
MAG version 2.11: User Manual

Ganesh Sittampalam and Oege de Moor

September 3, 2003

Contents

1 About this document 1

2 Introduction 2

3 Compiling 3

4 Installing 3

5 Quick usage guide 3

6 Syntax of MAG programs 3

7 Using MAG 4

8 Known Bugs 6

9 Other information 6

1 About this document

This manual is intended to provide up-to-date usage instructions and a syntax
description of the syntax for MAG version 2.11, but is not intended to serve
as a tutorial in writing MAG programs. See section 9 for a description of
other documents that may help with this. Some familiarity with Haskell is
recommended before using MAG.

MAG is a joint work by Ganesh Sittampalam and Oege de Moor, but all
blame for the brevity of this manual should be directed at Ganesh, who will
try to respond to requests for additional help: ganesh@comlab.ox.ac.uk.

1



2 Introduction

MAG is a program transformation system for a small functional language
similar to Haskell. The main features it provides are:

• The ability to write active source: source code that actively takes part
in the compilation process by providing instructions to the compiler on
how to optimise it.

• An implementation of higher-order conditional rewriting which makes
use of certain higher-order matching algorithms developed by the au-
thors.

In particular, MAG is able to automate fusion (sometimes also known as pro-

motion) transformations, which provide a framework for safely transforming
certain kinds of recursive programs. For example, the well-known fast reverse

transformation can be expressed by the following MAG source code:

{- reverse.p -}

reverse [] = [];

reverse (x:xs) = reverse xs ++ [x];

TRANSFORM fastrev

REDEFINE reverse xs = fastreverse xs []

SPECIFYING fastreverse xs ys = reverse (foldr (:) [] xs) ++ ys

USING

DEFINITION reverse,(++);

catassoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs);

fusion: f (foldr plusl e xs) = foldr crossl e’ xs,

if {f e = e’;

\ x y -> f (plusl x y)

= \ x y -> crossl x (f y)}

END;

foldr f e [] = e;

foldr f e (x:xs) = f x (foldr f e xs);

Essentially, this source file provides the slow program for reverse together
with instructions for mechanising the fast reverse optimisation. The syntax used
is explained in section 6.

2



3 Compiling

Binary distributions of MAG are available for Linux/x86, Cygwin/x86, FreeBSD/x86,
Solaris/Sparc. If you use one of these distributions, you can ignore the rest of this
section.

MAG is entirely Haskell 98 code. The recommended environment for using
MAG is GHC, for performance reasons, but it can also be used under Hugs. It
should also build with NHC, but this has not been tested recently. Whichever
environment is used, a reasonably recent version of GHC is required for dependency
calculation.

Most recently, MAG has been tested with the February 2001 release of Hugs,
and the following versions of GHC:

• Linux/i386 : 5.04.3, 6.0.1

• Cygwin/i686 : 5.02

4 Installing

If MAG is being used by a single user, it is recommended to run it from the direc-
tory it is untarred into. If being installed by the system administrator for multiple
users, the mag script and magdcalc binaries from the bin directory should be
placed in /usr/local/bin or /usr/bin, and the .p files from the examples direc-
tory should be placed in /usr/local/share/mag or /usr/share/mag. Appropriate
files from the doc directory should go into whatever directory is mandated by local
policy – often /usr/local/doc/mag-2.11 or /usr/share/doc/mag-2.11.

5 Quick usage guide

The above example reverse.p can be run by changing to the examples direc-
tory and running the following command (change the paths appropriately if the
installation is system-wide):

../bin/mag --program reverse --transform fastrev showprogram

6 Syntax of MAG programs

A MAG program consists of a list of definitions and transformations. A definition
can be a (possibly partial) function declaration, such as:

reverse [] = [];

It can also be a data declaration, for example:

3



data Tree a = Leaf a | Node (Tree a) (Tree a);

There is no “layout” rule, so all definitions and transformations must be terminated
with a semicolon.

The left-hand side of a function declaration is a name followed by a list of
arguments, some or all of which may be patterns (such as []). The right-hand
side is an expression built up from variables, constants, λ-abstractions, applications
and let expressions, which have the same syntax as in Haskell.

A transformation is introduced by the keyword TRANSFORM, together with a
name for the transformation. This name can optionally be followed by a colon
together with a comma-separated list of transformations on which this transfor-
mation depends.

Then next element of a transformation is the keyword REDEFINE, followed
by a semicolon-separated list of definitions, and then the keyword SPECIFYING

and another semicolon-separated list of definitions. The final part is the keyword
USING and a semicolon-separated list of rewrite rules, and the transformation is
terminated by the keyword END (and a final semicolon).

A rewrite rule is either the keyword DEFINITION followed by a comma-separated
list of function names, or a name, a colon, an expression denoting the left-hand
side of the rule, an equals sign, and an expression denoting the right-hand side.
In the latter case it can optionally be followed by a comma, the keyword if, and
a comma-separated list of side-conditions, enclosed in curly braces. Each side-
condition consists of two expressions separated by an equals sign.

See section 2 for an example of a transformation.

7 Using MAG

To run MAG in interactive mode, execute the mag script from the bin directory.
You will see the following banner:

MAG version 2.11 (built on Wed Sep 3 13:51:37 BST 2003)

This will be followed by the MAG command prompt:

Mag>

A number of commands can be executed from this prompt. After each command
completes, MAG returns to this prompt. Some commands can also be specified
from the command-line, in one of two ways:

• Some commands have command-line versions. Any number of these com-
mands can be specified, and they will be executed in the order they occur.

• The final element of the command line can be any MAG command except
quit. If a command is specified in this way MAG will execute any commands
specified by -- options, then this command, and then exit without offering
a command prompt.

4



loadprogram

• Syntax: loadprogram filename

• Command line option: --program filename

Loads, parses and type-checks filename.p.

applytransform

• Syntax: applytransform transformation

• Command line option: --transform transformation

Applies transformation to the currently loaded program, and leaves the trans-
formed program loaded.

showprogram

• Syntax: showprogram

Prints out the currently loaded program.

setwidth

• Syntax: setwidth width

• Command line option: --width width

Set the output width (in characters) for calculations and programs. If you set this
too low some output may be replaced by *s if it cannot be formatted to fit. The
initial value for this setting is 80.

setpath

• Syntax: setpath path

• Command line option: --path path

Set the base path from which programs, theory files and scripts are loaded. The
path should be enclosed in quotes. The initial value is the empty string.

runscript

• Syntax: runscript filename

• Command line option: --run filename

Load and run the specified script. The filename should be enclosed in quotes.

5



skip

• Syntax: skip

Do nothing. Intended for scripts, etc.

quit

• Syntax: quit

Exit the interactive loop or the current script. An EOF will have the same effect,
so there is no need to end scripts with this command, and ^D can be used to exit
the interactive loop.

8 Known Bugs

• Many error conditions cause MAG to exit, often with a cryptic error message,
instead of catching it and returning to the command prompt.

• The mag script in the bin directory does not work when accessing a cygwin
machine via ssh.

9 Other information

The most up-to-date account of the ideas underlying MAG can be found in [5].
A more detailed account of the underlying theory can be found in [3]. Other
descriptions, which have in the main been superseded by these documents, can be
found in [1, 2, 4].

References

[1] O. de Moor and G. Sittampalam. Generic program transformation. In
Third International Summer School on Advanced Functional Programming,
volume 1608 of Lecture Notes in Computer Science, pages 116–149. Springer-
Verlag, 1998. Available from URL: http://web.comlab.ox.ac.uk/oucl/

work/ganesh.sittampalam/. 6

[2] O. de Moor and G. Sittampalam. Higher-order matching for program trans-
formation. Theoretical Computer Science, 269:135–162, 2001. Available from
URL: http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm. 6

[3] G. Sittampalam. Higher-order matching for program transformation. PhD
thesis, University of Oxford, 2001. Available from URL: http://web.comlab.
ox.ac.uk/oucl/work/ganesh.sittampalam/. 6

6



[4] Ganesh Sittampalam and Oege de Moor. Higher-order pattern matching for
automatically applying fusion transformations. In O. Danvy and A. Filinski,
editors, Proceedings of 2nd Symposium on Programs as Data Objects, volume
2053 of Lecture Notes in Computer Science, pages 198–217. Springer-Verlag,
2001. Available from URL: http://www.comlab.ox.ac.uk/oucl/work/oege.
demoor/pubs.htm. 6

[5] Ganesh Sittampalam and Oege de Moor. Mechanising fusion. In Jeremy Gib-
bons and Oege de Moor, editors, The Fun of Programming, chapter 5, pages
79–104. Palgrave, 2003. 6

7


