
Summer School on Generic Programming 2002, Oxford, UK 1�
�

�
�

General Aims
� To teach basics of category theory.

� Study categorical models of programming language syntax

with binding.

� We only cover the category theory we need.

� Some categorical machinery is simplified – you read the

abstract stuff after these lectures.

� We study syntax by examples – not the general theory.

� Syntax with binding is a hot research topic . . .

Summer School on Generic Programming 2002, Oxford, UK 2�
�

�
�

Basics of Algebraic and Binding Syntax

See OHP for Examples
� Algebraic syntax specified by constructor symbols �i.

� Each symbol has an arity a � � .

� These generate (finite) expressions such as

�3 e0 � � � ea�1

� . . . from datatypes of the form

�������� Exp � � � � �3 Exp � � � Exp
� �� �

length a

� � �

Summer School on Generic Programming 2002, Oxford, UK 3�
�

�
�

� Binding syntax subsumes algebraic syntax.
� Binding syntax is specified by constructor symbols �

� Each symbol has arity a � � and a binding depth
b�i� � � for 0� i� a�1

� These generate (finite) expressions such as

� �v0� � � � vb�0��1� e0� � � � �v0� � � � vb�a�1��1� ea�1�

� . . . from datatypes of the form

�������� Exp � � � � � � � ��� � � � � � �

� �� �

length b�i�

Exp� � � �

� �� �

length a

� � �

Summer School on Generic Programming 2002, Oxford, UK 4�
�

�
�

Learning Outcomes: You Should
� know how examples of programming language syntax with

binding can be specified inductively;

� be able to define basic categorical structures;

� know, by example, how to compute simple initial algebras;

� understand simple abstract models of syntax and know how

to manufacture categorical models from syntax;

� be able to prove these models are essentially the same;

� understand current issues concerning variable binding and

read the literature.

Summer School on Generic Programming 2002, Oxford, UK 5�
�

�
�

Definition of a Category

A category C is specified by:

� A collection ob C of objects; A, B, C � � �

� A collection mor C of morphisms; f , g, h � � �

� For each f a source src� f � in ob C and a target tar� f �

in ob C . Write

f :src� f ��� tar� f � or f :A � B

Summer School on Generic Programming 2002, Oxford, UK 6�
�

�
�

� f and g composable if tar� f � � src�g�.
� If f :A� B and g:B�C then there is gÆ f :A�C, called the

composition.

� For any object A there is an identity morphism idA:A� A.

For any f

idtar� f � Æ f � f

f Æ idsrc� f � � f

� Æ is associative: given f :A� B, g:B�C and h:C � D,

�hÆg�Æ f � hÆ �gÆ f �

Summer School on Generic Programming 2002, Oxford, UK 7�
�

�
�

Examples of Categories
� Consider Exp ::� � � � 	 Exp �
 Exp Exp with typical

elements

� v0 � v45
 �	 �� v3�� �� v2�

� There is a category with typical morphisms

6

�� v4� � v2� � v1� 	 �� v5� �
� 4

2

�
 �
 v0 v0� v1�
 v1 v0�
 v0 �	 v0� �
� 3

Summer School on Generic Programming 2002, Oxford, UK 8�
�

�
�

If

1

�	 v0�
 v0 v0 �
� 2

�
 �
 v0 v1� v1�
 v1 v0�
 v0 �	 v1� �
� 3

the composition is

1

�
 �
 �	 v0� �
 v0 v0�� �
 v0 v0��

 �
 v0 v0� �	 v0��

 �	 v0� �	 �
 v0 v0���

� 3

Summer School on Generic Programming 2002, Oxford, UK 9�
�

�
�

Set
� The objects are sets.

� Morphisms are triples �A� f �B� where f � A�B is a

graph of a function:
��a � A��	!b � B���a�b� � f �

� Composition is given by

�B�g�C�Æ �A� f �B�
def

� �A�gÆ f �C�

� idA is �A� id�A�.

Summer School on Generic Programming 2002, Oxford, UK 10�
�

�
�

�X ���

� �X ��� is a preordered set: � is reflexive and transitive.

� The collection of objects is the set X .

� The collection of morphisms is the set �. Typical

morphism �x�x��.

� Composition is given by �y�z�Æ �x�y�

def

� �x�z�.

� idx
def

� �x�x�.

Summer School on Generic Programming 2002, Oxford, UK 11�
�

�
�

Preset
� The objects are the preordered sets.

� The morphisms are the monotone functions.

A morphism �X ��X��� �Y��Y � is specified by a

function f :X � Y such that

x�X x� �
 f �x��Y f �x��

Summer School on Generic Programming 2002, Oxford, UK 12�
�

�
�

�

� The set of objects of � is � .

� We regard n � � as the set �0� � � � �n�1 for n� 1, and

0 is the empty set �.

� A morphism ρ:n� n� is any set-theoretic function.

Summer School on Generic Programming 2002, Oxford, UK 13�
�

�
�

Isomorphisms and Equivalences
� A morphism f :A� B is an isomorphism if there is

some g:B� A for which

f Æg � idB � gÆ f � idA

� We say g is an inverse for f and vise versa.

� We say A is isomorphic to B,

f : A�� B : g

if such a mutually inverse pair of morphisms exists.

� f and g witness the isomorphism.

Summer School on Generic Programming 2002, Oxford, UK 14�
�

�
�

Examples of Isomorphisms
� Bijections in Set are isomorphisms.

� In �X ���

� if � is a partial order, the only isomorphisms are the

identities, or

� if � is a preorder and x�y � X we have x �� y iff x� y

and y� x, with only one witness:

�x�y� : x�� y : �y�x�

Summer School on Generic Programming 2002, Oxford, UK 15�
�

�
�

Definition of a Functor

A functor F :C �D is specified by

� assigning an object FA in D to any object A in C � and

� assigning a morphism F f :FA � FB in D, to any

morphism f :A� B in C ,

for which

� F�idA� � idFA

� F�gÆ f � � FgÆF f

Summer School on Generic Programming 2002, Oxford, UK 16�
�

�
�

An Example of a Functor

Define F :Set � Set by

� FA
def

� �A �, the finite lists over A

� F f
def

� map� f � where

map� f �: �A �� �B � is defined by

map� f ��as�

def

� case as of

ε� ε

�a0� � � � �al�1�� � f �a0�� � � � � f �al�1��

Summer School on Generic Programming 2002, Oxford, UK 17�
�

�
�

To see that F�gÆ f � � FgÆF f note that

F�gÆ f ���a0� � � � �al�1��

def

� map�gÆ f ���a0� � � � �al�1��

� �g� f �a0��� � � � �g� f �al�1���

� map�g��� f �a0�� � � � � f �al�1���

� map�g��map� f ���a0� � � � �al�1���

� FgÆF f ��a0� � � � �al�1���

Summer School on Generic Programming 2002, Oxford, UK 18�
�

�
�

More Examples
� The functors between two preorders A and B are

precisely the monotone functions from A to B.

� We can define a functor P :Set � Set by setting

f :A� B �� P f :P �A�� P �B��

where the function P f is defined by

P f �A��

def

� � f �a� � B � a � A�

where A� � P �A�.

Summer School on Generic Programming 2002, Oxford, UK 19�
�

�
�

Definition of a Natural Transformation

Let F�G:C �D be functors. Then a natural
transformation

α:F � G is � αA:FA � GA � A in ob C �

such that for any f :A� B in C ,

FA
αA

� GA

FB

F f

�

αB

� GB

G f

�

Summer School on Generic Programming 2002, Oxford, UK 20�
�

�
�

An Example of a Natural Transformation
� Recall F :Set� Set where FA
def

� �A � and F f
def

� map� f �.

� There is a natural transformation rev:F � F with

components revA: �A �� �A � defined by

revA�as�

def

� case as of

��
�

ε� ε

�a0� � � � �al�1 �� �al�1� � � � �a0�

� Naturality is

F f Æ revA��a0� � � � �al�1�� � � f �al�1�� � � � � f �a0��

� revB ÆF f ��a0� � � � �al�1��

Summer School on Generic Programming 2002, Oxford, UK 21�
�

�
�

Another Example
� Define FX :Set � Set by

– FX�A�

def

� �X � A��X

– FX� f �:�X � A��X �� �X � B��X where

�g�x� �� � f Æg�x�

� Then ev:FX � idSet defined by evA�g�x�

def

� g�x� is natural

�idSet� f �Æ evA��g�x� � f �g�x��

� evB� f Æg�x�

� evB�FX� f ��g�x��

� �evB ÆFX � f ���g�x��

Summer School on Generic Programming 2002, Oxford, UK 22�
�

�
�

Definition of Functor Category
� Let F , G, H be functors C �D and α:F � G and

β:G� H be natural transformations.

� Define βÆα:F � H by

�βÆα�A
def

� βA ÆαA

� Then DC is the functor category of C and D, where

� objects are functors C �D,

� morphisms are natural trans α:F � G:C �D

Summer School on Generic Programming 2002, Oxford, UK 23�
�

�
�

� An isomorphism in a functor category is referred to

as a natural isomorphism.

� If there is a natural isomorphism between the
functors F and G, then we say that F and G are naturally

isomorphic, written

φ:F �� G:ψ

with witnesses the natural transformations φ and ψ.

Summer School on Generic Programming 2002, Oxford, UK 24�
�

�
�

Motivating Binary Products

(Property Φ�P�)

� Given any two sets A and B,

� there are functions π:P� A, π�:P� B such that:

given any f :C � A, g:C � B there is a unique h:C � P s.t.

C

�

f g

�

A �

π
P

	!h
�

π�
� B

Summer School on Generic Programming 2002, Oxford, UK 25�
�

�
�

� Suppose that A
def

� �a�b� and B
def

� �c�d�e�.

�
� Let P be A�B

def

� ��x�y� � x 	 A�y 	 B� and

� π and π� be coordinate projections.

� Let f :C � A and g:C � B be any two functions. Define

h:C � P z �� � f �z��g�z��

� We can check (Property Φ�P�) . . .

Summer School on Generic Programming 2002, Oxford, UK 26�
�

�
�

� Now define P� def

� �1�2�3�4�5�6 and
� p:P� � A and q:P� � B where

p�1�� p�2�� p�3� � a q�1�� q�4� � c

p�4�� p�5�� p�6� � b q�2�� q�5� � d

q�3�� q�6� � e

� We can check (Property Φ�P��) . . .

� . . . the required function h:C � P� exists and is
unique: for example, x �C and f �x� � a and g�x� � d

forces h�x� � 2

� Note P� �� ��a�c���a�d���a�e���b�c���b�d���b�e� � P

Summer School on Generic Programming 2002, Oxford, UK 27�
�

�
�

Definition of Binary Products

A binary product of objects A and B in a category C is
specified by

� an object A�B of C , together with

� two projection morphisms πA:A�B� A and
πB:A�B� B,

for which given any object C and morphisms f :C � A,

g:C � B, there is a unique morphism � f �g�:C � A�B for
which πA Æ � f �g�� f and πB Æ � f �g�� g.

Summer School on Generic Programming 2002, Oxford, UK 28�
�

�
�

� Diagrams are helpful

C

�

f g

�

A �
πA

A�B

	! � f �g�
�

πB

� B

� The unique morphism � f �g�:C � A�B is called the

mediating morphism

Summer School on Generic Programming 2002, Oxford, UK 29�
�

�
�

� A property involving existence of a unique morphism
leading to a structure determined up to isomorphism is a

universal property.

� Call � f �g� the pair of f and g.

� C has binary products if there is A�B for any A and B

�
� C has specified binary products if there is a

canonical choice.

� In Set take A�B
def

� � �a�b� � a � A�b � B with

standard projections.

Summer School on Generic Programming 2002, Oxford, UK 30�
�

�
�

Examples of Binary Products
� Preset Given A

def

� �X �
X � and B
def

� �Y�
Y �,

A�B
def

� �X �Y�
X�Y �

where X�Y is cartesian product, and

�x�y�
X�Y �x��y�� �� x
X x� y
Y y�

The projection

πA:�X �Y�
X�Y ��� �X �
X�

is given by �x�y� �� x, and is monotone

Summer School on Generic Programming 2002, Oxford, UK 31�
�

�
�

� Part Given A and B,

P
def

� �A�B�� �A���A�� �B���B�

� πA:�A�B�� �A���A�� �B���B ��� A

is undefined on B���B , πB on A���A

� πA�a��A� � a for all a � A, . . .

� � The product of n and m is written n�m and is given

by n�m, that is, the set �0� � � � ��n�m��1.

Summer School on Generic Programming 2002, Oxford, UK 32�
�

�
�

Additional Notation
� Can define A�B�C and � f �g�h�

� Take f :A� B and f �:A� � B�. We write

f � f �
def

� � f Æπ� f � Æπ�� : A�A�� B�B�

� Universal property means

idA� idA� � idA�A� and �g�g��Æ � f � f �� � gÆ f �g� Æ f �

where g:B�C and g�:B��C�.

� Write A2 or f 2 for A�A and f � f

Summer School on Generic Programming 2002, Oxford, UK 33�
�

�
�

Another Example – Presheaves on �

F def

� Set� If F and F � are presheaves, F�F �:� � Set

defined by

�F�F ���n�

def

� �Fn�� �F �n�

for n in � and if ρ:n � n�

�F�F ���ρ� def
� �Fρ�� �F �ρ�

Also

πF :F�F �� F �πF�n
def

� πFn

Summer School on Generic Programming 2002, Oxford, UK 34�
�

�
�

Definition of Binary Coproducts

A binary coproduct of A and B is specified by
� an object A�B, together with

� two insertion morphisms ιA:A� A�B and

ιB:B� A�B,

such that there is a unique � f �g� for which

A
ιA

� A�B �

ιB
B

f

� �

g

C

� f �g�
�

for all such f and g

Summer School on Generic Programming 2002, Oxford, UK 35�
�

�
�

Example of Binary Coproducts
� Set For sets A and B define

A�B
def

� �A��1�� �B��2�

and

ιA : A� A�B a �� �a�1�

Given f :A�C and g:B�C, then � f �g�:A�B�C is
defined by

� f �g��ξ� def

� case ξ of

ιA�ξA� � �ξA�1� �� f �ξA�

ιB�ξB� � �ξB�2� �� f �ξB�

Summer School on Generic Programming 2002, Oxford, UK 36�
�

�
�

Additional Notation
� Can define A�B�C with the cotupling � f �g�h�

� Take morphisms f :A� B and f �:A� � B�. We write

f � f �

def
� �ιB Æ f � ιB� Æ f �� : A�A�� B�B�

� Universality means

idA � idA� � idA�A� and �g�g��Æ � f � f �� � gÆ f �g� Æ f �

where g:B�C and g�:B��C�.

� If l:C � D then l Æ � f �g� � �l Æ f � l Æg�

Summer School on Generic Programming 2002, Oxford, UK 37�
�

�
�

More Examples
� � The coproduct of n and m is n�m where we

interpret � as addition on � .

� F If F and F � are presheaves then F �F � is defined

by
�F �F ��ξ def

� �Fξ���F �ξ�

for any object or morphism ξ in � , and

ιF :F �F �� F �ιF�n
def

� ιFn:�Fn���F �n�� Fn

Sometimes say � is defined pointwize.

Summer School on Generic Programming 2002, Oxford, UK 38�
�

�
�

Definition of Algebras
� Let F:C � C . An algebra for the functor F is a pair

�A�σA� where σA:FA � A.

� An initial F-algebra �I�σI� is an algebra for which

given any other �A�σA�,

FI
σI

� I

FA

F f

�

σA

� A
	! f

�

Summer School on Generic Programming 2002, Oxford, UK 39�
�

�
�

Motivation for Initial Algebras
� (Some) Datatypes are initial algebras

� The datatype

Exp ::� � � � 	 Exp �
 Exp Exp

is modeled by an object E such that

E �� � �E ��E�E� †

� We show how to solve † in Set.

� If Σ :Set � Set is Σ ξ def

� � �ξ��ξ�ξ�, then the
solution we construct is an initial algebra �σE �E�.

Summer School on Generic Programming 2002, Oxford, UK 40�
�

�
�

An Initial Algebra for 1����:Set �� Set
� 1:Set � Set is defined by

f :A� B �� id���:�� � ��

� 1���� is defined by

f :A� B �� id1 � f :1�A� 1�B

� The initial algebra is � up to isomorphism.

Summer School on Generic Programming 2002, Oxford, UK 41�
�

�
�

� We set S0
def

� � and Sr�1
def

� 1�Sr.

� Note there is an insertion ιSr :Sr � Sr�1.

� Note also that ir:Sr �� Sr�1 where i0
def

� �:S0 � S1, and

ir�1
def

� id1 � ir.

� We also write i�r:Sr �� T where T
def

� �rSr

� T is the object part of an initial algebra for 1����.

Summer School on Generic Programming 2002, Oxford, UK 42�
�

�
�

� As σT :1�T � T then σT must be a copair.

� We set σT
def

� �k�k�� where k:1� T and k�:T � T

� Note that

1
ι1

� 1��� S1
i�1 � T

and we set k
def

� i�1 Æ ι1.

Summer School on Generic Programming 2002, Oxford, UK 43�
�

�
�

� Note that

Sr
ιSr � 1�Sr � Sr�1

i�r�1

� T

and we set k�r
def

� i�r�1 Æ ιSr .

�
� In fact k�r�1 Æ ir � k�r by induction on r.

� Hence can legitimately define k�:T � T by setting

k��ξ� def

� k�r�ξ� for any r such that ξ � Sr.

Summer School on Generic Programming 2002, Oxford, UK 44�
�

�
�

� We check initiality

1�T
σT

� T

needs de f ining

1�A

id1 � f

�

f

� A

f

�

� We define a family of functions f r:Sr � A

f 0
def

� �:S0 � A f r�1
def

� � f Æ ι1� f Æ ιA Æ f r�

�
� In fact f r�1 Æ ir � f r.

� Hence we can legitimately define f :T � A by f �ξ� def

� f r�ξ�

for any r where ξ 	 Sr.

Summer School on Generic Programming 2002, Oxford, UK 45�
�

�
�

� To check that the diagram commutes, we have to
prove that

f Æ �k�k�� � f Æ �id1 � f �

� By the universal property of coproducts, this is
equivalent to showing

� f Æ k� f Æ k�� � � f Æ ι1� f Æ ιA Æ f �

which we can do by checking that the respective
components are equal.

� We give details for f Æ k� � f Æ ιA Æ f .

Summer School on Generic Programming 2002, Oxford, UK 46�
�

�
�

� f Æ k� � f Æ ιA Æ f . Take any element ξ � T . Then we
have

f �k��ξ�� � f �ιSr�ξ��

� f r�1�ιSr�ξ��

� � f Æ ι1� f Æ ιA Æ f r��ιSr�ξ��

� f �ιA� f r�ξ���

� f �ιA� f �ξ���

The first equality is by definition of k� and k�r; the second
by definition of f ; the third by definition of f r�1.

� You check that T �� N.

Summer School on Generic Programming 2002, Oxford, UK 47�
�

�
�

Some Results for Use in Modelling Syntax
� Let F and F � be two presheaves in F . Suppose for any

n in � , F �n� Fn , and

F �n � Fn

F �n�

F �ρ

�

� Fn�

Fρ

�

commutes for any ρ:n� n�.

� There is a natural transformation

i:F � �� F

Summer School on Generic Programming 2002, Oxford, UK 48�
�

�
�

� We define
δ:F � F

Suppose that F is an object in F . Then δ F is defined by

ρ:n� n� �� F�ρ� id1�:F�n�1��� F�n��1�

� If α:F � F � in F , then the components of δ α are

given by
�δ α�n

def
� αn�1

Summer School on Generic Programming 2002, Oxford, UK 49�
�

�
�

� �Sr � r � 0� is a family of presheaves in F , with
ir:Sr �� Sr�1. Then there is a union presheaf T in F , such

that i�r:Sr �� T . We sometimes write �rSr for T .

� Let ρ:n� n�. Then

Tn
def

�
�

r

Srn

and Tρ:Tn� Tn� is defined by

�Tρ��ξ� def
� �Srρ��ξ�

where ξ � Tn, and ξ � Sr�n� for some r.

Summer School on Generic Programming 2002, Oxford, UK 50�
�

�
�

� Let �φr:Sr � A � r � 0� be natural transformations in
F , the Sr as before, and such that φr�1 Æ ir � φr. Then

there is a unique natural transformation

φ:T � A

such that φÆ i�r � φr.

� The functions φn:Tn� An defined by

φn�ξ�

def

� �φr�n�ξ� ξ � Srn

yield the required natural transformation.

Summer School on Generic Programming 2002, Oxford, UK 51�
�

�
�

Syntax with Distinguished Variables and without Binding
� The set of expressions Exp is inductively defined by

Exp ::� � � � 	 Exp �
 Exp Exp

� vi occurs in e is written vi � e.

� The set of (free) variables of any e is denoted by fv�e�.

� We will want to consider expressions e for which

fv�e�� �v0� � � � �vn�1
and we give an inductive definition of such expressions.

Summer School on Generic Programming 2002, Oxford, UK 52�
�

�
�

� First we define inductively a set of judgements

Γn ��� e where n� 1, Γn def

� v0� � � � �vn�1 is a list, and of

course e is an expression.

� We refer to Γn as an environment of variables.

0� i � n

Γn ��� vi

Γn ��� e

Γn ��� 	 e

Γn ��� e Γn ��� e�

Γn ���
 e e�

� One can then prove by rule induction that if Γn ��� e

then fv�e�� Γn. We prove by Rule Induction

�� �Γn�e� � ���� �fv�e�� Γn�

Summer School on Generic Programming 2002, Oxford, UK 53�
�

�
�

Syntax with Distinguished Variables and Binding
� Consider

Exp ::� � � � � � Exp � � Exp Exp

� We inductively define a set of judgements Γn ��� e

where n� 0 and Γ0 is the empty list.

0� i � n

Γn ��� vi

Γn�1 ��� e

Γn ��� � vn e

Γn ��� e Γn ��� e�

Γn ��� � e e�

� One can then prove by rule induction that if Γn ��� e

then fv�e�� Γn.

Summer School on Generic Programming 2002, Oxford, UK 54�
�

�
�

� Notice that the rule for introducing abstractions

� vn e forces a distinguished choice of binding variable.

� The advantage of distinguished binding is that the
expressions correspond exactly to the terms of the

λ-calculus, without the need to define α-equivalence.

� In essence, we are forced to pick a representative of

each α-equivalence class.

Summer School on Generic Programming 2002, Oxford, UK 55�
�

�
�

Syntax with Arbitrary Variables and Binding
� Expressions are still defined by

Exp ::� � � � � � Exp � � Exp Exp

� Now let ∆ range over all non-empty finite lists of variables

which have distinct elements. Thus a typical non-empty ∆ is

v1�v8�v100�v2 	 �� �. Let x�y� � � � range over � .

� Define ∆ ��� e by

x 	 ∆

∆ ��� x

∆�x ��� e

∆ ��� � x e

∆ ��� e ∆ ��� e�

∆ ��� � e e�

Summer School on Generic Programming 2002, Oxford, UK 56�
�

�
�

� We define simultaneous substitution – used to define

α-equivalence, and to construct mathematical models.

� We will define by recursion over expressions e, new
expressions e�ε�ε and e�∆��∆, where ���∆� � ���∆��.

� For example,

�� v8 �
 v10 v2���v3�v8�v8�v2� � v11 �
 v10 v8�

Summer School on Generic Programming 2002, Oxford, UK 57�
�

�
�

� We inductively define the relation �α of

α-equivalence
� Single axiom (schema) � x e�α � x� e�x��x with

x� �� fv�e�

� Rules such as

e�α e� e� �α e��

e�α e��

e�α e�

� x e�α � x e�

� Note that the terms of the λ-calculus are given by the

�e�α
def

� �e� � e� �α e

Summer School on Generic Programming 2002, Oxford, UK 58�
�

�
�

A Programme for Modelling Syntax

Step 1 define an abstract endofunctor Σ� on F def

� Set�

(similar to the datatype in question);

Step 2 construct an initial algebra T for Σ� ;

Step 3 show that the syntax yields a functor Exp:� � Set;

Step 4 show that T �� Exp

Summer School on Generic Programming 2002, Oxford, UK 59�
�

�
�

Modelling Exp ::� � � � � Exp � � Exp Exp

Step 1

� First, we define the functor � :� � Set. Let ρ:m� n in

� . Then we set

�m
def

� �v0� � � � �vm�1 � �ρ�vi�

def

� vρi

� Define a functor Σ� :Set� � Set� by setting

Σ� ξ def

� � �ξ�ξ2

Summer School on Generic Programming 2002, Oxford, UK 60�
�

�
�

Step 2
� T

def
�
�

r Sr.

� S0
def

� �, the empty presheaf, and

Sr�1
def

� Σ� Sr � � �Sr �S2
r

� Need to check ir:Sr �� Sr�1 for all r � 0. We use
induction over r.

� It is immediate that i0:S0 �� S1.

Summer School on Generic Programming 2002, Oxford, UK 61�
�

�
�

� Now suppose that ir:Sr �� Sr�1. We are required to

show that ir�1:Sr�1 �� Sr�2, that is,
�n�Srn��Srn�

2 � �n�Sr�1n��Sr�1n�2

�n��Srn

���Srn
��2

�ρ�Srρ��Srρ�2
�

� �n��Sr�1n���Sr�1n��2

�ρ�Sr�1ρ��Sr�1ρ�2

�

� Σ� ir � id� � ir � i2r . Thus we have ir�1 � Σ� ir.

Summer School on Generic Programming 2002, Oxford, UK 62�
�

�
�

� We define the structure map σT
def

� �κ�κ��κ���:� �T �T2 � T

� S1 � � ����2, and so S1n � �n��1�. Therefore � �� S1,

so that κ:� �� S1 �� T .

� We define κ� by

κ�r:Sr
ιSr � � �Sr �S2

r � Sr�1 �� T

Summer School on Generic Programming 2002, Oxford, UK 63�
�

�
�

� We check initiality

� �T �T2 σT

� T

���

� �A�A2
� �α�α2

� α

� A

α

�

� To define α:T � A we specify a family αr:Sr � A.

� Please see the notes; the details are similar in principle to

the corresponding ones for initiality of σT :1�T �� T given in

the third lecture.

Summer School on Generic Programming 2002, Oxford, UK 64�
�

�
�

Step 3
� Suppose that ρ:n� n� is any function. We define

Exp

��

n
def

� � e � Γn ��� e

� We can define �Exp

��

ρ�e by recursion over e, by
setting

� �Exp

��

ρ��� vi�

def

� � ρi

� �Exp

��

ρ��	 e�

def

� 	 �Exp

��

ρ�e

� �Exp

��

ρ��
 e e��

def

�
 �Exp

��

ρ�e �Exp
��

ρ�e�

Summer School on Generic Programming 2002, Oxford, UK 65�
�

�
�

� . . . and then showing that if e � Exp

��

n, then
�Exp
��

ρ�e � Exp

��

n�.

� Thus we have a function

Exp

��

ρ:Exp

��

n� Exp

��

n�

for any ρ:n� n�.

� Note that there are natural transformations

	:Exp

��

� Exp

��

�
:Exp

��

2 � Exp

��

Summer School on Generic Programming 2002, Oxford, UK 66�
�

�
�

Step 4
� We now show that T �� Exp

��

in F

� We define φ:T � Exp

��

and ψ:Exp

��

� T, such that

φn : Tn�� Exp

��

n : ψn

� To specify φ:T � Exp

��

define a family φr:Sr � Exp

��

.

� φ0:S0 ��� Exp

��

has components �φ0�n:�� Exp

��

n

� Recursively we define

φr�1
def

� ���	Æφr�
Æφ2
r � : Sr�1 � � �Sr �S2

r �Exp

��

Summer School on Generic Programming 2002, Oxford, UK 67�
�

�
�

� To specify ψ:Exp

��

� T, for any n in � we define

functions
ψn:Exp

��

n� Tn

as follows.

� ψn�� vi�

def

� �vi�1� � S1n

� ψn�	 e�

def

� ιSrn�ψn�e�� where r � 1 is the height of the
deduction of 	 e

� ψn�
 e e��

def

� ι�Srn�2��ψn�e��ψn�e���� where r � 1 is the

height of the deduction of
 e e�.

Summer School on Generic Programming 2002, Oxford, UK 68�
�

�
�

We next check that for any n in � ,

Tn
φn

�

���
ψn

Exp

��

n

Summer School on Generic Programming 2002, Oxford, UK 69�
�

�
�

Modelling Exp ::� � � � � � Exp � � Exp Exp

Case Γn ��� e with Distinguished Binding

� Step 1 The abstract endofunctor Σ� :F � F is

Σ� ξ def

� � �δ ξ�ξ2

Motto: Any constructor with 1 argument and which

binds b variables is modelled by δbξ � Thus

	��� P �� �x�y� �� E

would be modelled by ξ �� ξ�δ δ ξ

Summer School on Generic Programming 2002, Oxford, UK 70�
�

�
�

� Step 2 We can show that the functor Σ� has an initial

algebra σT :Σ�T � T, by adapting the previous methods.
� Have to define

σT
def

� �κ�κ��κ��� def

� � �δ T �T�T � T

via

κ�r:δ Sr
ιSr � � �δ Sr �S2

r � Sr�1 �� T

as

�δ T �n
def

� T �n�1� �
�

r

Sr�n�1� �
�

r

�δ Sr�n � �
�

r

δ Sr�n

Summer School on Generic Programming 2002, Oxford, UK 71�
�

�
�

� Step 3 Suppose ρ:n� n�. Define

Exp

��

n
def

� � e � Γn ��� e �

� Let ρ�n��n�:n�1� n��1 be

ρ�n��n�� j�

def

�

��
�

ρ� j� if 0
 j
 n�1

n� if j � n

Consider

� �Exp

��

ρ��� vn e�

def

� � vn�

�Exp

��

ρ�n��n���e� and

� �Exp

��

ρ��� e e��

def

� � ��Exp
��

ρ�e� ��Exp

��

ρ�e��

� If Γn ��� e and ρ:n� n�, then Γn�

��� �Exp

��

ρ�e yielding a

functor Exp

��

in F .

Summer School on Generic Programming 2002, Oxford, UK 72�
�

�
�

� There are natural transformations

�:δ Exp

��

� Exp �:Exp2 � Exp
� The components are functions

�n:Exp

��

�n�1�� Exp

��

n �� e �� � vn e

� Naturality is
�δ Exp
��

�n � Exp

��

�n�1�

�n

� Exp

��

n

�δ Exp

��

�n� � Exp

��

�n��1�

�δ Exp

��

�ρ � Exp

��

�ρ� id1�
�

�n�

� Exp

��

n�

Exp

��

ρ

�

Summer School on Generic Programming 2002, Oxford, UK 73�
�

�
�

� Note that at the element e, this requires that

� vn�

�Exp

��

ρ�n��n�e � � vn�

��Exp

��

�ρ� id1��e�

� This equality holds if and only if

ρ�n��n� ρ� id1

� . . . which is true if and only if in �

ι1:1� m�1 � �� m ιm:m� m�1 i �� ρi

� Step 4 A routine calculation that T �� Exp

��

Summer School on Generic Programming 2002, Oxford, UK 74�
�

�
�

Modelling Exp ::� � � � � � Exp � � Exp Exp

Case ∆ ��� e with Arbitrary Binding

� Step 1 The abstract endofunctor Σ� :F � F is

Σ� ξ def

� � �δ ξ�ξ2

Note: The functor is the SAME as before

� Step 2 Thus solving for the initial algebra is the same

as before!

Summer School on Generic Programming 2002, Oxford, UK 75�
�

�
�

� Step 3 We define Exp

��

. For n in � we set

Exp

��

n
def

� � �e�α � Γn ��� e

� Now let ρ:n� n�. We define

�Exp

��

ρ���e�α�
def

� �e�vρ0� � � � �vρ�n�1��v0� � � � �vn�1�α

� One has to check that this is well defined . . . see the
notes.

Summer School on Generic Programming 2002, Oxford, UK 76�
�

�
�

� Step 4 Note that current Step 2 was same as before.

Rather than prove Exp

��

�� T as a final step, we could in
fact make use of the previous work, which proved that

Exp

��

�� T . Thus we omit Step 2, and instead show

φ:Exp
��

�� Exp

��

:ψ

Summer School on Generic Programming 2002, Oxford, UK 77�
�

�
�

� The components of ψ are functions ψn:Exp

��

n� Exp

��

n

given by ψn�e�

def

� �e�α.
� We consider the naturality of ψ at a morphism ρ:n� n�,

computed at an element ξ of Exp

��

n. We show naturality for

the case ξ � � vn e.

�Exp

��

ρ�Æψn�ξ� � �Exp

��

ρ��� vn e�α
� ��� vn e��vρ0� � � � �vρ�n�1��v0� � � � �vn�1��α

def

� �

Let us consider the case when renaming takes place.

� Suppose that there is a j for which ρ� j� � n and v j 	 fv�e�.

Summer School on Generic Programming 2002, Oxford, UK 78�
�

�
�

� Then

�� vn e��vρ�0�� � � � �vρ�n�1��v0� � � � �vn�1��

� vw e�vρ�0�� � � �vρ�n�1��vw�v0� � � � �vn�1�vn�

� w � 1�MaxIndex�e ; ρ�0�� � � � �ρ�n�1�� thus ρ�i�� w for all

0
 i
 n�1.

� But fv�e�� v0� � � � �vn and n � ρ� j� 	 ρ�0�� � � � �ρ�n�1�.

� Also ρ�i�� n�, and so we must have w
 n�.

� If w � n�, then vn�

is not free in

e�vρ�0�� � � �vρ�n�1��vw�v0� � � � �vn�1�vn� and otherwise w � n�.

Summer School on Generic Programming 2002, Oxford, UK 79�
�

�
�

Either way (why!?),
� vw e�vρ�0�� � � �vρ�n�1��vw�v0� � � � �vn�1�vn

�α � vn�

e�vρ�0�� � � �vρ�n�1��vn�
�v0� � � � �vn�1�vn

and so

� � �� vn�

e�vρ0� � � � �vρ�n�1��vn�
�v0� � � � �vn�1�vn�α

� �� vn�

�Exp

��

ρ�n��n�e�α

� ψn� Æ �Exp

��

ρ��ξ�

Summer School on Generic Programming 2002, Oxford, UK 80�
�

�
�

� Next we define φn:Exp

��

n� Exp

��

n by setting

φn��e�α�

def

� Rn�e� where
� Rm�� x�

def

� � x

� Rm�� x e�
def

� � vm Rm�1�e�vm�x�

� Rm�� e e��

def

� � Rm�e� Rm�e��

� This is best understood by a simple example . . .

� The verification that

φ:Exp

��

�� Exp
��

:ψ

is omitted from the lectures. See the notes.

Summer School on Generic Programming 2002, Oxford, UK 81�
�

�
�

R3�� v7 �� v3 �� v7 �� v0 �� v6 �� v2 v3������

� � v3 R4�� v3 �� v7 �� v0 �� v6 �� v2 v3������v3�v7�

� � v3 R4�� v8 �� v3 �� v0 �� v6 �� v2 v8�����

� � v3 �� v4 R5�� v3 �� v0 �� v6 �� v2 v8�����v4�v8��

� � v3 �� v4 �� v3 �� v0 �R5�� v6 �� v2 v4������

� � v3 �� v4 �� v3 �� v0 �� v5 R5�� v2 v4��v5�v6�����

� � v3 �� v4 �� v3 �� v0 �� v5 �R5�� v2 v4������

� � v3 �� v4 �� v3 �� v0 �� v5 �� v2 v4�����

Summer School on Generic Programming 2002, Oxford, UK 82�
�

�
�

Where to Now? You might
� learn more Category Theory;

� learn more Type Theory;

� learn more Categorical Type Theory;

� spend some time trying to understand the key
problems and issues concerning modelling and

reasoning about binding syntax; and

� read the current research literature on modelling and
implementing binding syntax.

