mutually inverse pair of morphisms exists.

- f and g witness the isomorphism.

Examples of Isomorphisms

- Bijections in Set are isomorphisms.
- In (X, \leq)
- if \leq is a partial order, the only isomorphisms are the identities, or
- if \leq is a preorder and $x, y \in X$ we have $x \cong y$ iff $x \leq y$ and $y \leq x$, with only one witness:

$$
(x, y): \quad x \cong y: \quad(y, x)
$$

Definition of a Functor

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is specified by
■ assigning an object $F A$ in \mathcal{D} to any object A in \mathcal{C}, and
■ assigning a morphism $F f: F A \rightarrow F B$ in \mathcal{D}, to any morphism $f: A \rightarrow B$ in C,
for which

- $F\left(i d_{A}\right)=i d_{F A}$
- $F(g \circ f)=F g \circ F f$

An Example of a Functor

Define $F:$ Set \rightarrow Set by
■ $F A \xlongequal{\text { def }}[A]$, the finite lists over A

- $F f \stackrel{\text { def }}{=} \operatorname{map}(f)$ where
$\operatorname{map}(f):[A] \rightarrow[B]$ is defined by

$$
\operatorname{map}(f)(a s) \stackrel{\text { def }}{=} \quad \text { case } a s \text { of }
$$

$$
\varepsilon \rightarrow \varepsilon
$$

$$
\left[a_{0}, \ldots, a_{l-1}\right] \rightarrow\left[f\left(a_{0}\right), \ldots, f\left(a_{l-1}\right)\right]
$$

To see that $F(g \circ f)=F g \circ F f$ note that

$$
\begin{aligned}
F(g \circ f)\left(\left[a_{0}, \ldots, a_{l-1}\right]\right) & \stackrel{\text { def }}{=} \operatorname{map}(g \circ f)\left(\left[a_{0}, \ldots, a_{l-1}\right]\right) \\
& =\left[g\left(f\left(a_{0}\right)\right), \ldots, g\left(f\left(a_{l-1}\right)\right)\right] \\
& =\operatorname{map}(g)\left(\left[f\left(a_{0}\right), \ldots, f\left(a_{l-1}\right)\right]\right) \\
& =\operatorname{map}(g)\left(\operatorname{map}(f)\left(\left[a_{0}, \ldots, a_{l-1}\right]\right)\right) \\
& =F g \circ F f\left(\left[a_{0}, \ldots, a_{l-1}\right]\right) .
\end{aligned}
$$

More Examples

- The functors between two preorders A and B are precisely the monotone functions from A to B.
- We can define a functor $\mathcal{P}: \operatorname{Set} \rightarrow \operatorname{Set}$ by setting

$$
f: A \rightarrow B \quad \mapsto \quad \mathcal{P} f: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

where the function \mathscr{P} is defined by

$$
\mathcal{P} f\left(A^{\prime}\right) \stackrel{\text { def }}{=}\left\{f(a) \in B \mid a \in A^{\prime}\right\}
$$

where $A^{\prime} \in \mathcal{P}(A)$.

Definition of a Natural Transformation

Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. Then a natural transformation

$$
\alpha: F \rightarrow G \quad \text { is } \quad\left(\alpha_{A}: F A \rightarrow G A \quad \mid \quad A \text { in } o b C\right)
$$

such that for any $f: A \rightarrow B$ in \mathcal{C},

An Example of a Natural Transformation

- Recall $F:$ Set \rightarrow Set where $F A \stackrel{\text { def }}{=}[A]$ and $F f \stackrel{\text { def }}{=} \operatorname{map}(f)$.
- There is a natural transformation rev: $F \rightarrow F$ with components rev $_{A}:[A] \rightarrow[A]$ defined by

$$
\operatorname{rev}_{A}(a s) \stackrel{\text { def }}{=} \text { case } a s \text { of }\left\{\begin{array}{l}
\varepsilon \rightarrow \varepsilon \\
{\left[a_{0}, \ldots, a_{l-1}\right] \rightarrow\left[a_{l-1}, \ldots, a_{0}\right]}
\end{array}\right.
$$

- Naturality is

$$
\begin{aligned}
F f \circ \operatorname{rev}_{A}\left(\left[a_{0}, \ldots, a_{l-1}\right]\right) & =\left[f\left(a_{l-1}\right), \ldots, f\left(a_{0}\right)\right] \\
& =\operatorname{rev}_{B} \circ F f\left(\left[a_{0}, \ldots, a_{l-1}\right]\right)
\end{aligned}
$$

Another Example

- Define $F_{X}:$ Set \rightarrow Set by

$$
\begin{aligned}
& -F_{X}(A) \stackrel{\text { def }}{=}(X \rightarrow A) \times X \\
& - \\
& \quad F_{X}(f):(X \rightarrow A) \times X \longrightarrow(X \rightarrow B) \times X \text { where } \\
& \quad(g, x) \mapsto(f \circ g, x)
\end{aligned}
$$

- Then $e v: F_{X} \rightarrow i d_{\text {set }}$ defined by $e v_{A}(g, x) \stackrel{\text { def }}{=} g(x)$ is natural

$$
\begin{aligned}
\left(i d_{S e t}(f) \circ e v_{A}\right)(g, x) & =f(g(x)) \\
& =e v_{B}(f \circ g, x) \\
& =e v_{B}\left(F_{X}(f)(g, x)\right) \\
& =\left(e v_{B} \circ F_{X}(f)\right)(g, x)
\end{aligned}
$$

Definition of Functor Category

- Let F, G, H be functors $C \rightarrow \mathcal{D}$ and $\alpha: F \rightarrow G$ and $\beta: G \rightarrow H$ be natural transformations.
- Define $\beta \circ \alpha: F \rightarrow H$ by

$$
(\beta \circ \alpha)_{A} \stackrel{\text { def }}{=} \beta_{A} \circ \alpha_{A}
$$

- Then \mathcal{D}^{C} is the functor category of \mathcal{C} and \mathcal{D}, where
- objects are functors $\mathcal{C} \rightarrow \mathcal{D}$,
- morphisms are natural trans $\alpha: F \rightarrow G: \mathcal{C} \rightarrow \mathcal{D}$
- An isomorphism in a functor category is referred to as a natural isomorphism.
- If there is a natural isomorphism between the functors F and G, then we say that F and G are naturally isomorphic, written

$$
\phi: F \cong G: \psi
$$

with witnesses the natural transformations ϕ and ψ.

Motivating Binary Products

(Property $\Phi(P)$)

- Given any two sets A and B,
- there are functions $\pi: P \rightarrow A, \pi^{\prime}: P \rightarrow B$ such that:
given any $f: C \rightarrow A, g: C \rightarrow B$ there is a unique $h: C \rightarrow P$ s.t.

- Suppose that $A \stackrel{\text { def }}{=}\{a, b\}$ and $B \stackrel{\text { def }}{=}\{c, d, e\}$.
- Let P be $A \times B \stackrel{\text { def }}{=}\{(x, y) \mid x \in A, y \in B\}$ and
- π and π^{\prime} be coordinate projections.

■ Let $f: C \rightarrow A$ and $g: C \rightarrow B$ be any two functions. Define

$$
h: C \rightarrow P \quad z \mapsto(f(z), g(z))
$$

■ We can check (Property $\Phi(P))$...

- Now define $P^{\prime} \stackrel{\text { def }}{=}\{1,2,3,4,5,6\}$ and

■ $p: P^{\prime} \rightarrow A$ and $q: P^{\prime} \rightarrow B$ where

$$
\begin{array}{llll}
p(1), & p(2), & p(3)=a & q(1), \\
p(4), & p(5), & p(6)=b & q(2), \\
& q(5)=d \\
& q(3), & q(6)=e
\end{array}
$$

■ We can check (Property $\left.\Phi\left(P^{\prime}\right)\right)$...

- ... the required function $h: C \rightarrow P^{\prime}$ exists and is unique: for example, $x \in C$ and $f(x)=a$ and $g(x)=d$ forces $h(x)=2$

■ Note $P^{\prime} \cong\{(a, c),(a, d),(a, e),(b, c),(b, d),(b, e)\}=P$

Definition of Binary Products

A binary product of objects A and B in a category C is specified by

- an object $A \times B$ of \mathcal{C}, together with
- two projection morphisms $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$,
for which given any object C and morphisms $f: C \rightarrow A$, $g: C \rightarrow B$, there is a unique morphism $\langle f, g\rangle: C \rightarrow A \times B$ for which $\pi_{A} \circ\langle f, g\rangle=f$ and $\pi_{B} \circ\langle f, g\rangle=g$.

■ Diagrams are helpful

- The unique morphism $\langle f, g\rangle: C \rightarrow A \times B$ is called the mediating morphism
- A property involving existence of a unique morphism leading to a structure determined up to isomorphism is a universal property.
- Call $\langle f, g\rangle$ the pair of f and g.
- C has binary products if there is $A \times B$ for any A and B
- \mathcal{C} has specified binary products if there is a canonical choice.
- In Set take $A \times B \stackrel{\text { def }}{=}\{(a, b) \mid a \in A, b \in B\}$ with standard projections.

Examples of Binary Products

■ Preset Given $A \stackrel{\text { def }}{=}\left(X, \leq_{X}\right)$ and $B \stackrel{\text { def }}{=}\left(Y, \leq_{Y}\right)$,

$$
A \times B \xlongequal{\text { def }}(X \times Y, \leq X \times Y)
$$

where $X \times Y$ is cartesian product, and

$$
(x, y) \leq_{X \times Y}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x \leq_{X} x^{\prime} \wedge y \leq_{Y} y^{\prime}
$$

The projection

$$
\pi_{A}:\left(X \times Y, \leq_{X \times Y}\right) \longrightarrow\left(X, \leq_{X}\right)
$$

is given by $(x, y) \mapsto x$, and is monotone

- Part Given A and B,

$$
P \stackrel{\text { def }}{=}(A \times B) \cup\left(A \times\left\{*_{A}\right\}\right) \cup\left(B \times\left\{*_{B}\right\}\right)
$$

- $\pi_{A}:(A \times B) \cup\left(A \times\left\{*_{A}\right\}\right) \cup\left(B \times\left\{*_{B}\right\}\right) \longrightarrow A$
is undefined on $B \times\left\{*_{B}\right\}, \pi_{B}$ on $A \times\left\{*_{A}\right\}$
- $\pi_{A}\left(a, *_{A}\right)=a$ for all $a \in A, \ldots$
- \mathbb{F} The product of n and m is written $n \times m$ and is given by $n * m$, that is, the set $\{0, \ldots,(n * m)-1\}$.

Additional Notation

- Can define $A \times B \times C$ and $\langle f, g, h\rangle$
- Take $f: A \rightarrow B$ and $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$. We write

$$
f \times f^{\prime} \quad \stackrel{\text { def }}{=}\left\langle f \circ \pi, f^{\prime} \circ \pi^{\prime}\right\rangle \quad: \quad A \times A^{\prime} \rightarrow B \times B^{\prime}
$$

■ Universal property means

$$
i d_{A} \times i d_{A^{\prime}}=i d_{A \times A^{\prime}} \quad \text { and } \quad\left(g \times g^{\prime}\right) \circ\left(f \times f^{\prime}\right)=g \circ f \times g^{\prime} \circ f^{\prime}
$$ where $g: B \rightarrow C$ and $g^{\prime}: B^{\prime} \rightarrow C^{\prime}$.

- Write A^{2} or f^{2} for $A \times A$ and $f \times f$

Another Example - Presheaves on \mathbb{F}

$\mathcal{F} \stackrel{\text { def }}{=} \mathcal{S e} t^{\mathbb{F}}$ If F and F^{\prime} are presheaves, $F \times F^{\prime}: \mathbb{F} \rightarrow$ Set defined by

$$
\left(F \times F^{\prime}\right)(n) \stackrel{\text { def }}{=}(F n) \times\left(F^{\prime} n\right)
$$

for n in \mathbb{F} and if $\rho: n \rightarrow n^{\prime}$

$$
\left(F \times F^{\prime}\right)(\rho) \stackrel{\text { def }}{=}(F \rho) \times\left(F^{\prime} \rho\right)
$$

Also

$$
\pi_{F}: F \times F^{\prime} \rightarrow F \quad\left(\pi_{F}\right)_{n} \stackrel{\text { def }}{=} \pi_{F n}
$$

Definition of Binary Coproducts

A binary coproduct of A and B is specified by

- an object $A+B$, together with
- two insertion morphisms $\mathrm{r}_{A}: A \rightarrow A+B$ and $\mathrm{l}_{B}: B \rightarrow A+B$,
such that there is a unique $[f, g]$ for which

for all such f and g

Example of Binary Coproducts

- Set For sets A and B define

$$
A+B \stackrel{\text { def }}{=}(A \times\{1\}) \cup(B \times\{2\})
$$

and

$$
\mathrm{v}_{A}: A \rightarrow A+B \quad a \mapsto(a, 1)
$$

Given $f: A \rightarrow C$ and $g: B \rightarrow C$, then $[f, g]: A+B \rightarrow C$ is defined by

$$
\begin{aligned}
& {[f, g](\xi) \stackrel{\text { def }}{=} \text { case } \xi \text { of }} \\
& \qquad \begin{aligned}
1_{A}\left(\xi_{A}\right) & =\left(\xi_{A}, 1\right) \mapsto f\left(\xi_{A}\right) \\
1_{B}\left(\xi_{B}\right) & =\left(\xi_{B}, 2\right) \mapsto f\left(\xi_{B}\right)
\end{aligned}
\end{aligned}
$$

Additional Notation

- Can define $A+B+C$ with the cotupling $[f, g, h]$

■ Take morphisms $f: A \rightarrow B$ and $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$. We write

$$
f+f^{\prime} \quad \stackrel{\text { def }}{=}\left[\mathrm{l}_{B} \circ f, \mathrm{l}_{B^{\prime}} \circ f^{\prime}\right]: \quad A+A^{\prime} \rightarrow B+B^{\prime}
$$

- Universality means

$$
i d_{A}+i d_{A^{\prime}}=i d_{A+A^{\prime}} \quad \text { and } \quad\left(g+g^{\prime}\right) \circ\left(f+f^{\prime}\right)=g \circ f+g^{\prime} \circ f^{\prime}
$$ where $g: B \rightarrow C$ and $g^{\prime}: B^{\prime} \rightarrow C^{\prime}$.

■ If $l: C \rightarrow D$ then $l \circ[f, g]=[l \circ f, l \circ g]$

More Examples

- \mathbb{F} The coproduct of n and m is $n+m$ where we interpret + as addition on \mathbb{N}.

■ \mathcal{F} If F and F^{\prime} are presheaves then $F+F^{\prime}$ is defined by

$$
\left(F+F^{\prime}\right) \xi \stackrel{\text { def }}{=}(F \xi)+\left(F^{\prime} \xi\right)
$$

for any object or morphism ξ in \mathbb{F}, and

$$
\mathfrak{l}_{F}: F+F^{\prime} \rightarrow F \quad\left(\mathfrak{l}_{F}\right)_{n} \stackrel{\text { def }}{=} \mathfrak{l}_{F n}:(F n)+\left(F^{\prime} n\right) \rightarrow F n
$$

Sometimes say + is defined pointwize.

Definition of Algebras

- Let $F: \mathcal{C} \rightarrow \mathcal{C}$. An algebra for the functor F is a pair $\left(A, \sigma_{A}\right)$ where $\sigma_{A}: F A \rightarrow A$.
- An initial F-algebra $\left(I, \sigma_{I}\right)$ is an algebra for which given any other $\left(A, \sigma_{A}\right)$,

Motivation for Initial Algebras

- (Some) Datatypes are initial algebras
- The datatype

$$
\operatorname{Exp}::=\mathrm{V} \mathbb{V}|\mathrm{~S} \operatorname{Exp}| \mathrm{A} \operatorname{Exp} \operatorname{Exp}
$$

is modeled by an object E such that

$$
E \cong \mathbb{V}+E+(E \times E)
$$

- We show how to solve \dagger in Set.

■ If $\Sigma: \operatorname{Set} \rightarrow$ Set is $\Sigma \xi \stackrel{\text { def }}{=} \mathbb{V}+\xi+(\xi \times \xi)$, then the solution we construct is an initial algebra $\left(\sigma_{E}, E\right)$.

An Initial Algebra for $1+(-):$ Set \longrightarrow Set

■ 1:Set \rightarrow Set is defined by

$$
f: A \rightarrow B \quad \mapsto \quad i d_{\{*\}}:\{*\} \rightarrow\{*\}
$$

■ $1+(-)$ is defined by

$$
f: A \rightarrow B \quad \mapsto \quad i d_{1}+f: 1+A \rightarrow 1+B
$$

■ The initial algebra is \mathbb{N} up to isomorphism.

■ We set $S_{0} \stackrel{\text { def }}{=} \varnothing$ and $S_{r+1} \stackrel{\text { def }}{=} 1+S_{r}$.

- Note there is an insertion $\mathrm{l}_{S_{r}}: S_{r} \rightarrow S_{r+1}$.

■ Note also that $i_{r}: S_{r} \hookrightarrow S_{r+1}$ where $i_{0} \stackrel{\text { def }}{=} \varnothing: S_{0} \rightarrow S_{1}$, and $i_{r+1} \stackrel{\text { def }}{=} i d_{1}+i_{r}$.

■ We also write $i_{r}^{\prime}: S_{r} \hookrightarrow T$ where $T \stackrel{\text { def }}{=} \cup_{r} S_{r}$

- T is the object part of an initial algebra for $1+(-)$.

■ As $\sigma_{T}: 1+T \rightarrow T$ then σ_{T} must be a copair.
■ We set $\sigma_{T} \stackrel{\text { def }}{=}\left[k, k^{\prime}\right]$ where $k: 1 \rightarrow T$ and $k^{\prime}: T \rightarrow T$

- Note that

$$
1 \xrightarrow{\mathfrak{l}_{1}} 1+\varnothing=S_{1} \xrightarrow{i_{1}^{\prime}} T
$$

and we set $k \stackrel{\text { def }}{=} i_{1}^{\prime} \circ \mathfrak{l}_{1}$.

- Note that

$$
S_{r} \xrightarrow{\mathfrak{v}_{S_{r}}} 1+S_{r}=S_{r+1} \xrightarrow{i_{r+1}^{\prime}} T
$$

and we set $k_{r}^{\prime} \stackrel{\text { def }}{=} i_{r+1}^{\prime} \circ \mathbf{l}_{S_{r}}$.

- In fact $k_{r+1}^{\prime} \circ i_{r}=k_{r}^{\prime}$ by induction on r.
- Hence can legitimately define $k^{\prime}: T \rightarrow T$ by setting $k^{\prime}(\xi) \stackrel{\text { def }}{=} k_{r}^{\prime}(\xi)$ for any r such that $\xi \in S_{r}$.
- We check initiality

$$
\begin{aligned}
& 1+T \xrightarrow{\sigma_{T}} T
\end{aligned}
$$

- We define a family of functions $\bar{f}_{r}: S_{r} \rightarrow A$

$$
\bar{f}_{0} \stackrel{\text { def }}{=} \varnothing: S_{0} \rightarrow A \quad \wedge \quad \bar{f}_{r+1} \stackrel{\text { def }}{=}\left[f \circ \mathfrak{l}_{1}, f \circ \mathbf{l}_{A} \circ \bar{f}_{r}\right]
$$

- In fact $\bar{f}_{r+1} \circ i_{r}=\bar{f}_{r}$.
- Hence we can legitimately define $\bar{f}: T \rightarrow A$ by $\bar{f}(\xi) \stackrel{\text { def }}{=} \bar{f}_{r}(\xi)$ for any r where $\xi \in S_{r}$.
- To check that the diagram commutes, we have to prove that

$$
\bar{f} \circ\left[k, k^{\prime}\right]=f \circ\left(i d_{1}+\bar{f}\right)
$$

- By the universal property of coproducts, this is equivalent to showing

$$
\left[\bar{f} \circ k, \bar{f} \circ k^{\prime}\right]=\left[f \circ \mathbf{1}_{1}, f \circ \mathfrak{l}_{A} \circ \bar{f}\right]
$$

which we can do by checking that the respective components are equal.

■ We give details for $\bar{f} \circ k^{\prime}=f \circ 1_{A} \circ \bar{f}$.

■ $\bar{f} \circ k^{\prime}=f \circ \mathfrak{l}_{A} \circ \bar{f}$. Take any element $\xi \in T$. Then we have

$$
\begin{aligned}
\bar{f}\left(k^{\prime}(\xi)\right) & =\bar{f}\left(\imath_{s_{r}}(\xi)\right) \\
& =\bar{f}_{r+1}\left(l_{s_{r}}(\xi)\right) \\
& =\left[f \circ \mathfrak{1}_{1}, f \circ \mathfrak{l}_{A} \circ \bar{f}_{r}\right]\left(\imath_{s_{r}}(\xi)\right) \\
& =f\left(\mathfrak{l}_{A}\left(\bar{f}_{r}(\xi)\right)\right) \\
& =f\left(\mathfrak{l}_{A}(\bar{f}(\xi))\right)
\end{aligned}
$$

The first equality is by definition of k^{\prime} and k_{r}^{\prime}; the second by definition of \bar{f}; the third by definition of \bar{f}_{r+1}.

■ You check that $T \cong N$.

Some Results for Use in Modelling Syntax

- Let F and F^{\prime} be two presheaves in \mathcal{F}. Suppose for any n in $\mathbb{F}, \quad F^{\prime} n \subset F n$, and

commutes for any $\rho: n \rightarrow n^{\prime}$.
- There is a natural transformation

$$
i: F^{\prime} \hookrightarrow F
$$

- We define

$$
\delta: \mathcal{F} \rightarrow \mathcal{F}
$$

Suppose that F is an object in \mathcal{F}. Then δF is defined by

$$
\rho: n \rightarrow n^{\prime} \quad \mapsto \quad F\left(\rho+i d_{1}\right): F(n+1) \longrightarrow F\left(n^{\prime}+1\right)
$$

■ If $\alpha: F \rightarrow F^{\prime}$ in \mathcal{F}, then the components of $\delta \alpha$ are given by

$$
(\delta \alpha)_{n} \stackrel{\text { def }}{=} \alpha_{n+1}
$$

- ($\left.S_{r} \mid r \geq 0\right)$ is a family of presheaves in \mathcal{F}, with $i_{r}: S_{r} \hookrightarrow S_{r+1}$. Then there is a union presheaf T in \mathcal{F}, such that $i_{r}^{\prime}: S_{r} \hookrightarrow T$. We sometimes write $\cup_{r} S_{r}$ for T.
- Let $\rho: n \rightarrow n^{\prime}$. Then

$$
T n \stackrel{\text { def }}{=} \bigcup_{r} S_{r} n
$$

and $T \rho: T n \rightarrow T n^{\prime}$ is defined by

$$
(T \rho)(\xi) \stackrel{\text { def }}{=}\left(S_{r} \rho\right)(\xi)
$$

where $\xi \in T n$, and $\xi \in S_{r}(n)$ for some r.

- Let $\left(\phi_{r}: S_{r} \rightarrow A \mid r \geq 0\right)$ be natural transformations in \mathcal{F}, the S_{r} as before, and such that $\phi_{r+1} \circ i_{r}=\phi_{r}$. Then there is a unique natural transformation

$$
\phi: T \rightarrow A
$$

such that $\phi \circ i_{r}^{\prime}=\phi_{r}$.

- The functions $\phi_{n}: T n \rightarrow A n$ defined by

$$
\phi_{n}(\xi) \stackrel{\text { def }}{=}\left(\phi_{r}\right)_{n}(\xi) \quad \xi \in S_{r} n
$$

yield the required natural transformation.

Syntax with Distinguished Variables and without Binding

- The set of expressions Exp is inductively defined by

$$
\operatorname{Exp}::=\mathrm{V} \mathbb{V}|\mathrm{~S} \operatorname{Exp}| \mathrm{A} \operatorname{Exp} \operatorname{Exp}
$$

■ v^{i} occurs in e is written $v^{i} \in e$.

- The set of (free) variables of any e is denoted by $f v(e)$.
- We will want to consider expressions e for which

$$
f v(e) \subset\left\{v^{0}, \ldots, v^{n-1}\right\}
$$

and we give an inductive definition of such expressions.

First we define inductively a set of judgements $\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{b}}} e$ where $n \geq 1, \Gamma^{n} \stackrel{\text { def }}{=} v^{0}, \ldots, v^{n-1}$ is a list, and of course e is an expression.

- We refer to Γ^{n} as an environment of variables.

$$
\frac{0 \leq i<n}{\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{~b}}} v^{i}} \quad \frac{\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{~b}}} e}{\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{~b}}} \mathrm{~S} e} \quad \frac{\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{~b}}} e \Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{~b}}} e^{\prime}}{\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{~b}}} \mathrm{~A} e e^{\prime}}
$$

- One can then prove by rule induction that if $\Gamma^{n} \vdash^{\mathrm{d} \overline{\mathrm{b}}} e$ then $f v(e) \subset \Gamma^{n}$. We prove by Rule Induction

$$
\left(\forall\left(\Gamma^{n}, e\right) \in \vdash^{\mathrm{d} \overline{\mathrm{~b}}}\right)\left(f v(e) \subset \Gamma^{n}\right)
$$

Syntax with Distinguished Variables and Binding

- Consider

$$
\operatorname{Exp}::=\mathrm{V} \mathbb{V}|\mathrm{~L} \mathbb{V} \operatorname{Exp}| \mathrm{E} \operatorname{Exp} \operatorname{Exp}
$$

- We inductively define a set of judgements $\Gamma^{n} \vdash^{\mathrm{db}} e$ where $n \geq 0$ and Γ^{0} is the empty list.

$$
\frac{0 \leq i<n}{\Gamma^{n} \vdash^{\mathrm{db}} v^{i}} \quad \frac{\Gamma^{n+1} \vdash^{\mathrm{db}} e}{\Gamma^{n} \vdash^{\mathrm{db}} \mathrm{~L} v^{n} e} \quad \frac{\Gamma^{n} \vdash^{\mathrm{db}} e \Gamma^{n} \vdash^{\mathrm{db}} e^{\prime}}{\Gamma^{n} \vdash^{\mathrm{db}} \mathrm{E} e e^{\prime}}
$$

- One can then prove by rule induction that if $\Gamma^{n} \vdash^{\mathrm{db}} e$ then $f v(e) \subset \Gamma^{n}$.
- Notice that the rule for introducing abstractions $L v^{n} e$ forces a distinguished choice of binding variable.
- The advantage of distinguished binding is that the expressions correspond exactly to the terms of the λ-calculus, without the need to define α-equivalence.
- In essence, we are forced to pick a representative of each α-equivalence class.

Syntax with Arbitrary Variables and Binding

■ Expressions are still defined by

$$
\operatorname{Exp}::=\mathrm{V} \mathbb{V}|\mathrm{~L} \mathbb{V} \operatorname{Exp}| \mathrm{E} \operatorname{Exp} \operatorname{Exp}
$$

■ Now let Δ range over all non-empty finite lists of variables which have distinct elements. Thus a typical non-empty Δ is $v^{1}, v^{8}, v^{100}, v^{2} \in[\mathbb{V}]$. Let x, y, \ldots range over \mathbb{V}.

■ Define $\Delta \vdash^{\text {ab }} e$ by

$$
\frac{x \in \Delta}{\Delta \vdash^{\mathrm{ab}} x} \quad \frac{\Delta, x \vdash^{\mathrm{ab}} e}{\Delta \vdash^{\mathrm{ab}} \mathrm{~L} x e} \quad \frac{\Delta \vdash^{\mathrm{ab}} e \quad \Delta \vdash^{\mathrm{ab}} e^{\prime}}{\Delta \vdash^{\mathrm{ab}} \mathrm{E} e e^{\prime}}
$$

- We define simultaneous substitution - used to define α-equivalence, and to construct mathematical models.
- We will define by recursion over expressions e, new expressions $e\{\varepsilon / \varepsilon\}$ and $e\left\{\Delta^{\prime} / \Delta\right\}$, where len $(\Delta)=\operatorname{len}\left(\Delta^{\prime}\right)$.
- For example,

$$
\left(\mathrm{L} v^{8}\left(\mathrm{~A} v^{10} v^{2}\right)\right)\left\{v^{3}, v^{8} / v^{8}, v^{2}\right\}=\mathrm{L} v^{11}\left(\mathrm{~A} v^{10} v^{8}\right)
$$

- We inductively define the relation \sim_{α} of α-equivalence
- Single axiom (schema) $\mathrm{L} x e \sim_{\alpha} \mathrm{L} x^{\prime} e\left\{x^{\prime} / x\right\}$ with $x^{\prime} \notin f v(e)$
- Rules such as

$$
\frac{e \sim_{\alpha} e^{\prime}}{\mathrm{L} x e \sim_{\alpha} \mathrm{L} x e^{\prime}}
$$

- Note that the terms of the λ-calculus are given by the

$$
[e]_{\alpha} \stackrel{\text { def }}{=}\left\{e^{\prime} \mid e^{\prime} \sim_{\alpha} e\right\}
$$

A Programme for Modelling Syntax

Step 1 define an abstract endofunctor $\Sigma_{\mathbb{V}}$ on $\mathcal{F} \stackrel{\text { def }}{=} \operatorname{Set}^{\mathbb{F}}$ (similar to the datatype in question);

Step 2 construct an initial algebra T for $\Sigma_{\mathbb{V}}$;
Step 3 show that the syntax yields a functor Exp: $\mathbb{F} \rightarrow$ Set;
Step 4 show that $T \cong \operatorname{Exp}$

Modelling Exp $::=\mathrm{V} \mathbb{V}|\mathrm{S} \operatorname{Exp}| \mathrm{A} \operatorname{Exp} \operatorname{Exp}$ Step 1

- First, we define the functor $\mathbb{V}: \mathbb{F} \rightarrow$ Set. Let $\rho: m \rightarrow n$ in \mathbb{F}. Then we set

$$
\mathbb{V} m \stackrel{\text { def }}{=}\left\{v^{0}, \ldots, v^{m-1}\right\} \quad \wedge \quad \mathbb{V} \rho\left(v^{i}\right) \stackrel{\text { def }}{=} v^{\rho i}
$$

■ Define a functor $\Sigma_{\mathbb{V}}: \operatorname{Set}^{\mathbb{F}} \rightarrow \operatorname{Set}^{\mathbb{F}}$ by setting

$$
\Sigma_{\mathbb{V}} \xi \stackrel{\text { def }}{=} \mathbb{V}+\xi+\xi^{2}
$$

Step 2

- $T \stackrel{\text { def }}{=} \bigcup_{r} S_{r}$.

■ $S_{0} \stackrel{\text { def }}{=} \varnothing$, the empty presheaf, and

$$
S_{r+1} \stackrel{\text { def }}{=} \Sigma_{\mathbb{V}} S_{r}=\mathbb{V}+S_{r}+S_{r}^{2}
$$

■ Need to check $i_{r}: S_{r} \hookrightarrow S_{r+1}$ for all $r \geq 0$. We use induction over r.
\square It is immediate that $i_{0}: S_{0} \hookrightarrow S_{1}$.
\square Now suppose that $i_{r}: S_{r} \hookrightarrow S_{r+1}$. We are required to show that $i_{r+1}: S_{r+1} \hookrightarrow S_{r+2}$, that is,

$$
\begin{array}{ccc}
\mathbb{V} n+S_{r} n+\left(S_{r} n\right)^{2} & \subset & \mathbb{V} n+S_{r+1} n+\left(S_{r+1} n\right)^{2} \\
\mathbb{V} \rho+S_{r} \rho+\left(S_{r} \rho\right)^{2} \mid & & \\
\mathbb{V} n^{\prime}+S_{r} n^{\prime}+\left(S_{r} n^{\prime}\right)^{2} & \subset & \mathbb{V} n^{\prime}+S_{r+1} n^{\prime}+\left(S_{r+1} n^{\prime}\right)^{2}
\end{array}
$$

■ $\Sigma_{\mathbb{V}} i_{r}=i d_{\mathbb{V}}+i_{r}+i_{r}^{2}$. Thus we have $i_{r+1}=\Sigma_{\mathbb{V}} i_{r}$.

■ We define the structure map $\sigma_{T} \stackrel{\text { def }}{=}\left[\kappa, \kappa^{\prime}, \kappa^{\prime \prime}\right]: \mathbb{V}+T+T^{2} \rightarrow T$
■ $S_{1}=\mathbb{V}+\varnothing+\varnothing^{2}$, and so $S_{1} n=\mathbb{V} n \times\{1\}$. Therefore $\mathbb{V} \cong S_{1}$, so that $\kappa: \mathbb{V} \cong S_{1} \hookrightarrow T$.

- We define κ^{\prime} by

$$
\mathcal{K}_{r}^{\prime}: S_{r} \xrightarrow{\mathrm{l}_{r}} \mathbb{V}+S_{r}+S_{r}^{2}=S_{r+1} \hookrightarrow T
$$

■ We check initiality

$$
\begin{array}{ccc}
\mathbb{V}+T+T^{2} & \xrightarrow{\sigma_{T}} & T \\
\mathbb{V}+\bar{\alpha}+\bar{\alpha}^{2} \mid & (*) & \mid \bar{\alpha} \\
\mathbb{V}+A+A^{2} \xrightarrow{\alpha} & { }^{2} & A
\end{array}
$$

■ To define $\bar{\alpha}: T \rightarrow A$ we specify a family $\bar{\alpha}_{r}: S_{r} \rightarrow A$.
■ Please see the notes; the details are similar in principle to the corresponding ones for initiality of $\sigma_{T}: 1+T \cong T$ given in the third lecture.

Step 3

■ Suppose that $\rho: n \rightarrow n^{\prime}$ is any function. We define

$$
\operatorname{Exp}_{\mathrm{db}} \xlongequal{\text { def }}\left\{e \mid \Gamma^{n} \vdash^{\mathrm{db}} e\right\}
$$

■ We can define $\left(\operatorname{Exp}_{\text {बб }} \rho\right) e$ by recursion over e, by setting

- $\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right)\left(\mathrm{V} v^{i}\right) \stackrel{\text { def }}{=} \mathrm{V} \rho i$
- $\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right)(\mathrm{S} e) \stackrel{\text { def }}{=} \mathrm{S}\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right) e$
- $\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right)\left(\mathrm{A} e e^{\prime}\right) \stackrel{\text { def }}{=} \mathrm{A}\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right) e\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right) e^{\prime}$
- ... and then showing that if $e \in \operatorname{Exp}_{\mathrm{db}} n$, then $\left(\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rho\right) e \in \operatorname{Exp}_{\mathrm{d}} n^{\prime}$.
- Thus we have a function

$$
\operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}} \rho: \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}} n \rightarrow \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}} n^{\prime}
$$

for any $\rho: n \rightarrow n^{\prime}$.

- Note that there are natural transformations

$$
\mathrm{S}: \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}} \rightarrow \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}} \quad \wedge \quad \mathrm{~A}: \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}}^{2} \rightarrow \operatorname{Exp}_{\overline{\mathrm{d}} \overline{\mathrm{~b}}}
$$

Step 4

■ We now show that $T \cong \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}}$ in \mathcal{F}

- We define $\phi: T \rightarrow \operatorname{Exp}_{\mathrm{d} \bar{b}}$ and $\psi: \operatorname{Exp}_{\mathrm{db}} \rightarrow T$, such that

$$
\phi_{n}: T n \cong \operatorname{Exp}_{\mathrm{db}} n: \psi_{n}
$$

■ To specify $\phi: T \rightarrow \operatorname{Exp}_{\mathrm{d}}$ define a family $\phi_{r}: S_{r} \rightarrow \operatorname{Exp}_{\mathrm{db}}$.

- $\phi_{0}: S_{0}=\varnothing \rightarrow \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}}$ has components $\left(\phi_{0}\right)_{n}: \varnothing \rightarrow \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} n$
- Recursively we define

$$
\phi_{r+1} \stackrel{\text { def }}{=}\left[\mathrm{V}, \mathrm{~S} \circ \phi_{r}, \mathrm{~A} \circ \phi_{r}^{2}\right]: S_{r+1}=\mathbb{V}+S_{r}+S_{r}^{2} \rightarrow \operatorname{Exp}_{\mathrm{db}}
$$

■ To specify $\psi: \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{b}}} \rightarrow T$, for any n in \mathbb{F} we define functions

$$
\psi_{n}: \operatorname{Exp}_{\mathrm{d} \overline{\mathrm{~b}}} n \rightarrow \operatorname{Tn}
$$

as follows.

- $\psi_{n}\left(\mathrm{~V} v^{i}\right) \stackrel{\text { def }}{=}\left(v^{i}, 1\right) \in S_{1} n$
- $\psi_{n}(S e) \stackrel{\text { def }}{=}{v_{S_{r} n}}\left(\psi_{n}(e)\right)$ where $r \geq 1$ is the height of the deduction of $S e$
- $\psi_{n}\left(\mathrm{~A} e e^{\prime}\right) \stackrel{\text { def }}{=} \mathrm{v}_{\left(S_{r} n\right)^{2}}\left(\left(\psi_{n}(e), \psi_{n}\left(e^{\prime}\right)\right)\right)$ where $r \geq 1$ is the height of the deduction of A $e e^{\prime}$.

We next check that for any n in \mathbb{F},

$$
\operatorname{Tn} \underset{\psi_{n}}{\stackrel{\phi_{n}}{\cong}} \operatorname{Exp}_{\mathrm{d} \mathrm{\bar{b}}} n
$$

Modelling Exp $::=\mathrm{V} \mathbb{V}|\mathrm{L} \mathbb{V} \operatorname{Exp}| \mathrm{E} \operatorname{Exp} \operatorname{Exp}$
 Case $\Gamma^{n} \vdash^{\mathrm{db}} e$ with Distinguished Binding

- Step 1 The abstract endofunctor $\Sigma_{\mathbb{V}}: \mathcal{F} \rightarrow \mathcal{F}$ is

$$
\Sigma_{\mathbb{V}} \xi \stackrel{\text { def }}{=} \mathbb{V}+\delta \xi+\xi^{2}
$$

Motto: Any constructor with 1 argument and which binds b variables is modelled by $\delta^{b} \xi$. Thus

$$
\text { Split } P \text { as }\langle x, y\rangle \text { in } E
$$

would be modelled by $\xi \mapsto \xi \times \delta \delta \xi$

- Step 2 We can show that the functor $\Sigma_{\mathbb{V}}$ has an initial algebra $\sigma_{T}: \Sigma_{\mathbb{V}} T \rightarrow T$, by adapting the previous methods.
- Have to define

$$
\sigma_{T} \stackrel{\text { def }}{=}\left[\kappa, \kappa^{\prime}, \kappa^{\prime \prime}\right] \stackrel{\text { def }}{=} \mathbb{V}+\delta T+T \times T \rightarrow T
$$

via

$$
\kappa_{r}^{\prime}: \delta S_{r} \xrightarrow{\mathbf{1}_{S_{r}}} \mathbb{V}+\delta S_{r}+S_{r}^{2}=S_{r+1} \hookrightarrow T
$$

as

$$
(\delta T) n \stackrel{\text { def }}{=} T(n+1)=\bigcup_{r} S_{r}(n+1)=\bigcup_{r}\left(\delta S_{r}\right) n=\left(\bigcup_{r} \delta S_{r}\right) n
$$

- Step 3 Suppose $\rho: n \rightarrow n^{\prime}$. Define

$$
\operatorname{Exp}_{\mathrm{db}} n \xlongequal{\text { def }}\left\{e \mid \Gamma^{n} \vdash^{\mathrm{db}} e\right\}
$$

■ Let $\rho\left\{n^{\prime} / n\right\}: n+1 \rightarrow n^{\prime}+1$ be

$$
\rho\left\{n^{\prime} / n\right\}(j) \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\rho(j) \quad \text { if } \quad 0 \leq j \leq n-1 \\
n^{\prime} \quad \text { if } \quad j=n
\end{array}\right.
$$

Consider

- $\left(\operatorname{Exp}_{\text {db }} \rho\right)\left(\mathrm{L} v^{n} e\right) \stackrel{\text { def }}{=} \mathrm{L} v^{n^{\prime}}\left(\operatorname{Exp}_{\mathrm{db}} \rho\left\{n^{\prime} / n\right\}\right)(e)$ and
- $\left(\operatorname{Exp}_{\mathrm{db}} \rho\right)\left(E e e^{\prime}\right) \stackrel{\text { def }}{=} \mathrm{E}\left(\left(\operatorname{Exp}_{\mathrm{db}} \rho\right) e\right)\left(\left(\operatorname{Exp}_{\mathrm{db}} \rho\right) e^{\prime}\right)$

■ If $\Gamma^{n} \vdash^{\mathrm{db}} e$ and $\rho: n \rightarrow n^{\prime}$, then $\Gamma^{n^{\prime}} \vdash^{\mathrm{db}}\left(\operatorname{Exp}_{\mathrm{db}} \rho\right) e$ yielding a functor $E x p_{\mathrm{db}}$ in \mathcal{F}.

■ There are natural transformations

$$
\mathrm{L}: \delta \operatorname{Exp}_{\mathrm{db}} \rightarrow \operatorname{Exp} \quad \wedge \quad \mathrm{E}: \operatorname{Exp}^{2} \rightarrow \operatorname{Exp}
$$

■ The components are functions

$$
\mathrm{L}_{n}: \operatorname{Exp}_{\mathrm{db}}(n+1) \rightarrow \operatorname{Exp}_{\mathrm{db}} n \quad \mapsto \quad e \mapsto \mathrm{~L} v^{n} e
$$

- Naturality is

$$
\begin{gathered}
\left(\delta \operatorname{Exp}_{\mathrm{db}}\right) n=\operatorname{Exp}_{\mathrm{db}}(n+1) \xrightarrow{\mathrm{L}_{n}} \operatorname{Exp}_{\mathrm{db}} n \\
\left(\delta \operatorname{Exp}_{\mathrm{db}}\right) \rho=\operatorname{Exp}_{\mathrm{db}}\left(\rho+i d_{1}\right) \mid \\
\left(\delta \operatorname{Exp}_{\mathrm{db}}\right) n^{\prime}=\operatorname{Exp}_{\mathrm{db}}\left(n^{\prime}+1\right) \xrightarrow[\mathrm{L}_{n^{\prime}}]{\longrightarrow} \operatorname{Exp}_{\mathrm{db}} n^{\prime}
\end{gathered}
$$

- Note that at the element e, this requires that

$$
\mathrm{L} v^{n^{\prime}}\left(\operatorname{Exp}_{\mathrm{db}} \rho\left\{n^{\prime} / n\right\}\right) e=\mathrm{L} v^{n^{\prime}}\left(\left(\operatorname{Exp}_{\mathrm{db}}\left(\rho+i d_{1}\right)\right) e\right)
$$

■ This equality holds if and only if

$$
\rho\left\{n^{\prime} / n\right\}=\rho+i d_{1}
$$

- ... which is true if and only if in \mathbb{F}

$$
\mathfrak{l}_{1}: 1 \rightarrow m+1 \quad * \mapsto m \quad \mathfrak{l}_{m}: m \rightarrow m+1 \quad i \mapsto \rho i
$$

- Step 4 A routine calculation that $T \cong \operatorname{Exp}_{\mathrm{db}}$

Modelling Exp $::=\mathrm{V} \mathbb{V}|\mathrm{L} \mathbb{V} \operatorname{Exp}| \mathrm{E} \operatorname{Exp} \operatorname{Exp}$

Case $\Delta \vdash^{\mathrm{ab}} e$ with Arbitrary Binding

- Step 1 The abstract endofunctor $\Sigma_{\mathbb{V}}: \mathcal{F} \rightarrow \mathcal{F}$ is

$$
\Sigma_{\mathbb{V}} \xi \stackrel{\text { def }}{=} \mathbb{V}+\delta \xi+\xi^{2}
$$

Note: The functor is the SAME as before

- Step 2 Thus solving for the initial algebra is the same as before!
- Step 3 We define $\operatorname{Exp}_{\mathrm{ab}}$. For n in \mathbb{F} we set

$$
\operatorname{Exp}_{\mathrm{ab}} n \stackrel{\text { def }}{=}\left\{[e]_{\alpha} \mid \Gamma^{n} \vdash^{\mathrm{ab}} e\right\}
$$

- Now let $\rho: n \rightarrow n^{\prime}$. We define

$$
\left(\operatorname{Exp}_{\mathrm{ab}} \rho\right)\left([e]_{\alpha}\right) \stackrel{\text { def }}{=}\left[e\left\{v^{\rho 0}, \ldots, v^{\rho(n-1)} / v^{0}, \ldots, v^{n-1}\right\}\right]_{\alpha}
$$

■ One has to check that this is well defined ... see the notes.

- Step 4 Note that current Step 2 was same as before. Rather than prove $E_{x p} \cong T$ as a final step, we could in fact make use of the previous work, which proved that $E x p_{\mathrm{db}} \cong T$. Thus we omit Step 2, and instead show

$$
\phi: \operatorname{Exp}_{\mathrm{ab}} \cong \operatorname{Exp}_{\mathrm{db}}: \psi
$$

- The components of ψ are functions $\psi_{n}: \operatorname{Exp}_{\mathrm{db}} n \rightarrow \operatorname{Exp}_{\mathrm{ab}} n$ given by $\psi_{n}(e) \stackrel{\text { def }}{=}[e]_{\alpha}$.
- We consider the naturality of ψ at a morphism $\rho: n \rightarrow n^{\prime}$, computed at an element ξ of $\operatorname{Exp}_{\mathrm{db}} n$. We show naturality for the case $\xi=\mathrm{L} v^{n} e$.

$$
\begin{aligned}
\left(\operatorname{Exp}_{\mathrm{ab}} \rho\right) \circ \psi_{n}(\xi) & =\left(\operatorname{Exp}_{\mathrm{ab}} \rho\right)\left[\mathrm{L} v^{n} e\right]_{\alpha} \\
& =\left[\left(\mathrm{L} v^{n} e\right)\left\{v^{\rho 0}, \ldots, \nu^{\rho(n-1)} / v^{0}, \ldots, v^{n-1}\right\}\right]_{\alpha} \\
& \stackrel{\text { def }}{=} \square
\end{aligned}
$$

Let us consider the case when renaming takes place.
■ Suppose that there is a j for which $\rho(j)=n$ and $v^{j} \in f v(e)$.

Then
$\left(L v^{n} e\right)\left\{v^{\rho(0)}, \ldots, \nu^{\rho(n-1)} / v^{0}, \ldots, v^{n-1}\right\}=$

$$
\mathrm{L} v^{w} e\left\{v^{\rho(0)}, \ldots v^{\rho(n-1)}, v^{w} / v^{0}, \ldots, v^{n-1}, v^{n}\right\}
$$

- $w=1+\operatorname{MaxIndex}(e ; \rho(0), \ldots, \rho(n-1))$ thus $\rho(i)<w$ for all $0 \leq i \leq n-1$.
- But $f v(e) \subset v^{0}, \ldots, v^{n}$ and $n=\rho(j) \in \rho(0), \ldots, \rho(n-1)$.
- Also $\rho(i)<n^{\prime}$, and so we must have $w \leq n^{\prime}$.
- If $w<n^{\prime}$, then $v^{n^{\prime}}$ is not free in
$e\left\{\nu^{\rho(0)}, \ldots \nu^{\rho(n-1)}, \nu^{w} / \nu^{0}, \ldots, \nu^{n-1}, \nu^{n}\right\}$ and otherwise $w=n^{\prime}$.

Either way (why!?),

$$
\begin{aligned}
& L v^{w} e\left\{v^{\rho(0)}, \ldots v^{\rho(n-1)}, v^{w} / v^{0}, \ldots, v^{n-1}, v^{n}\right\} \\
& \quad \sim_{\alpha} L v^{n^{\prime}} e\left\{v^{\rho(0)}, \ldots v^{\rho(n-1)}, v^{n^{\prime}} / v^{0}, \ldots, v^{n-1}, v^{n}\right\}
\end{aligned}
$$

and so

$$
\begin{aligned}
\square & =\left[L v^{n^{\prime}} e\left\{v^{\rho 0}, \ldots, v^{\rho(n-1)}, v^{n^{\prime}} / v^{0}, \ldots, v^{n-1}, v^{n}\right\}\right]_{\alpha} \\
& =\left[L v^{n^{\prime}}\left(\operatorname{Exp}_{\mathrm{db}} \rho\left\{n^{\prime} / n\right\}\right) e\right]_{\alpha} \\
& =\psi_{n^{\prime}} \circ\left(\operatorname{Exp}_{\mathrm{db}} \rho\right)(\xi)
\end{aligned}
$$

■ Next we define ϕ_{n} : $\operatorname{Exp}_{\mathrm{ab}} n \rightarrow \operatorname{Exp}_{\mathrm{db}} n$ by setting $\phi_{n}\left([e]_{\alpha}\right) \stackrel{\text { def }}{=} R^{n}(e)$ where

- $R^{m}(\mathrm{~V} x) \stackrel{\text { def }}{=} \mathrm{V} x$
- $R^{m}(\mathrm{~L} x e) \stackrel{\text { def }}{=} \mathrm{L} v^{m} R^{m+1}\left(e\left\{v^{m} / x\right\}\right)$
- $R^{m}\left(\mathrm{E} e e^{\prime}\right) \stackrel{\text { def }}{=} \mathrm{E} R^{m}(e) R^{m}\left(e^{\prime}\right)$
- This is best understood by a simple example ...
- The verification that

$$
\phi: \operatorname{Exp}_{\mathrm{ab}} \cong \operatorname{Exp}_{\mathrm{db}}: \psi
$$

is omitted from the lectures. See the notes.

$$
\begin{aligned}
& R^{3}\left(\mathrm{~L} v^{7}\left(\mathrm{~L} v^{3}\left(\mathrm{E} v^{7}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{6}\left(\mathrm{E} v^{2} v^{3}\right)\right)\right)\right)\right)\right. \\
& =\mathrm{L} v^{3} R^{4}\left(\mathrm{~L} v^{3}\left(\mathrm{E} v^{7}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{6}\left(\mathrm{E} v^{2} v^{3}\right)\right)\right)\right)\right)\left\{v^{3} / v^{7}\right\} \\
& =\mathrm{L} v^{3} R^{4}\left(\mathrm{~L} v^{8}\left(\mathrm{E} v^{3}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{6}\left(\mathrm{E} v^{2} v^{8}\right)\right)\right)\right)\right. \\
& =\mathrm{L} v^{3}\left(\mathrm{~L} v^{4} R^{5}\left(\mathrm{E} v^{3}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{6}\left(\mathrm{E} v^{2} v^{8}\right)\right)\right)\right)\left\{v^{4} / v^{8}\right\}\right) \\
& =\mathrm{L} v^{3}\left(\mathrm{~L} v^{4}\left(\mathrm{E} v^{3}\left(\mathrm{E} v^{0}\left(R^{5} \mathrm{~L} v^{6}\left(\mathrm{E} v^{2} v^{4}\right)\right)\right)\right)\right) \\
& =\mathrm{L} v^{3}\left(\mathrm{~L} v^{4}\left(\mathrm{E} v^{3}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{5} R^{5}\left(\mathrm{E} v^{2} v^{4}\right)\left\{v^{5} v^{6}\right\}\right)\right)\right)\right. \\
& =\mathrm{L} v^{3}\left(\mathrm{~L} v^{4}\left(\mathrm{E} v^{3}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{5}\left(R^{5}\left(\mathrm{E} v^{2} v^{3}\right)\right)\right)\right)\right)\right. \\
& =\mathrm{L} v^{3}\left(\mathrm{~L} v^{4}\left(\mathrm{E} v^{3}\left(\mathrm{E} v^{0}\left(\mathrm{~L} v^{5}\left(\mathrm{E} v^{2} v^{4}\right)\right)\right)\right)\right)
\end{aligned}
$$

Where to Now? You might

■ learn more Category Theory;
■ learn more Type Theory;
■ learn more Categorical Type Theory;

- spend some time trying to understand the key problems and issues concerning modelling and reasoning about binding syntax; and
- read the current research literature on modelling and implementing binding syntax.

