
August 2002, St. Anne's College, Oxford Summer School on Generic Programming 1

Subtyping with Strengthening
Type Invariants

KOZSIK Tamás
Eötvös Loránd University, Budapest

Diederik VAN ARKEL, Rinus PLASMEIJER
"Clean group", University of Nijmegen,
The Netherlands

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 2

Motivation

• Development of safety critical applications
• Integration of

– programming (coding)
– proof of correctness

(reasoning about the code)
• Make it in a usable way

– easy to use
– efficient

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 3

Vision

• Integrate a proof tool in the Clean environment
– into the programming environment (IDE)

prove properties while writing the program
(these are often very simple properties)

– into the run-time environment
test properties of programs during run-time,
e.g. enhance reliability of mobile code

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 4

Problem of efficiency

• A proof tool is very resource consuming
e.g. takes a lot of time to complete a proof

• Sometimes a proof can be obtained with the
help of the type system
– Very simple: very fast
– More complex: undecidable - dependent types
– Everything in between

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 5

Key idea
• Program properties expressed as type

invariants
x: Natural x: Integer with x >= 0

• Propagation of properties: verified by type
system
– If I add two Natural numbers, the result is also a

Natural number
• Polymorphism is gained with subtyping

– Natural is a special Integer, that is
Natural ≤ Integer

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 6

Why (Concurrent) Clean?

• Functional language
– referential transparency => simple maths

• Concurrency (?)
• Integrated Development Environment

– Integrated proof tool for Clean progs (Sparkle)
• Efficient

– Strictness annotations (evaluation order)
– Uniqueness attributes (destructive updates)

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 7

What am I doing?

• Modify the type system of Clean

– Add subtyping with type invariants

• Formalization + implementation

– Clean 2.0 compiler offered by KUN

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 8

What are these subtypes for?

fac :: Int → Int
fac 0 = 1
fac n = n * fac (n-1)

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 9

What are these subtypes for?

fac :: Int → Int // only for non-negative arg.
fac 0 = 1
fac n = n * fac (n-1)

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 10

What are these subtypes for?

fac :: Int → Int fac :: Nat → Nat
fac 0 = 1
fac n = n * fac (n-1)

• ... but there is no such type in Clean...

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 11

What are these subtypes for?

fac :: Int → Int fac :: Nat → Nat
fac 0 = 1
fac n = n * fac (n-1)

• ... but there is no such type in Clean...
• Add a subtype mark!

fac :: <N> Int → <N> Int
// N(x) = (x>=0)

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 12

Subtype marks

• Notations to indicate some properties
(type invariants, extra restrictions)

• The type system should work with them
• "Just" notations, not much more...
• Still, they can be used to derive/prove

properties of code
• Especially propagation of type invariants

– e.g. the identity function preserves any type
invariants...

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 13

First-order logic in semantics
• We could assign logical formulas to these

subtype marks
N(x) = (x >= 0)

• This is not the business of the type system
• For the type system, subtype marks do not have

such meaning: "just notations"
• Handle formulas:

– proof system (mathematical proof of correctness)
– run-time system

(run-time check, like in Alphard or Eiffel)

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 14

Currently

• Just the type system, no logical formulas
• They are still good for certain things

– localize dangerous code

fac :: Nat → Nat
abs :: Int → Nat

fac (abs x) is not dangerous

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 15

One day…

• Generate code that checks type invariants
run-time, namely before and after
evaluating a function

• Use a proof system to argue about type
invariants

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 16

Believe-me marks

• Believe me, that this property holds. What
else can you guarantee based on this?

• Maybe prove (sub)type correctness of other
functions...

• Later those believe-me marks should be
investigated by a proof system or a run-time
check

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 17

For example, sorting...

insert :: a <S>[a] → <S!>[a] | < a
insert e [] = [e]
insert e [x:xs] = if (e <= x) [e,x:xs]

[x: insert e xs]

sort :: [a] → <S>[a] | < a
sort [] = []
sort [x:xs] = insert x (sort xs)

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 18

Subtype assertions for algebraic
data constructor symbols

• In non-pattern expressions (composing)
[] :>: <S>[a]
[:] :>: a [a] → [a]

• In pattern expressions (decomposing)
[] :<: [a]
[:] :<: a <S>[a] → <S>[a]
[:] :<: a [a] → [a]

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 19

Polymorphic subtype marks

• Multiple "standard" types (monomorphic)

plus :: Int Int → Int
plus :: <N>Int <N>Int → <N>Int

• Polymorphic subtype marks meaning the same

plus :: <N a>Int <N a>Int → <N a>Int

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 20

Interfere with other things
• Overloading polymorphism (type classes)
• Synonym types
• Uniqueness typing
• Built-in type constructors
• Existentially and universally quantified types
• Dynamic types
• Syntactic sugar
• Module system, ADT-s

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 21

Theory already done

• Formalization of subtyping
– Like uniqueness “subtyping”
– Data constructor assertions, restrictions

• Properties of the type system
– Subject reduction, principal typing
– Without believe-me marks

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 22

Ideas about implementation

• Type derivation with interaction from the
programmer

• Aspect-oriented approach to add subtypes to
the program
– turn on / turn off

• in editor
• in compiler

– like turning on/off the run-time checks

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 23

Future plans

• Not only first-order logic in describing
properties, but also temporal logic
– argue about safety and progress properties
– verify concurrent/distributed applications

• Checking mobile code run-time: dynamics
– e.g. obtained from Internet
– currently type-checks are more or less ready
– proof checks: prototype

August 2002, St. Anne's College, Oxford Summer School on Generic Programming 24

Plans for me

• Finish this implementation (catch up with
theory)

• Increase expressive power
• Eliminate interference with other language

concepts not addressed in theory
• Develop large examples (case studies)
• Integrate with proof tool, do run-time checks
• Get the PhD

