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Motivation

• Development of safety critical applications
• Integration of

– programming (coding)
– proof of correctness

(reasoning about the code)
• Make it in a usable way

– easy to use
– efficient
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Vision

• Integrate a proof tool in the Clean environment
– into the programming environment (IDE)

prove properties while writing the program
(these are often very simple properties)

– into the run-time environment
test properties of programs during run-time,
e.g. enhance reliability of mobile code
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Problem of efficiency

• A proof tool is very resource consuming
e.g. takes a lot of time to complete a proof

• Sometimes a proof can be obtained with the 
help of the type system
– Very simple: very fast
– More complex: undecidable - dependent types
– Everything in between
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Key idea
• Program properties expressed as type 

invariants
x: Natural           x: Integer with x >= 0

• Propagation of properties: verified by type 
system
– If I add two Natural numbers, the result is also a 

Natural number
• Polymorphism is gained with subtyping

– Natural is a special Integer, that is
Natural ≤ Integer
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Why (Concurrent) Clean?

• Functional language
– referential transparency => simple maths

• Concurrency (?)
• Integrated Development Environment

– Integrated proof tool for Clean progs (Sparkle)
• Efficient

– Strictness annotations (evaluation order)
– Uniqueness attributes (destructive updates)
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What am I doing?

• Modify the type system of Clean

– Add subtyping with type invariants

• Formalization + implementation

– Clean 2.0 compiler offered by KUN
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What are these subtypes for?

fac :: Int → Int
fac 0 = 1
fac n = n * fac (n-1)
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What are these subtypes for?

fac :: Int → Int // only for non-negative arg.
fac 0 = 1
fac n = n * fac (n-1)



August 2002, St. Anne's College, Oxford Summer School on Generic Programming 10

What are these subtypes for?

fac :: Int → Int fac :: Nat → Nat
fac 0 = 1
fac n = n * fac (n-1)

• ... but there is no such type in Clean...
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What are these subtypes for?

fac :: Int → Int fac :: Nat → Nat
fac 0 = 1
fac n = n * fac (n-1)

• ... but there is no such type in Clean...
• Add a subtype mark!

fac ::   <N> Int →    <N> Int
//  N(x)  =  (x>=0)
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Subtype marks

• Notations to indicate some properties
(type invariants, extra restrictions)

• The type system should work with them
• "Just" notations, not much more...
• Still, they can be used to derive/prove 

properties of code
• Especially propagation of type invariants

– e.g. the identity function preserves any type 
invariants...
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First-order logic in semantics
• We could assign logical formulas to these 

subtype marks
N(x) = (x >= 0)

• This is not the business of the type system
• For the type system, subtype marks do not have 

such meaning: "just notations"
• Handle formulas:

– proof system (mathematical proof of correctness)
– run-time system

(run-time check, like in Alphard or Eiffel)
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Currently

• Just the type system, no logical formulas
• They are still good for certain things

– localize dangerous code

fac :: Nat → Nat
abs :: Int → Nat

fac (abs x)      is not dangerous
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One day…

• Generate code that checks type invariants 
run-time, namely before and after 
evaluating a function

• Use a proof system to argue about type 
invariants
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Believe-me marks

• Believe me, that this property holds. What 
else can you guarantee based on this?

• Maybe prove (sub)type correctness of other 
functions...

• Later those believe-me marks should be 
investigated by a proof system or a run-time 
check
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For example, sorting...

insert ::    a    <S>[a]    → <S!>[a]      |  < a
insert e [] =  [e]
insert e [x:xs] =   if (e <= x) [e,x:xs]   

[x: insert e xs]

sort ::    [a]    → <S>[a]    |  < a
sort [] = []
sort [x:xs] = insert x (sort xs)
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Subtype assertions for algebraic 
data constructor symbols

• In non-pattern expressions (composing)
[]     :>:    <S>[a]
[:]    :>:    a    [a]    → [a]

• In pattern expressions (decomposing)
[]    :<:     [a]
[:]    :<:     a    <S>[a]    → <S>[a]
[:]    :<:     a           [a]    → [a]
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Polymorphic subtype marks

• Multiple "standard" types (monomorphic)

plus ::              Int Int →             Int
plus ::       <N>Int <N>Int →      <N>Int

• Polymorphic subtype marks meaning the same

plus ::    <N a>Int <N a>Int →    <N a>Int
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Interfere with other things
• Overloading polymorphism (type classes)
• Synonym types
• Uniqueness typing
• Built-in type constructors
• Existentially and universally quantified types
• Dynamic types
• Syntactic sugar
• Module system, ADT-s
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Theory already done

• Formalization of subtyping
– Like uniqueness “subtyping”
– Data constructor assertions, restrictions

• Properties of the type system
– Subject reduction, principal typing
– Without believe-me marks
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Ideas about implementation

• Type derivation with interaction from the 
programmer

• Aspect-oriented approach to add subtypes to 
the program
– turn on / turn off

• in editor
• in compiler

– like turning on/off the run-time checks
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Future plans

• Not only first-order logic in describing 
properties, but also temporal logic
– argue about safety and progress properties
– verify concurrent/distributed applications

• Checking mobile code run-time: dynamics
– e.g. obtained from Internet
– currently type-checks are more or less ready
– proof checks: prototype
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Plans for me

• Finish this implementation (catch up with 
theory)

• Increase expressive power
• Eliminate interference with other language 

concepts not addressed in theory
• Develop large examples (case studies)
• Integrate with proof tool, do run-time checks
• Get the PhD


