
Combining OWL Ontologies Using

E-Connections

Bernardo Cuenca Grau a,b , Bijan Parsia a , Evren Sirin a ,

aUniversity of Maryland, MIND Lab, 8400 Baltimore Ave,
College Park MD 20742, USA

bDepartamento de Informatica, Universidad de Valencia
Av. Vicente Andres Estelles, s/n, 46100 Burjassot, Valencia, SPAIN

Abstract

The standardization of the Web Ontology Language, OWL, leaves (at least) two
crucial issues for Web-based ontologies unsatisfactorily resolved, namely how to
represent and reason with multiple distinct, but linked ontologies, and how to enable
effective knowledge reuse and sharing on the Semantic Web.

In this paper, we present a solution for these fundamental problems based on E-
Connections. We aim to use E-Connections to provide modelers with suitable means
for developing Web ontologies in a modular way and to provide an alternative to
the owl:imports construct.

With such motivation, we present in this paper a syntactic and semantic extension
of the Web Ontology language that covers E-Connections of OWL-DL ontologies.
We show how to use such an extension as an alternative to the owl:imports con-
struct in many modeling situations. We investigate different combinations of the
logics SHIN (D),SHON (D) and SHIO(D) for which it is possible to design and
implement reasoning algorithms, well-suited for optimization.

Finally, we provide support for E-Connections in both an ontology editor, SWOOP,
and an OWL reasoner, Pellet.

Key words: Web Ontology Language, Integration and Combination of Ontologies,
Combination of Knowledge Representation Formalisms, Description Logics
reasoning

Email addresses: bernardo@mindlab.umd.edu (Bernardo Cuenca Grau),
bparsia@isr.umd.edu (Bijan Parsia), evren@cs.umd.edu (Evren Sirin).

Preprint submitted to Elsevier Science 22 August 2005

1 Motivation

The Semantic Web architecture has been envisioned as a set of new lan-
guages that are being standardized by the World Wide Web Consortium
(W3C). Among these languages, the Web Ontology Language (OWL) plays
a prominent role, and Description Logics have deeply influenced its design
and standardization (1)(2). Two of the three variants, or dialects, of OWL,
namely OWL-Lite and OWL-DL, correspond to the logics SHIF(D) and
SHOIN (D), respectively (2) (3) (4).

The acceptance of OWL as a Web standard will yield to the rapid proliferation
of DL ontologies on the Web and it is envisioned that, in the near future,
the Semantic Web will contain a large number of independently developed
ontologies.

However, the standardization of OWL also leaves (at least) two crucial issues
for Web-based ontologies unsatisfactorily resolved, namely how to represent
and reason with multiple distinct, but linked ontologies, and how to enable
effective knowledge reuse and sharing on the Semantic Web.

First, in order to provide support for integrating Web ontologies, OWL defines
the owl:imports construct, which allows to include by reference in a knowledge
base the axioms contained in another ontology, published somewhere on the
Web and identified by a global name (a URI). However, the functionality
provided by this construct is unsatisfactory for a number of reasons (5):

• The only way that the owl:imports construct provides for using concepts
from a different ontology is to bring into the original ontology all the ax-
ioms of the imported one. Therefore, the only difference between copying
and pasting the imported ontology into the importing one and using an
owl:imports statement is the fact that with imports both ontologies stay in
different files. This certainly provides some syntactic modularity, but not a
logical modularity, which would be indeed more desirable.

• The components of an ontology, such as classes and properties, are, as the
ontologies themselves, identified by unique names (URIs) on the Seman-
tic Web. For example, suppose that we are developing an ontology about
“People” and we want to define the concept of a “Dog Owner”. It may
seem natural for such a purpose to use the URI of a certain class “Dog”,
that appears in an ontology about “Pets” that we have found on the Web.
We may think then that we are committing to the meaning of “Dog” in
that ontology, i.e., that a dog is an animal, for example. However, if we use
the URI for “Dog” without importing the corresponding ontology, we are
bringing nothing from the meaning of the term in the the foreign ontology,
while if we import it, we are bringing all the axioms of the “Pet” ontology

2

to our logical space, even if we are only interested in dogs, and not in cats
or hamsters.

• The use of owl:imports results in a completely flat ontology, i.e., none of
the imported axioms or facts retain their context. While it is possible to
track down the originator(s) of some assertions by inspecting the imported
ontology, OWL reasoning does not take such context into account.

Hence, in OWL, we can let in either all the axioms of a foreign ontology, or
none.

Second, enabling knowledge reuse and sharing has been, since the very birth
of OWL, a major goal of the Web Ontology Working Group. Ontology en-
gineering is a highly time-consuming task. As more ontologies are built and
become available, and as the size of ontologies grows, knowledge sharing and
reuse become crucial research issues.

On the one hand, when ontologies grow, they become harder for the reasoners
to process and for humans to understand, and also harder to reuse. On the
other hand, as more ontologies become available, the advantages of reusing
existing ontologies become more apparent. In order to make reuse and sharing
easier, ontologies should be designed as mostly independent and self-contained
modules (6)(7). Intuitively, a module should contain information about a self-
contained subtopic, i.e., an application domain that can largely stand for itself.
Then, suitable means should be provided for integrating and connecting those
modular ontologies.

In this paper, we present an approach for tackling these fundamental problems
based on E-Connections. The E-Connections technique (8) (9) is a method
for combining logical languages that are expressible in the Abstract Descrip-
tion System (ADS) framework. ADSs (10) are a generalization of description,
modal and epistemic logics and many logics of time and space. The main mo-
tivation of E-Connections is to combine decidable logics in such a way that
the resulting combined formalism remains decidable, although the increase of
expressivity may result in a higher worst-case complexity.

With such a motivation, we present in this paper a syntactic and semantic
extension of the Web Ontology language that covers E-Connections of OWL-
DL ontologies. We show how such an extension can be used to achieve modular
ontology development on the Semantic Web and how E-Connections provide
a suitable framework for integration of Web ontologies. We investigate the
use of E-Connections as an alternative to the owl:imports construct in many
modeling situations.

We explore different combinations of the logics SHIN (D),SHON (D) and
SHIO(D), which stand at the basis of OWL. We show that, for these combi-
nations, it is possible to design reasoning algorithms, well-suited for implemen-

3

tation and optimization. We prove that these algorithms can be implemented
as an extension of current reasoners and, contrary to what is thought about E-
Connections, we argue that they have a potential for enhancing performance,
since they suggest new optimization techniques.

Finally, we provide support for E-Connections in both an OWL ontology editor
and an OWL reasoner. Our aim has been to build an E-Connection aware in-
frastructure, by extending our ontology editor SWOOP (11) and our reasoner
Pellet (12), that people with a large commitment to OWL will find under-
standable and useful. We have been mostly concerned with reusing as much of
our current tool support for OWL as possible. Our experience in implementing
OWL tools has taught us that implementing a Semantic Web Knowledge Rep-
resentation formalism is different from implementing the very same formalism
outside the Semantic Web framework. Thus, we aim to explore both the is-
sues related to the implementation of a new KR formalism, E-Connections,
and those concerning its integration in a Semantic Web context.

2 E-Connections of Web Ontologies

An E-Connection is a knowledge representation language defined as a com-
bination of other logical formalisms. Each of the component logics has to be
expressible in the Abstract Description System (ADS) framework (10), which
includes Description Logics (and hence OWL-DL), some temporal and spa-
tial logics, Modal and Epistemic logics. Obviously, different component logics
will give rise to different combined languages, with different expressivity and
computational properties.

E-Connections were originally introduced in (8) as a way to go beyond the
expressivity of each of the component logics, while preserving the decidability
of the reasoning services. Thus, E-Connections were conceived for providing
a trade-off between the expressivity gained and the computational robustness
of the combination.

Here, we will use E-Connections as a language for defining and instantiating
combinations of OWL-DL ontologies. We will restrict ourselves to OWL-DL,
since OWL-Full is beyond the Abstract Description System framework. From
now on in the paper, whenever we mention OWL, we will implicitly refer to
OWL-DL.

An E-Connection is a set of “connected” ontologies. An E-Connected ontol-
ogy 1 typically contains information about classes, properties and their in-

1 In this paper, we use “E-Connection Language” to denote a formalism, i.e. a logic;

4

stances, as in OWL, but also about a new kind of properties, called link prop-
erties, which are somewhat similar in spirit to datatype properties.

In OWL, the classes defined in terms of datatype properties “combine” in-
formation from different domains: the actual application domain of the ontol-
ogy and the domain of datatypes. The coupling between datatypes and the
ontology is always achieved through restrictions on datatype properties. For
example, a “retired person” can be defined in OWL as a person whose age
is greater than 65, by using a class (“Person”) in the ontology and a restric-
tion on a datatype property “age” with value “greater than 65”. Both from
a logical and from a modeling perspective, the domain of the ontology and
the domain of datatypes are disjoint: from a modeling perspective, the (ap-
plication) domain of “persons” is disjoint from the (application) domain of
“numbers”; from a logical perspective, in OWL, the domain where classes,
properties and individuals in the ontology are interpreted is disjoint from the
domain of datatypes, and datatype properties are interpreted as binary rela-
tions with the first element belonging to the domain of the ontology and the
second on the domain of the datatypes.

In the same vein, link properties allow to create classes in a certain ontology
based on information from a different ontology, provided that the domains of
the ontologies are disjoint, both from a logical and a modeling perspective. For
example, a GraduateStudent in an ontology about “people” could be defined
as a student who is enrolled in at least one graduate course, by using the class
Student in the people ontology and a someValuesFrom restriction on the link
property enrolledIn with value GraduateCourse, which would be a class in a
different ontology dealing with the domain of “academic courses”.

Link properties are logically interpreted as binary relations, where the first ele-
ment belongs to its “source” ontology and the second to its “target ontology”.
Conceptually, a link property will be defined and used in its “source” ontol-
ogy. For example, the link property “enrolledIn” would be defined as a link
property in the “people” ontology with target ontology “academic courses”.

An E-Connected ontology can be roughly described as an OWL-DL ontology,
extended with the ability to define link properties and construct new classes
in terms of restrictions on them. An E-Connection is then defined as a set of
E-Connected ontologies.

From the modeling perspective, each of the component ontologies in an E-
Connection is modeling a different application domain, while the E-Connection
itself is the (disjoint) union of all these domains. For example, an E-Connection

we will use “E-Connection” to denote a knowledge base written in such a language.
These knowledge bases are composed of a set of “connected” ontologies, for which
we will use the term “E-Connected ontology” or “component ontology”.

5

could be used to model all the relevant information referred to a certain uni-
versity, and each of its component ontologies could model, respectively, the
domain of people involved in the university, the domain of schools and de-
partments, the domain of courses, etc.

2.1 Basic Elements

In order to illustrate the basic elements of an E-Connection, let us consider
the following application domains, that we want to formalize: let D1 be the
domain of “travel accommodations”, D2 the domain of “leisure activities”, D3

the domain of “travel destinations”, and D4 the domain of “people”. We want
to use an E-Connection to model the union of these domains, i.e., the domain
of “tourism”.

We want to model each application domain in a different component of the
E-Connection and then use link properties to talk about their relationships.

As in OWL, each E-Connected ontology is written in a different file, and the
vocabularies being used in each of them can be specified by a set of namespace
declarations and entity definitions.

Each E-Connected ontology defines its own ontology header, and may in-
clude a collection of assertions about the ontology under an owl:Ontology tag.
As in OWL, these tags may contain meta-data about the component ontolo-
gies, such as comments information about version control, and also owl:import
statements. The rdf:about attribute provides a name (a URI) for each ontology.

An E-Connected ontology can import another ontology. Note that, although
E-Connections can replace import statements in many situations, sometimes
it makes more sense to import than to E-connect 2 .

For our domains, we create the following root classes 3 :

(accommodations)

<owl:Class rdf:ID= "Accommodation"/>

(activities)

<owl:Class rdf:ID= "Activity"/>

2 We will investigate later on in the paper the interaction between imports and
E-Connections.
3 In brackets, we specify the ontology each class has been defined in; we use this in-
formal notation along this section for clarity and brevity, in order to avoid including
the namespace and ontology headers of each ontology in the combination.

6

(destinations)

<owl:Class rdf:ID= "Destination"/>

(people)

<owl:Class rdf:ID= "Person"/>

We would like to define classes like BudgetDestination (a travel destination
which provides a choice of budget accommodations), a CaribbeanHotel (a hotel
accommodation offered at a Caribbean destination), and a SportsDestination
(a destination that offers a variety of activities related to sport).

In order to attain this goal, we define a set of link properties, i.e. properties that
relate elements of the different domains. For example, the links providesAc-
commodation and offersActivity relate the domain of “destinations” to the
domain of “accommodations” and “activities” respectively.

(destinations)

<owl:LinkProperty rdf:ID="providesAccommodation">

<owl:foreignOntology rdf:resource="&accommodations;"/>

<rdfs:domain rdf:resource="#Destination"/>

<rdfs:range>

<owl:ForeignClass rdf:about="&accommodations;#Accommodation">

<owl:foreignOntology rdf:resource="&accommodation;"/>

</owl:ForeignClass>

</rdfs:range>

</owl:LinkProperty>

<owl:LinkProperty rdf:ID="offersActivity">

<owl:foreignOntology rdf:resource="&activities;"/>

<rdfs:domain rdf:resource="#Destination"/>

<rdfs:range>

<owl:ForeignClass rdf:about="&activities;#Activity">

<owl:foreignOntology rdf:resource="&activities;"/>

</owl:ForeignClass>

</rdfs:range>

</owl:LinkProperty>

A link property is a binary relation between instances of classes, which be-
long to different E-Connected ontologies. The source of a link property is the
ontology in which it has been declared; the target of the link is the ontology
specified in the owl:foreignOntology tag in the declaration.

The first element of the relation always belongs to an instance of a class in the
source ontology. In the example, both providesAccommodation and offersAc-

7

tivity have been defined in the “destinations” ontology. The second element
of the relation corresponds to an individual in the target ontology, i.e. the
“accommodations” ontology in the case of providesAccommodation and the
activities ontology in the case of offersActivity.

The definition of a link property must include a single owl:foreignOntology tag.
As in the case of object properties, link properties can be assigned a domain
and a range. For example, the link property offersActivity relates instances of
the class Destination to instances of the class Activity. The class specified as
a range of a link property must be declared as a class in the target ontology.
In the source ontology, such a class can be declared as “foreign” using the
owl:ForeignClass tag.

A URI cannot be used in a given ontology both as “local” (declared as a
class in the ontology using the owl:Class tag) and “foreign”; if this happens,
a reasoner must treat such an ontology as inconsistent.

A link property can be defined as functional or inverse functional, with the
usual meaning.

However, as opposed to object properties in OWL, a link property cannot
be tagged as transitive or symmetric. Note that, within an E-Connection, a
link property is defined in a certain “source” ontology and points to a spe-
cific “target ontology”. In other words, each link property connects (only)
two ontologies in a given E-Connection. Tagging a link property as transitive
or symmetric would require the ability to define link properties with several
source and target ontologies as well as extending the E-Connections frame-
work in a non-trivial way. Exploring such extensions is part of our ongoing
work.

Restrictions on link properties can be used to generate new concepts. For
example, we can define a “budget destination” as a travel destination that
offers at least one kind of budget accommodation:

(destinations)

<owl:Class rdf:ID="BudgetDestination">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Destination"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#providesAccommodation"/>

<owl:someValuesFrom>

<owl:ForeignClass rdf:about="&accommodation;BudgetAccommodation">

<owl:foreignOntology rdf:resource="&accommodation;"/>

</owl:ForeignClass>

</owl:someValuesFrom>

</owl:Restriction>

8

</owl:intersectionOf>

</owl:Class>

Similarly, we can define a CinemaLover as a person who likes Cinema:

(persons)

<owl:Class rdf:ID="CinemaLover">

<rdfs:subClassOf>

<owl:Class rdf:about="#Person"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#likesActivity"/>

<owl:someValuesFrom>

<owl:ForeignClass rdf:about="&activities;CinemaActivity">

<owl:foreignOntology rdf:resource="&activities;"/>

</owl:ForeignClass>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subclassOf>

</owl:Class>

Using an “allValuesFrom” restriction we can define a FanaticCinemaLover as
a CinemaLover who likes no activity other than cinema:

(persons)

<owl:Class rdf:ID="FanaticCinemaLover">

<rdfs:subClassOf>

<owl:Class rdf:about="#CinemaLover"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#likesActivity"/>

<owl:allValuesFrom>

<owl:ForeignClass rdf:about="&activities;CinemaActivity">

<owl:foreignOntology rdf:resource="&activities;"/>

</owl:ForeignClass>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subclassOf>

</owl:Class>

9

where in the “activities” ontology we would define the class CinemaActivity
as a subclass of Activity :

(activities)

<owl:Class rdf:ID="CinemaActivity">

<rdfs:subClassOf>

<owl:Class rdf:about="#Activity"/>

</rdfs:subClassOf>

</owl:Class>

Cardinality restrictions on link properties allow to constrain the number of ob-
jects linked by the connecting relations. For instance, we can define a Sports-
Destination as a travel destination that offers more than 10 different sports
activities:

(destinations)

<owl:Class rdf:ID = "SportsDestination">

<rdfs:subClassOf>

<owl:Class rdf:about="#Destination"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="offersSportActivity"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">10

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The “hasValue” restriction on link properties allows to specify classes in an
E-Connected ontology based on the existence of a particular individual in a
different ontology. For example, we can define the class SurfingDestination as
a travel destination that offers surfing as one of their activities, where surfing
is an instance of the class SportsActivity.

(destinations)

<owl:Class rdf:ID = "SurfingDestination">

<rdfs:subClassOf>

<owl:Class rdf:about="#Destination"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource = "offersSportActivity"/>

10

<owl:hasValue>

<owl:ForeignIndividual rdf:about="&activities;surfing">

<owl:foreignOntology rdf:resource="&activities;"/>

</owl:ForeignIndividual>

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

where in the “activities” ontology surfing is defined to be an individual of the
class SportsActivity.

(activities)

<activities:Surfing rdf:ID="surfing"/>

A link property can be defined as the inverse of another link property. For
example, link inversion would allow to define a WaterSport activity a Sport-
sActivity that is offered at a BeachDestination:

(activities)

<owl:Class rdf:ID="WaterSport">

<rdfs:subClassOf>

<owl:Class rdf:about="#Sport"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isOfferedAt"/>

<owl:someValuesFrom>

<owl:ForeignClass rdf:about="&destinations;BeachDestination">

<owl:foreignOntology rdf:resource="&destinations;"/>

</owl:ForeignClass>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subclassOf>

</owl:Class>

(activities)

<owl:LinkProperty rdf:ID="isOfferedAt">

<owl:foreignOntology rdf:resource="&destinations;"/>

<owl:inverseOf rdf:resource="&destinations;offersActivity"/>

</owl:LinkProperty>

11

A link property may be defined as a sub-property of another link property. For
example, we can define offersSportActivity as a sub-property of offersActivity :

(destinations)

<owl:LinkProperty rdf:ID="offersSportActivity">

<owl:foreignOntology rdf:resource="&activities;"/>

<rdfs:subPropertyOf rdf:about="#offersActivity"/>

</owl:LinkProperty>

Obviously, a link property cannot be declared as a sub-property of an object
or datatype property, nor a sub-property of a link relation with a different
foreign ontology.

2.2 Axioms and Facts in an E-Connected Ontology

An E-Connected ontology is a sequence of axioms and facts: logical sentences
that allow to make assertions about the domain. For example, as in OWL, we
can use an axiom to assert that GraduateStudent is a subclass of Student and
a fact to state that john is enrolledIn the WebTechnologies course.

In E-Connected ontologies it is also possible to use a fact to instantiate a link
property. For example, we can assert that SaintThomasIsland is an instance
of CaribbeanDestination and that it offers the surfing activity:

(destinations)

<rdf:Description rdf:about="#SaintThomasIsland">

<rdf:type>

<owl:Class rdf:about="#CaribbeanDestination"/>

</rdf:type>

<offersActivity>

<owl:ForeignIndividual rdf:about="&activities;#surfing">

<owl:foreignOntology rdf:resource="&activities;"/>

</owl:ForeignIndividual>

</offersActivity>

</rdf:Description>

The E-Connections framework imposes some restrictions to axioms and facts.
For example, a class cannot be declared in an ontology as a subclass of a
class declared in a foreign ontology in the combination. A property (object,
datatype or link) cannot be declared as sub-relation of a foreign property; an
individual cannot be declared as an instance of a foreign class, and a pair of
individuals cannot instantiate a foreign property.

12

E-Connections also constrain the use of URIs. In OWL-DL, a URI cannot be
used, for example, both as a class and a datatype, or as an object property
and a datatype property. In an E-Connected ontology, a set of additional
restrictions must be imposed, namely a URI cannot be used “locally” in two
different component ontologies. These issues will be addressed in detail later
on in the paper.

2.3 What is a E-Connection in a Semantic Web Context?

An E-Connection is a set of E-Connected ontologies. However, this definition
can be ambiguous, since it may not be apparent at the first sight to which set
we are referring to.

For example, let us consider again the “tourism” domain. At first sight, one
would say that we have a single E-Connection, namely, the one composed
by the ontologies: “destinations”, “activities”, “accommodations”, “people”.
However, this is not strictly correct.

Suppose that the “people” ontology contains an explicit contradiction. As-
sume we load the “accommodations” ontology in a reasoner and try to check
its consistency; what should the reasoner do? The “accommodations” ontology
contains no link property declarations, i.e., it is an “ordinary” OWL ontology.
In this case, an E-Connections aware reasoner should only check the con-
sistency of that ontology, and ignore the rest, i.e., it should not report the
inconsistency in the “people” ontology.

Given an E-Connected ontology, a reasoner should consider only all the E-
Connected ontologies in its transitive closure under link references. For ex-
ample, the “destinations” ontology defines a link property providesAccom-
modation to the “accommodations” ontology and a link offersActivity to the
“activities” ontology. Since “accommodations” does not contain any link prop-
erty (it is an ordinary OWL ontology) and “activities” only includes the link
property isOfferedAt to “destinations” again, the reasoner would consider the
following set of E-Connected ontologies:

Kdestinations = {destinations, accommodations, activities}

We say that Kdestinations is the E-Connection induced by the destinations on-
tology. Looking at the link references between the different ontologies of the
example, it is easy to see that:

Kaccommodations = {accommodations}

Kactivities = {activities, destinations, accommodation}

13

Kpeople = {people, destinations, accommodations, activities}

An OWL ontology O can be seen as an E-Connected ontology which induces
an E-Connection with O as its only component.

3 Modeling with E-Connections

E-Connections can be used, as in the example on tourism, for integrating
existing ontologies, which describe different application domains, by adding
knowledge about how these domains are related to each other.

In this section, we show how to use E-Connections the other way round, namely
for decomposing a knowledge base into smaller, connected ontologies. In or-
der to illustrate this application of E-Connections, we have built a set of
E-Connected knowledge bases from various ontologies available on the Web
and written in OWL. 4

As an example, let us consider the ontology used in the OWL documenta-
tion: the Wine Ontology (4). This ontology describes different kinds of wines
according to various criteria, like the area they are produced in, the kinds
of grapes they contain, their flavor and color, etc. For example, a “Caber-
net Franc Wine” is defined to be a dry, red wine, with moderate flavor and
medium body and which is made with Cabernet Franc grapes 5 :

CabernetFranc ≡ Wine u ∃madeFromGrape.{CabernetFrancGrape}u ≤
1madeFromGrape

CabernetFranc v
∃hasColor .{Red} u ∃hasFlavor .{Moderate} u ∃hasBody .{Medium}

A Bordeaux is defined to be a wine produced in the Bordeaux area 6 :

Bordeaux ≡ Wine u ∃locatedIn.{BordeauxRegion}

Note that the Wine Ontology does not contain information about wines only,
but also information about regions, wineries, colors, grapes, and so on. This

4 The original ontologies and their corresponding E-Connections are available
online at http://www.mindswap.org/2004/multipleOnt/FactoredOntologies. The E-
Connected ontologies are written in an extension of OWL.
5 In this section, instead of using the RDF/XML notation as in Section 2 we will
use for clarity and brevity standard DL notation. The equivalence between this
notation and abstract syntax is summarized in Tables 2 and 3.
6 In both examples the braces represent nominals.

14

illustrates a general feature of OWL ontologies: although they usually refer to
a core application domain, they also contain “side” information about other
secondary domains.

This modeling paradigm is not only characteristic of small and medium sized
ontologies, but also occurs in large, high-quality knowledge bases, written by
groups of experts. A prominent example is the NCI (National Cancer Insti-
tute) ontology (13), a huge ontology describing the cancer domain. The NCI
ontology is mainly focused on genes, but it also contains some information
about many other domains, like professional organizations, funding, research
programs, etc. 7

In all these cases, it is more natural to represent each application domain
in a different E-Connected ontology, where link properties are used in the
component KBs whenever information from a different ontology in the combi-
nation is required. The component ontologies in an E-Connection are mostly
self-contained in the sense that they only contain information about a sin-
gle “topic”, and are loosely coupled, since the coupling between E-Connected
ontologies can only be achieved through restrictions on link properties.

In the case of the Wine Ontology, the combined KB is composed of six ontolo-
gies, dealing with grapes, wine descriptors (color, flavor,...), regions, wineries,
years, and wines respectively 8 .

Figure 1 shows a visualization of the resulting E-Connection.

In the graph, the nodes represent E-Connected ontologies and their size is
proportional to the number of entities and axioms they contain. An edge
(v1, v2) represents the existence of a link property with source ontology v1 and
target ontology v2.

The blue nodes in the graph represent leaf nodes, i.e. components that have
“incoming” link properties only. These components are free-standing, in the
sense that they do not use information from any other component in the E-
Connection and are written in plain OWL. On the other hand, red nodes
represent the nodes with outgoing edges, which depend on the information
contained in other E-Connected ontologies.

The graph in Figure 1 is a tree. The ontology dealing with wines is the only
one that uses information from other ontologies, which implies that wines
are central to the E-Connection. The remaining E-Connected ontologies are

7 The E-Connected version of NCI is also available at
http://www.mindswap.org/2004/multipleOnt/FactoredOntologies.
8 In this section, we are using a version of the Wine Ontology that does not import
the Food Ontology.

15

Fig. 1. The Wine Ontology as an E-Connection

leaves in the tree, and hence represent “secondary” sub-domains. Note that,
in general, the graph corresponding to an E-Connected knowledge base can
be an arbitrary directed graph.

When transforming a DL knowledge base into an E-Connected KB, many
object properties in the original ontology become link properties in the E-
Connected KB. For example, in the definition of Cabernet Franc wines, the
object property madeFromGrape becomes a link property from the wine ontol-
ogy to the grapes ontology, while hasColor , hasFlavor and hasBody connect
the wine ontology and the wine descriptors ontology. Obviously, this effect
depends on the number of E-Connected ontologies. Since many restrictions on
object properties in the original ontology become restrictions on links in the
combined KB, the expressivity tends to be pushed into the link properties.

The use of E-Connections for both integration and decomposition of OWL
knowledge bases suggests a new modeling methodology, applicable to knowl-
edge engineering with Description Logics in general, and to the Semantic Web
in particular. The core idea is to keep ontologies small and disjoint and to use
these ontologies as reusable units that can be combined in various ways using
E-Connections depending on the modeler’s needs.

It is worth emphasizing here that E-Connections are not a suitable technique
for combining ontologies dealing with highly overlapping domains, which pre-
vents its use in some important Knowledge Engineering applications, such as
ontology refinement. For example, if we developed a new ontology on grapes
with richer descriptions about a certain kind of grape, we would not be able
to connect it to the old one using our technique. However, E-Connections were
not designed for such a purpose.

16

4 Tool Support

In this section, we discuss the key issues to be addressed for providing tool and
application support for E-Connections, and we describe our implementation
of an E-Connection aware infrastructure that extends the OWL-API (14) and
is integrated to the ontology editor SWOOP (11). 9

4.1 Requirements

4.1.1 Basic Functionality

A basic implementation for E-Connections must perform similar tasks as an
OWL implementation itself:

• Serializing: Producing the extended OWL concrete syntax, introduced in
Section 2, from some internal representation.

• Modeling: Providing a suitable internal representation (model) for E-Connected
ontologies.

• Parsing: Building an internal representation from a document in the con-
crete syntax.

This basic functionality must be provided by Semantic Web high-level pro-
gramming interfaces, such as the OWL-API.

Ontology browsers and editors must provide additional rendering and editing
functionality. Perhaps, the most important requirement for an E-Connections
aware ontology editor is the ability to deal effectively with multiple ontologies,
which implies, for example, the ability to load, save and manipulate several
ontologies simultaneously, as well as the ability to easily navigate from one to
another.

Ontology editors must also be able to provide browsing and editing capabilities
for the extended RDF/XML and abstract syntaxes 10 and support for the
simultaneous use of imports and E-Connections.

4.1.2 Combining Imports and E-Connections

The combined use of E-Connections and owl:imports raises a number of diffi-
culties. For example, suppose a simple case in which we have two connected

9 SWOOP is available for download at http://www.mindswap.org/2004/SWOOP.
10 The extended abstract syntax for E-Connections will be presented in next section.

17

ontologies: the ontology OA about “people” and the ontology OB about “an-
imals”. Suppose that in OA there are link properties connecting OA to OB

and vice-versa. Assume that the modeler decides at some point that persons
should be described as a subclass of animals and that the application which
is using the connected ontologies relies on such a decision. Consequently, the
modeler makes OA import OB. The following issue immediately arises: what
should a tool automatically do in such a case?

In principle, an editor should automatically modify the ontology OA, and
leave the ontology OB unaltered in the workspace, in order to comply with
the asymmetric nature of the owl:imports construct. Then, the tool should
transform, in OA, all the link properties from OA to OB and from OB to OA
11 into ordinary object properties. In other words, OA is transformed into a
“plain” OWL ontology, which treats the domains of people and animals as a
single one.

However, those modifications leave the ontology OB, which is still E-Connected
to the (modified) OA ontology, in a pretty much non-sensical state, since OB

would be E-Connected to the “union” of OA and itself. What should happen
next? Clearly, the E-Connection has been “broken” by the owl:imports state-
ment, since, as we will discuss later, there is a violation in the restrictions on
the usage of URIs within an E-Connection.

In such a situation, “merging” OA and OB reveals as the most plausible solu-
tion. A merge would enforce that all the link properties pointing to OB will
now point to OA (which is importing OB) and all the link properties from OB

will become object properties. These operations will “disconnect” OB from
the combination.

4.2 Implementation

4.2.1 Extending the OWL-API

We have extended Manchester’s OWL-API in order to provide a high-level
programmatic interface for parsing, serializing and manipulating E-Connected
ontologies. Our aim has been to design a smooth extension to the API that
respects its main design decisions and provides the required functionality.

The OWL-API RDF parser and internal model have been extended to deal
with the new constructs. Link properties in an E-Connected ontology are in-
ternally represented as object properties that additionally specify the URI of
its target ontology. On the other hand, E-Connected ontologies extend OWL

11 Note that those are imported.

18

ontologies with functionality for retrieving link properties and foreign entities
(classes, properties and individuals).

In order to manipulate the structures in the internal representation, we have
provided functionality for adding/removing a foreign entity to/from an E-
Connected ontology, and to set the target ontology of a link property. The
functionality for adding/removing link properties is provided by reusing the
corresponding functionality for object properties.

This simple infrastructure is sufficient for building E-Connections aware Se-
mantic Web tools on top of the OWL-API.

4.2.2 Extending SWOOP

SWOOP (11) is a Web Ontology browser and editor, which has been especially
designed for complying with the OWL nature and specifications. The main
design goal has been to allow the user to create OWL ontologies rapidly and
intuitively.

SWOOP assumes the use of multiple ontologies and supports this use in a
number of ways. Being an open multiple ontology engineering environment,
SWOOP is an ideal testbed for experimenting with E-Connections in the Se-
mantic Web context.

SWOOP uses the new functionality added to the OWL-API in order to provide
basic rendering and editing support for E-Connections. As in the case of the
OWL-API, we have tried to keep the main UI and design decisions in SWOOP
and to incorporate the required functionality with a minimal extension of the
code.

The extension of the OWL-API automatically provides the functionality for
loading and saving E-Connected ontologies in the extended RDF/XML syntax
presented in Section 2. When loading an E-Connected ontology, link properties
and foreign entities are distinguished in the UI from the rest of OWL entities.

The renderers have been slightly extended in order to support the new ele-
ments. The Ontology Information renderer provides useful statistics, such as
the number of link properties, foreign classes, properties and individuals in an
E-Connected ontology. The concise format entity renderer has been extended
to display properly link properties and foreign entities. In the case of link
properties, the renderer pane shows its target ontology, while in the case of
foreign entities the pane shows the (foreign) ontology in which the entity has
been defined. All these elements are hyperlinked; thus, for example, if the user
clicks on the URI of a foreign ontology, the ontology will be loaded in the
workspace. The idea is to provide easy and intuitive navigation through the

19

ontologies in an E-Connection. Finally, the Abstract Syntax entity renderer
displays the extended OWL abstract syntax that will be presented in next sec-
tion, while the RDF/XML entity renderer provides the extended RDF/XML
code for the entity, as presented in Section 2.

SWOOP provides basic tool support for creating and editing E-Connected
ontologies. Link properties can be added to the ontology and it is possible to
define restrictions on them. Incorrect editing is prevented when possible: link
properties cannot be made transitive or symmetric and restrictions on link
properties can only be applied to classes/individuals in its target ontology.

Finally, SWOOP provides a graph layout for visualizing the connections be-
tween components in an E-Connection. Given a selected ontology in the workspace,
SWOOP allows to display its induced E-Connection. Figure 1 shows the graph
corresponding to the Wine Ontology.

5 An Extension of OWL-DL

5.1 Abstract Syntax

The syntax presented in this section is an extension of the normative OWL
abstract syntax, as described in the OWL abstract syntax and semantics rec-
ommendation (3), and we use the same Extended BNF syntax as in the nor-
mative document.

An E-Connected ontology K contains a sequence of annotations, axioms and
facts. Annotations, as in OWL, can be used to record authorship and other
information associated with the ontology, including imports.

E-ConnectedOntology :: =
‘E-ConnectedOntology(’[ontologyID] { directive } ‘)’

directive :: = ‘Annotation(’ ontologyPropertyID ontologyID ‘)’
| ‘Annotation(’ annotationPropertyID URIreference ‘)’
| ‘Annotation(’ annotationPropertyID dataLiteral ‘)’
| ‘Annotation(’ annotationPropertyID individual ‘)’
| axiom
| fact

E-Connected ontologies are referenced using a URI. E-Connected ontologies
contain information about the same kind of entities as OWL ontologies (classes,
object properties, etc.), but they also contain information about link proper-
ties. Link properties are also denoted by URI references.

20

linkID :: = URIreference

In order to ensure the separation of vocabularies, a URI-reference cannot be
both a linkID, an individual-valued property ID, a datatype property ID, an
annotation property ID or an ontology property ID in an E-Connected ontol-
ogy. Intuitively, while individual-valued properties relate individuals to other
individuals in the same ontology, link properties relate individuals correspond-
ing to different interpretation domains. Thus, link properties act as a bridge
between different ontologies, which remain separate, and keep their own iden-
tity.

An OWL ontology in the abstract syntax contains a sequence of axioms and
facts. In order to provide support for E-Connections on the Semantic Web,
we propose a syntactic and semantic extension of OWL-DL with new kinds
of axioms and facts. Every OWL ontology can be seen as an E-Connected
ontology in which no link properties have been declared.

5.1.1 Axioms

In a E-Connected ontology, link properties can be defined using the following
axiom:

axiom ::= ‘Link(’ linkID[‘Deprecated’] { annotation }
‘foreignOntology(’ OntologyID’)’
{ ‘super(’ linkID ‘)’ }
{ ‘domain(’ description ‘)’ }
{ ‘range(’ foreignDescription ‘)’ }
[‘inverseOf(’ linkID ‘)’]
[‘Functional’ | ‘InverseFunctional’]

Link properties used in an abstract syntax ontology must be declared, and
hence need an axiom. A link property cannot be declared twice as referring to
different ontologies.

Link properties can be made functional or inverse functional and can be given
global domains and ranges. As opposed to object properties, link properties
cannot be made transitive or symmetric.

Link properties can be equivalent to or sub-properties of others. Of course, in
order for these axioms to model useful information, the link properties that are
related through equivalence or subsumption should refer to the same foreign
ontology.

axiom ::= ‘EquivalentProperties(’ linkID linkID { linkID } ‘)’

21

| ‘SubPropertyOf(’ linkID linkID ‘)’

In E-Connections the coupling between the ontologies is achieved through re-
strictions on link properties. As in OWL, universal (allValuesFrom), existential
(someValuesFrom) and value (hasValue) restrictions can be defined.

restriction::= ‘Restriction(’linkID
linkRestrictionComponent { linkRestrictionComponent } ’)’

linkRestrictionComponent::= ‘allValuesFrom(’ foreignDescription ‘)’
| ‘someValuesFrom(’ foreignDescription ‘)’
| ‘value(ForeignIndividual(’ individualID ‘))’
| cardinality

Range axioms and restrictions on link properties are referred to foreign class
descriptions. Foreign classes are classes that, though used in a certain E-
Connected ontology, correspond to a different ontology in the combined knowl-
edge base. If a foreign description is used in a range axiom or in a restriction
corresponding to a link property, it will always be interpreted in the domain
of the target ontology of the link property.

foreignDescription ::= ‘ForeignClass(’ description ‘)’

5.1.2 Facts

Our proposal extends the OWL-DL facts by adding the following production
rule to the normative OWL abstract syntax:

value ::= ‘value(’ ForeignIndividual(linkID individualID ’)’

These facts allow to instantiate link properties with named individuals.

5.2 Direct Model-Theoretic Semantics

This section provides a model-theoretic semantics to E-Connected ontologies
written in the abstract syntax.

As in OWL, the definition of the semantics starts with the notion of a combined
vocabulary.

Definition 1 A combined OWL vocabulary V consists of a set VL of lit-
erals and the following sets of URI references: For i = 1, ..., n, VCi

are sets of
class names, each of which contains owl:Thing and owl:Nothing; VIi

are sets

22

of individual names; VDPi
, VIPi

and VAPi
are sets of datatype, object and anno-

tation property names respectively, where each VAPi
contains owl:versionInfo,

rdfs:label, rdfs:comment, isDefinedBy, seeAlso; VD is the set of datatype names,
which also contains the URI references for the built-in OWL datatypes and
rdfs:Literal; VO the set of ontology names and VOP the set of URI references
for the built-in ontology properties; finally, for i, j = 1, ..., n with i 6= j, Eij are
sets of URI references denoting link properties.

In any vocabulary, the (VCi
−{owl : Thing, owl : Nothing}) are pair-wise dis-

joint, and disjoint with VD. Also, ∀i, j = 1, ..., n; i 6= j, the VDPi
, VIPi

, (VAPi
−

{owl : versionInfo, rdfs : label, rdfs : comment}), VOP , Eij are all pair-wise
disjoint.

Given an E-Connected ontology, the vocabulary must include all the URI
references and literals utilized in each of the ontologies, as well as those used
in ontologies that are imported or referenced through a link property by any
of the component ontologies, but can contain other URI references and literals
as well.

As in OWL, a datatype d is characterized by a lexical space, L(d), which is a
set of Unicode strings; a value space, V (d); and a total mapping L2V (d) from
the lexical space to the value space.

Definition 2 A datatype map D is a partial mapping from URI references
to datatypes that maps xsd:string and xsd:integer to the appropriate XML
Schema datatypes.

The model-theoretic semantics is provided by the notion of a combined inter-
pretation.

Definition 3 Let D be a datatype map. A combined OWL interpretation
with respect to D with combined vocabulary V is a tuple of the form:

I = (R, (Ri)1≤i≤n, (ECi)1≤i≤n, (ERi)1≤i≤n, L, (Si)1≤i≤n, ED, LV, N),

where (with P being the powerset operator):

• R the set of resources of the interpretation is a non-empty set
• LV ⊂ R, the set of literal values of I, contains the set of Unicode strings,

the set of pairs of Unicode strings and language tags, and the value spaces
for each datatype in D

• Ri = Oi ∪ LV , where Oi is non-empty, disjoint from LV and disjoint from
Oj,∀j = 1, ..., n; i 6= j

• ECi : VCi
→ P(Oi)

• ED : VD → P(LV)
• ERi : VIPi

→ P(Oi ×Oi)

23

Fig. 2. A Combined Interpretation

• ERi : VDPi
→ P(Oi × LV)

• ERi : Eij → P(Oi ×Oj)
• L : TL → LV , where TL is the set of typed literals in VL

• ERi : VAPi
→ P(Ri ×Ri)

• ERi : VOP → P(Ri ×Ri)
• Si : VIi

→ Oi

• Si : VIi
∪VCi

∪VD∪VDPi
∪VIPi

∪VAPi
∪Eij∪{ owl:Ontology, owl:DeprecatedClass,

owl:DeprecatedProperty } → N , where N ⊂ R 12 is disjoint with LV and
with each of the Oi,∀i = 1, ..., n

• ECi(owl : Thing) = Oi ⊆ R
• ECi(owl : Nothing) = ∅
• ECi(rdfs : Literal) = LV
• If D(d′) = d then ED(d′) = V (d)
• If D(d′) = d, then L(‘v′∧∧d′) = L2V (d)(v)
• If D(d′) = d and v /∈ L(d), then L(‘v′∧∧d′) ∈ R− LV

In a combined OWL interpretation, the functions (ECi)1≤i≤n provide logical
meaning for URI references used as classes in the E-Connected ontology Ki.
The functions (ERi)1≤i≤n assign logical meaning to the URIs in the ontologies
(Ki)1≤i≤n that are used as OWL properties or links 13 . In a combined interpre-
tation the abstract interpretation domain is partitioned into n disjoint parts,

12 Vocabulary Names.
13 As in OWL, the property rdf:type is added to the annotation properties in order
to provide meaning for deprecation.

24

Abstract Syntax Interpretation (value of ECi)

restriction(l allValuesFrom({x ∈ Oi|(x, y) ∈ ERi(l) ⇒ y ∈ ECj(c)}
ForeignClass(c)))

restriction(l someValuesFrom({x ∈ Oi|(x, y) ∈ ERi(l) ∧ y ∈ ECj(c)}
ForeignClass(c)))

restriction(l value({x ∈ Oi|(x, Sj(id)) ∈ ERi(l)}
ForeignIndividual(id)))

restriction(l minCardinality(n)) {x ∈ Oi|#({y ∈ Oj : (x, y) ∈ ERi(l)}) ≥ n}

restriction(l maxCardinality(n)) {x ∈ Oi|#({y ∈ Oj : (x, y) ∈ ERi(l)}) ≤ n}

restriction(l Cardinality(n)) {x ∈ Oi|#({y ∈ Oj : (x, y) ∈ ERi(l)}) = n}
Table 1 Extension of ECi

each of which corresponding to a different component ontology. Link proper-
ties are interpreted through (ERi)1≤i≤n as pairs of elements corresponding to
different parts of the abstract logical domain.

The function L provides meaning for typed literals and the function ED to
the datatypes used in the E-Connection. Note that, as opposed to the ab-
stract interpretation domain, the domain in which datatypes and literals are
interpreted is not partitioned.

The functions (Si)1≤i≤n provide meaning to OWL individuals. Analogously
to OWL, these functions are extended to plain literals in VL by mapping
them onto themselves. Note that, if the same literal “l” is used in different
component ontologies, say i, j, the functions Si, Sj will map it to the same
value in LV , i.e. Si(l) = Sj(l) = l ∈ LV .

The functions ECi are extended to class descriptions, individuals and annota-
tions an in the OWL specification (3); the additional constructs are interpreted
according to Table 1, where l is a link property declared in Ki with foreign
ontology Kj.

A combined OWL interpretation I satisfies axioms and facts as given in the
OWL specifications (3) and in Table 2.

We now define precisely the notion of the E-Connection induced by an ontol-
ogy, introduced informally in Section 2.3.

Definition 4 Let K1 be an E-Connected ontology. The E-Connection in-
duced by of K1 is defined to be the following set of E-Connected ontologies:

K = (K1, ..., Kn) = clos(K1)

where the set clos(K1) is inductively defined as follows:

25

Directive Conditions on Interpretations

Link(l [Deprecated] [(Si(l), S(owl:DeprecatedProperty)) ∈ ERi(rdf:type)]

foreignOntology(Ontj) ERi(l) ⊆ Oi ×Oj

annotation(p1 o1) ... Si(l) ∈ ECi(annotation(p1 o1))...

... annotation(pk ok) ...Si(l) ∈ ECi(annotation(pk ok))

super(s1) ... super(sn)) ERi(l) ⊆ ERi(s1) ∩ ... ∩ ERi(sn)

domain(d1)... domain(dn) ERi(l) ⊆ ECi(d1)×Oj ∩ ... ∩ ECi(dn)×Oj

range(r1) ... range(rn) ERi(l) ⊆ Oi × ECj(r1) ∩ ... ∩Oi × ECj(rn)

[inverseOf(m)] ERi(l) = (ERj(m))−

[Functional] ∀x ∈ Oi ∀y, z ∈ Oj , (ERi(l))(x, y)

∧(ERi(l))(x, z) → y = z

[InverseFunctional] ∀y, z ∈ Oi, ∀x ∈ Oj , (ERi(l))(y, x)

∧(ERi(l))(z, x) → y = z

EquivalentProperties(l1...ln) ERi(lj) = ERi(lk)∀1 ≤ j ≤ k ≤ n

SubpropertyOf(l1, l2) ERi(l1) ⊆ ERi(l2)
Table 2 Interpretation of Axioms and Facts

• K1 ∈ clos(K1).
• If K ′ belongs to clos(K1) and there is a link property with source K ′ and

target K ′′, then K ′′ ∈ clos(K1).

Note that an E-Connected ontology K1 is an “ordinary” OWL ontology, as
specified in the normative documents if and only if the E-Connection induced
by K1 is precisely itself, i.e. K = (K1).

Since a URI can be used in an E-Connected ontology either as local or foreign,
we need to provide a formal distinction between both cases. For such a purpose,
we introduce the notion of a URI to belong to an E-Connected ontology as
follows:

Definition 5 Let K = (K1, ..., Kn) be the E-Connection induced by K1. We
say that a URI reference u belongs to the E-Connected ontology Ki if either
of the following conditions holds:

• It is used in Ki or in an ontology imported by Ki, but not in the context of
a restriction on a link property.

• It is used in Kj, j 6= i in the context of a restriction on a link property with
foreign ontology Ki.

For example, assume that the URI foo:Publication is used in an E-Connected

26

ontology O1 in the context of the following restriction: restriction(l Foreign-
Class (foo:Publication)), where l is defined to be a link property with foreign
ontology O2; then, the URI would belong to the ontology O2 and would nec-
essarily need to be declared as a class in O2.

The semantics of an E-Connection is given as follows:

Definition 6 Let D be a datatype map, K1 be an E-Connected ontology, and
K = (K1, ..., Kn) the E-Connection induced by K1 . A combined OWL inter-
pretation I with respect to D with vocabulary V , satisfies K1 (denoted by
I |= K1) iff:

(1) Each URI reference belonging to Ki, used as a classID (datatypeID,
individualID, data-valued property ID, annotation property ID, annota-
tion ID, ontology ID) belongs to a single component ontology Ki and is
contained in VCi

(VD, VIi
, VDPi

, VIPi
, VAPi

, VO, respectively).
(2) Each literal in Ki belongs to VL.
(3) Each URI reference in Ki used as a linkID, with foreign ontology Kj, is

in Eij.
(4) I satisfies each directive in Ki, except for ontology annotations.
(5) There is, for all i = 1, ..., n some oi ∈ N ⊂ R with (oi , Si(owl : Ontology)) ∈

ERi(rdf : type) such that for each ontology annotation of the form Annotation(p v),
(oi, Si(v)) ∈ ERi(p) and if the component ontology Ki has name ni, then
Si(ni) = oi.

(6) I satisfies each E-Connected ontology in K.
(7) I satisfies each ontology mentioned in an owl:imports annotation directive

of any Ki.

At this point, it is worth discussing the semantics we have provided to URIs
within an E-Connection.

The meaning of names is a contentious issue in the Semantic Web. Numerous
proposals have been given for how to provide meaning for names in the Seman-
tic Web, ranging from a strict localized model-theoretic semantics to proposals
for a unified single meaning. Certainly, the latter was the original goal of URIs,
as “global” identifiers. However, currently, the meaning of a name in RDF and
hence in OWL is relative to a particular RDF graph (15). In other words, the
meaning of the same URI in other documents is not considered at all. The
only way that the OWL standards provide in order to take into account the
meaning of a URI in a different ontology is to import that ontology. When
an ontology imports another one, identical URIs are merged ; otherwise, the
meaning of a URI is entirely “local” to an RDF/OWL document.

In the framework of E-Connections, we provide a stronger meaning to URIs.
Roughly, we prevent the use of the same global name (URI reference) to
denote different things within an E-Connection. Suppose we use the same

27

URI to denote an individual in two different ontologies. For example, as-
sume we use the URI http://www.mindswap.org/bob to denote an individual
in an ontology about people and in an ontology about “pets” and suppose
that we consider an E-Connection which includes both ontologies. It is a fun-
damental assumption in the E-Connections formalism that the (interpreta-
tion) domains of the component ontologies are disjoint. Hence, if the URI
http://www.mindswap.org/bob is used as a name for an individual in both the
“pets” and “people” ontology, it necessarily refers to two different entities. In
such a case, an E-Connections aware reasoner should detect an inconsistency.
Thus, we are extending the meaning of a URI from a single document to the
context of its induced E-Connection.

Recall also that, although each ontology within an E-Connection is interpreted
in a different domain, datatypes in every ontology are interpreted in the same
domain. As opposed to the case of object domains, there is no reason to par-
tition the datatype domain. Note that the original E-Connections framework
as presented in (8) does not consider datatype theories, nor we considered
datatypes in the reasoning algorithms presented in (16). However, our ap-
proach in this paper concerning datatypes does not affect the results in (8)
and allows for a straightforward extension of the algorithms in (16).

The main reasoning services are, as in OWL, consistency and entailment.

Definition 7 An E-Connected ontology K1 is consistent with respect to a
datatype map D (denoted by I |=D K iff there is some combined interpretation
I with respect to D such that I satisfies K1.

Definition 8 An E-Connected ontology K1 entails an E-Connected ontology
K2 with respect to a datatype map D, denoted by K1 |=D K2 iff every combined
interpretation that satisfies K1 with respect to D also satisfies K2 with respect
to D.

The following results are a straightforward consequence of the definitions of
entailment and satisfaction under a combined interpretation:

Consequence 1 Let K1 be an E-Connected ontology and K = (K1, ..., Kn)
be the E-Connection induced by K1. Then K1 |=D Kj, ∀j = 1, ..., n.

Consequence 2 The E-Connection K = (K1, ..., Kn) induced by K1 entails
the E-Connection O = (O1, ..., Om) induced by O1 with respect to a datatype
map D (K |=D O) iff K1 |=D O1.

These results show that a E-Connection is identified in a Semantic Web context
by its “generating” E-Connected ontology.

28

Construct Name DL Syntax OWL Syntax Logic

Atomic Concept A A(URI reference)

Universal Concept > owl:Thing

Atomic Role R R (URI reference)

Conjunction C uD intersectionOf(C,D) S

Disjunction C tD unionOf(C,D)

Negation ¬C ComplementOf(C)

Existential Restriction ∃R.C restriction(R someValuesFrom(C))

Value Restriction ∀R.C restriction(R allValuesFrom(C))

Transitive Role Trans(R) ObjectProperty(R [Transitive])

Role Hierarchy R v S subPropertyOf(R,S) H

Inverse Role S = R− ObjectProperty(S [inverseOf(R)]) I

Nominals {o1, ..., on} OneOf(o1,, on) O

Functional Role Funct(R) ObjectProperty(R [Functional]) F

Functional ≥ 2R restriction(R minCardinality(1))

Number Restrictions ≤ 1R restriction(R maxCardinality(1))

Unqualified ≥ nR restriction(R minCardinality(n)) N

Number Restrictions ≤ nR restriction(R maxCardinality(n))
Table 3 The SH family of Description Logics

6 Reasoning

6.1 Reasoning in OWL

OWL-DL and OWL-Lite can be seen as expressive Description Logics, with an
ontology being equivalent to a Description Logics knowledge base. Among the
myriad of very expressive DLs, the SH family of logics plays a prominent role
(17). All modern, highly optimized DL reasoners, such as FaCT (18), RACER
(19) and Pellet (12) have been designed for these logics.

In order to obtain a suitable balance between computational properties and
expressivity, the design of the DL-based species of OWL has been grounded on
the SH family of logics. OWL-Lite corresponds to SHIF(D), while OWL-DL
corresponds to SHOIN (D).

The first algorithm for the logic SH was presented in (20). The extension for

29

SHIF was presented in (21), and qualified number restrictions (an extension
of the number restrictions used in OWL) were introduced for the logic SHIQ
in (17). Nominals and datatypes were presented for the logic SHOQ(D) in
(22). In (23) it was proved using the tableau systems formalism that satisfia-
bility in SHIO is can be decided with a tableau algorithm. Finally, the design
of a reasoning procedure for SHOIQ has been achieved only very recently
(24).

6.2 A Family of E-Connection Laguages

There are two ways to obtain new E-Connection languages. The first possibility
is to vary the set of component logics; the second would be to change the logic
of the link properties, i.e., to vary the set of operators that can be applied on
link properties. Different choices in the component logics and in the logic of
the link properties will yield, in general, different combination languages, with
different expressivity and computational properties.

A family of E-Connection languages can be specified by fixing the component
logics and varying the logic of the link properties. In this paper, we have tac-
itly specified, in the abstract syntax and semantics section the E-Connection
language CEIHN (SHOIN (D)), i.e., the E-Connection language that allows the
use all the expressivity of SHOIN (D), and hence of OWL-DL, in the com-
ponent ontologies, and the use of inverse link properties, link hierarchies and
someValuesFrom, allValuesFrom, hasValue and Cardinality restrictions on link
properties.

It is not hard to see that the first requirement for reasoning on an E-Connection
language is the ability to reason independently on each of its component log-
ics. Our aim is to show that it is possible to design and implement practi-
cal tableau-based algorithms for E-Connections on top of existing DL rea-
soners. Therefore, in this paper, we will focus on the family of combina-
tion languages having as component logics the three most prominent frag-
ments of SHOIN (D) that have been implemented in DL reasoners, namely
SHIN (D), SHON (D) and SHIO(D) and investigate their expressiveness,
usefulness, and computational properties.

Once the component logics have been identified, it remains to investigate
the expressivity that should be allowed on link properties. The language
CEIHN (SHIN (D), SHON (D),SHIO(D)) is the most expressive fragment of
CEIHN (SHION (D)) that can be obtained using as component logics SHIN (D),
SHON (D) and SHIO(D). In this language, each of the component ontolo-
gies can be written either in SHIN (D), or in SHON (D), or in SHIO(D),
and the full expressivity on link properties is allowed.

30

Construct Name Syntax Naming Scheme

Atomic Link p ∈ Eij

Existential Restriction ∃p.Z C(SHIN (D),SHON (D),SHIO(D))

Universal Restriction ∀p.Z

Atleast Number Restriction ≥ np N

Atmost Number Restriction ≤ np

Link Inversion p− I

Funct. Link Axiom Funct(p) F

Funct. Number Restrictions ≥ 2p,≤ 1p

Link Inclusion Axiom p v q H
Table 4 E-Connection Languages

However, due to the presence of inverses in this language, cardinality restric-
tions on link properties allow to transfer nominals in its full generality from one
component to another (8), which would invalidate the separation of domains
and hence “break” the E-Connection. 14 .

However, it is worth emphasizing here that, in many special cases, we can still
process CEIHN (SHIN (D),SHON (D),SHIO(D)) combined ontologies, even
if number restrictions and inverses on link properties, as well as nominals, are
used in the combination.

A CEIHN (SHIN (D),SHON (D),SHIO(D)) E-Connected KB K = (K1, ..., Kn)
can be processed as long as, for every possible pair of component ontologies
Ki, Kj for i, j ∈ {1, ..., n}, i 6= j, the following conditions do not hold simulta-
neously :

(1) Any of Ki, Kj contains nominals.
(2) An inverse of a link property from Ki to Kj or vice-versa is used.
(3) Number restrictions on links from Ki to Kj or vice-versa are used.

Of course, in order to be able to handle arbitrary combined ontologies, we
need to further restrict the expressivity allowed on link properties.

In the sections that follow, we will discuss how the two obvious fragments of
CEIHN (SHIN (D),SHON (D),SHIO(D)) not containing inverses and cardi-
nality restrictions on link properties simultaneously can be handled algorith-
mically.

14 Obviously, if none of the component logics contained nominals, it would be safe
to use the full expressivity on the link properties.

31

6.3 Tableau Algorithms for E-Connections of Description Logics

So far, we have discussed which E-Connection languages we can handle al-
gorithmically, but we have not yet explained how the reasoning is actually
performed and implemented. In this section, we provide a general intuition on
how the reasoning algorithms we have developed for E-Connections work. We
will not include here a detailed formal presentation of the algorithms, nor the
proofs of correctness and completeness; we refer the interested reader to (16)
for a detailed discussion.

Modern DL reasoners, like FaCT, RACER and Pellet implement the tableaux
method (25) for solving the main reasoning tasks in expressive Description
Logics.

Tableau algorithms are focused on satisfiability; other reasoning problems,
like subsumption, or entailment (the main inference problem in OWL) can be
solved by first reducing them to satisfiability (26).

In order to check satisfiability of a given concept C0 w.r.t. a knowledge base
Σ, a tableau algorithm tries to construct a common model of C0 and Σ. If it
succeeds, then the algorithm determines that C0 is satisfiable w.r.t. Σ, and
unsatisfiable otherwise.

The main elements that specify a tableau algorithm are (27):

• An underlying data structure, called the completion graph.
• A set of expansion rules.
• A blocking condition, for ensuring termination.
• A set of clash-triggers, to detect logical contradictions (clashes).

Completion graphs are finite, labeled, directed graphs, which roughly corre-
spond to abstractions of possible models for C and Σ. Depending on the DL
under consideration, completion graphs can be restricted to trees (for exam-
ple, in SHIQ), forests (in SHOQ and SHIO) or to directed acyclic graphs
(SHOIN).

Each node and edge in a completion graph G is labeled with a set of concepts
and a set of roles respectively. To decide the satisfiability of C w.r.t. Σ, the
algorithm generates an initial graph G, constructed from C and Σ and repeat-
edly applies the expansion rules until a clash (i.e. a contradiction) is detected
in the label of a node, or until a clash-free graph is found to which no more
rules are applicable. The application of a rule may add new concepts to the
label of a node, trigger the generation of a new node or cause two different
nodes to merge.

32

Tableau algorithms for expressive DLs are non-deterministic in the sense that
there might exist completion rules that yield more than one possible outcome.
A tableau algorithm will return “satisfiable” iff there exists at least one way
to apply the non-deterministic rules such that a clash-free graph is obtained,
to which no rules are applicable.

Termination is guaranteed through blocking : halting the expansion process
when a “cycle” is detected (25). When the algorithm detects that a path in
the graph will be expanded forever without encountering a contradiction, then
the application of the generating rules is blocked, so that no new nodes will be
added to that path. There are different kinds of blocking conditions, depending
on the presence of inverses and number restrictions in the logic.

The basic strategy to extend a DL tableau algorithm with E-Connections
support is based on “coloring” the completion graph 15 . Nodes of different
“colors”, or sorts, correspond to different domains (ontologies).

The presence of someValuesFrom and minCardinality restrictions on a node
label trigger the generation of a successor node of a different “color”. The
presence of different kinds of nodes in a the graph has several consequences in
the way the tableau algorithm works:

• A node may only be blocked by an ancestor node with the same color,
and the blocking condition applied to those nodes depends on the logic of
the corresponding component ontologies. This implies, for example, that if
a certain component ontology does not contain inverse object properties,
we can apply subset blocking to its corresponding nodes in the tableau
expansion even if other component ontologies do contain inverses.

• If a node x is a successor of a node y with a different color, then a special
blocking condition is applied to x. Such a blocking condition only depends
on the logic of the link properties, and not on the logic of the component
ontology to which x corresponds. Intuitively, if inverses on link properties
are present, then equality blocking is applied; otherwise, subset blocking
suffices.

• In Description Logics, a TBox (the part of the ontology that does not contain
facts) can be made equivalent to a single class. Such a concept is then
added to the label of all the nodes in the graph during the execution of the
algorithm. With E-Connections, each component ontology TBox is made
equivalent to a different class, and each of those classes is added only to the
labels of nodes corresponding to that component ontology.

• The presence of maxCardinality restrictions and nominals (has-Value, oneOf)
in node labels may cause the merge of two nodes in the graph. Obviously,

15 Please, note that our problem has no relation with the graph coloring problem.
We just use the term “color” metaphorically to distinguish between different kinds
of nodes.

33

only nodes of the same color can ever be merged.

When implementing tableau algorithms for E-Connections as an extension of
an OWL reasoner, all these issues have to be thoroughly considered.

6.4 Implementation in an OWL reasoner

We have implemented the tableau algorithms for the E-Connection languages
CEIH(SHIN (D),SHON (D),SHIO(D)) and CEHN (SHIN (D),SHON (D),SHIO(D))
in the OWL reasoner Pellet.

Pellet is a sound and complete tableau reasoner for the Description Logics
SHIN (D), SHON (D) and SHIO(D) (with ABoxes). Pellet implements the
usual suite of optimizations, including lazy unfolding, absorption, dependency
directed backjumping, and semantic branching. It provides support for han-
dling conjunctive ABox queries and incorporates datatype reasoning for the
built-in primitive XML Schema datatypes. Pellet is implemented in pure Java
and available as open source software.

Pellet has been extended to process E-Connected ontologies written in the
RDF/XML syntax presented in the first part of this paper. Reasoning support
for E-Connections has been integrated as a true extension of Pellet, since
reasoning with a single knowledge base can be seen as a particular case of E-
Connections where no link properties are present. An E-Connected knowledge
base has been implemented as a collection of TBoxes and RBoxes, indexed by
the ontology they correspond to. During parsing, each class, object property,
datatype property and link property is added to its corresponding component,
and after parsing each component of the KB is pre-processed separately.

When performing a satisfiability test, the nodes in the tableau expansion are
also labeled with the ontology they refer to. Links are implemented as ob-
ject properties of a special kind, since they indicate the name of the foreign
ontology they point to. When the generating link rules are applied, the ontol-
ogy label of the new nodes is set to the foreign ontology of the link property
involved in the rule application. The distinction between different kinds of
nodes also implies that the rules will only merge nodes belonging to the same
ontology, and the class names in labels will be replaced by their definition in
the corresponding ontology.

Finally, blocking distinguishes between nodes which are generated as link suc-
cessors and nodes created as successors of common roles, since different con-
ditions apply.

When a KB is represented using E-Connections, we can use a set of optimiza-

34

tion techniques that would not be applicable if the KB had been represented
monolithically using a single KB in OWL. All these techniques take advantage
of the partitioning of the domains in order to reduce the computational cost:

• Detection of obvious non-subsumptioms: Detecting non-subsumptions
is hard for tableaux algorithms (28). Typically, when computing the classi-
fication hierarchy of a DL ontology, many subsumption tests that are per-
formed at each node are very likely to fail. These unnecessary tests can
be computationally costly and also very repetitive, and hence they affect
significantly the performance of a DL reasoner. This problem is usually
dealt with using caching, an optimization technique that allows to prove
non-subsumptions by using cached results from previous satisfiability tests.

In an E-Connection, many non-subsumptions become obvious, since a
subsumption test A v B involving two classes A, B belonging to different
ontologies in the E-Connection will necessarily fail. However, if these classes
were contained in a DL ontology, the satisfiability test could have been ac-
tually performed. Hence, the separation of ontologies using E-Connections
naturally enhances the effect of caching for avoiding unnecessary subsump-
tion tests.

• Separation of non-absorbable GCIs: When general inclusion axioms are
present in a knowledge base, a disjunction must be added to the label of each
node for each GCI. The resulting increase of non-determinism in the tableau
expansion dramatically affects the performance of the DL reasoner. In order
to overcome this problem, modern DL reasoners implement an optimization
technique called absorption (28), which allows to transform many GCIs into
primitive definition axioms. However, although absorption typically allows
to eliminate most of the GCIs in a knowledge base, many general axioms
may still remain. Non-absorbable GCIs, even in a reduced number, can
notably degrade the performance of reasoners. In an E-Connection, non-
absorbable GCIs are typically also spread among the different ontologies of
the combination. When performing the tableau expansion, a GCI only adds
a disjunction to the nodes corresponding to the ontology the GCI belongs
to, whereas, in the case of a single ontology, the same GCI would add a
disjunction in all the nodes during the expansion.

• Separation of ABox individuals: Typical reasoning services when ABoxes
are present are instantiation (checking if an individual is an instance of a
concept), and retrieval (computing all the instances of a certain concept).
The presence of a large ABoxes degrades significantly the performance of
DL reasoners. When using E-Connections, the ABox axioms and individu-
als are partitioned among the different ontologies in the combination. This
separation is important since it may spare the application of a large number
of rules in many satisfiability tests.

• Optimization of blocking and better use of certain optimization
techniques: Blocking ensures the correct termination of tableau algorithms
by limiting the tree expansion depth, which otherwise would become infi-

35

nite. However, when dealing with logics like SHIQ, the blocking condition
is quite sophisticated and blocking may occur late in the tableau expansion.
Having a more permissive blocking condition is important to establish blocks
at a shallower depth, and can substantially increase performance. Although
the restrictions can be made less strict (29), the resulting blocking condition
still remains less efficient than subset or equality blocking, which unfortu-
nately are not sound for logics like SHIQ. However, in an E-Connection,
blocking is optimized for each of the components, which implies, for exam-
ple, that subset blocking is still applicable in a component without inverse
properties, even if such a component is connected to a SHIQ component.
On the other hand, certain optimization techniques are not valid for cer-
tain logics. For example, caching the satisfiability status of nodes within a
tableau expansion cannot be performed in logics containing inverse roles.
For the same reason as in blocking, optimizations like caching could still be
applied to some of the component ontologies in the combination.

Finally, when decomposing a SHOIN (D) ontology into an E-Connection,
the resulting E-Connection is likely to be written in one of the combined
languages we have presented, for which we provide a tableau-based decision
procedure. For example, let us consider again the Wine Ontology. The ontology
is written in SHION (D), whereas its corresponding E-Connected version is
represented in the language CEHN (SIO(D)), since the logic underlying the
component ontologies is ALR+IO for regions, AL(D) for years and wineries,
ALCO for wine descriptors, ALO for grapes and ALC for wines. Such a
language is a fragment of CEHN (SHIN (D),SHON (D),SHIO(D)), that we
can handle algorithmically.

Note that the expressivity of the original ontology is split among the different
component ontologies and the link properties. This fact can be exploited for
optimizations.

7 Related Work

The most prominent formalism that has been proposed so far for combining
and linking OWL ontologies is the Distributed Description Logics (DDL) (30)
framework, which resulted in an extension of Web Ontology Language, called
C-OWL (31).

Distributed Description Logics is a formalism for combining different DL
knowledge bases in a loosely coupled information system. The idea of the
combination is to preserve the “identity” and independence of each local on-
tology. The coupling is established by allowing a new set of inter-ontology
axioms, called bridge rules. A bridge rule is an expression of one of the follow-

36

ing forms 16 :

Ci
v→ Cj; ; Ci

w→ Cj ; ai→bj

Where, Ci, Cj are classes and ai,bj individuals in the ontologies Oi,Oj respec-
tively.

From the modeling point of view, bridge rules have been conceived for es-
tablishing directional (“view dependent”) subsumption relationships between
classes and correspondences between individuals in different ontologies. The
motivation for bridge rules, hence, covers a wide variety of intuitive modeling
scenarios on the Semantic Web. For example, suppose that in ontology O1 we
have a class “Beer” defined as a subclass of “GermanProduct” and which does
not exist in ontology O2. However, in ontology O2 there is a class “Drink”,
but there is no class modeling the concept of “Beer”. Both ontologies could be
linked by using a bridge rule stating that “Beer” in ontology O1 is a subclass
of “Drink” in O2 .

These kind of modeling scenarios are appealing, because they nicely fit in the
vision of the Semantic Web in which the notion of a universal upper ontology
is abandoned by the notion of a web of distributed, linked and independently
developed ontologies. Researchers in the Semantic Web community are start-
ing to realize the importance of extending OWL with a suitable formalism
that provides inter-ontology mappings with a precise logical semantics. A first
attempt in this direction resulted in C-OWL (31), a syntax and semantic
extension of OWL that adds the DDL formalism to the language.

However, C-OWL, as presented in (31) has some difficulties. First, no reason-
ing support is provided for the language. Extending the existing tableau rea-
soners to deal with such an extension is certainly a crucial issue. Second, some
expressive features that are beyond DDLs (and also beyond E-Connections),
like the inclusion of inter-ontology role subsumption statements, are included
in the language without the required discussion. This kind of expressive power
could even make the reasoning undecidable.

Third, and most importantly, C-OWL fails to model certain crucial propertes
of subsumption relations. For example, consider the ontology Figure 3a. The
ontology O defines two disjoint concepts Flying and NonFlying, the concept
Bird and the concept Penguin. The axioms in O state that all birds fly and
also that a penguin is a bird, but it does not fly. In this case, in which all the
axioms are gathered in a single logical space, the concept Penguin would be
clearly unsatisfiable 17 .

16 We will consider bridge rules without complete individual correspondences along
the paper.
17 A Class is unsatisfiable in an ontology if it is evaluated to the empty set by every

37

O = {NonFlying = ¬Flying,

Bird v Flying,

Penguin v Bird,

Penguin v NonFlying}

A = {FlyingA,

NonFlyingA = ¬FlyingA,

BirdA v FlyingA }

B = {PenguinB,

BirdA
w−→ PenguinB,

NonFlyingA
w−→ PenguinB }

(a) (b)

Fig. 3. Figure (a) shows a single ontology where concept Penguin is unsatisfiable.
Figure (b) shows the same definition with bridge rules where contradiction cannot
be detected anymore

Now, imagine that we split the knowledge about the domain in two coupled
ontologies, shown in Figure 3b. The ontology A states that the concepts Flying
and NonFlying are disjoint and states that all birds fly. On the other hand, the
ontology B defines the concept Penguin and states, using DDL subsumption
links, that a penguin does not fly and that a penguin is a bird. However, it is
easy to see by direct application of the semantics that in this case the obvious
(and relevant) contradiction is not detected, and Penguin is satisfiable in the
coupled system.

The problem is that bridge rules can be reduced to simple axioms in an E-
Connection with a single link property, which is “hidden” in the syntax of
bridge rules. A bridge rule always involves a restriction on that implicit link
property. Intuitively, there is nothing contradictory in these bridge rules in the
same way that there is no contradiction between two axioms like Father v
∃hasChild.Male and Father v ∃hasChild.¬Male in an ordinary ontology.

This result, together with the fact that inter-ontology subsumption relations
do not propagate transitively, shows that DDLs can be misleading and counter-
intuitive, and do not seem to capture the notion of subsumption links across
a “Web of ontologies”. The example suggests that a formalism for dealing
with inter-ontology subsumption relationships is still lacking. E-Connections,
though suitable for covering a wide variety of relevant modeling scenarios in
the Semantic Web context, do not capture the idea of linking ontologies with
subsumption relationships, but, as opposed to DDLs, were not conceived for
such a purpose.

Finally, it is also worth mentioning CYC microtheories (32). CYC is parti-
tioned into sets of axioms, called contexts or microtheories, so that each CYC
entity must be contained in at least one of them. Whenever CYC is asked a
question, or has to do some reasoning, the task is always performed in some

model of the ontology.

38

particular context. CYC microtheories are very similar to imports in OWL in
that a given microtheory can be used by other microtheories, in which case
all the axioms in the used (say, imported) microtheory are brought into the
importing context. If there is an axiom somewhere in CYC that is not in that
Microtheory, then CYC will not use that axiom: it is inaccessible.

8 Conclusion and Future Work

In this paper, we have presented E-Connections as a suitable formalism for
combining OWL ontologies. We have discussed the applicability and usefulness
of E-Connections as a combination technique for many application scenarios.

In order to integrate E-Connections in the Semantic Web, we have extended
the syntax and semantics of the OWL-DL recommendation and we have dis-
cussed the issues of handling URIs and imports in this new framework.

We have provided suitable tool support for browsing and editing E-Connected
ontologies in SWOOP.

We have shown how to reason with certain families of E-Connections and
proved that it is possible to implement our tableau algorithms for E-Connections
as an extension of existing DL reasoners, as shown by our implementation in
the Pellet system. Our initial empirical results suggest that reasoning over ex-
pressive E-Connections is reasonably efficient and, in practice, it is not harder
than reasoning with OWL itself.

Finally, we have also identified the limitations of E-Connections as a combi-
nation technique, in particular for tasks, such as ontology refinement, that
involve connecting ontologies dealing with highly overlapping domains.

The results presented in this paper raise a number of issues for future work.
First, our implementation and initial results show that E-Connections suggest
new optimization techniques. The empirical evaluation of these optimizations
as well as the development and implementation of new ones is a priority in
our future research agenda.

Second, we are investigating the applications of E-Connections for partitioning
automatically OWL ontologies into its relevant sub-parts. The theoretical and
empirical results (33) we have obtained so far are very encouraging.

Third, we aim to explore the design and implementation of practical algo-
rithms for combinations of Description Logics with spatial and temporal log-
ics that are within the ADS framework. These combinations are important
for many applications, since OWL is not a suitable formalism for representing

39

temporal and spatial information. For instance, in the Wine Ontology exam-
ple, the ontology about regions could be represented using a qualitative spatial
logic, like S4u, instead of using OWL. In (8) the decidability of such combi-
nations was proved and the development of practical algorithms will provide
a strong motivation for bringing these formalisms to the Semantic Web.

Finally, although rules formalisms are beyond the ADS framework, we strongly
believe that a generalization of many (decidable) rules languages is possible
and that there will be decidable combinations of such a generalization with
ADSs in the spirit of E-Connections. Such a result would open new horizons
in the integration of ontologies and rules on the Semantic Web.

References

[1] F. Baader, I. Horrocks, U. Sattler, Description logics as ontology lan-
guages for the semantic web, in: D. Hutter, W. Stephan (Eds.), Festschrift
in honor of Jörg Siekmann, Lecture Notes in Artificial Intelligence,
Springer-Verlag, 2003.

[2] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ and
RDF to OWL: The making of a web ontology language, J. of Web Se-
mantics 1 (1) (2003) 7–26.

[3] P. Patel-Schneider, P. Hayes, I.Horrocks, Web ontology language OWL
Abstract Syntax and Semantics, W3C Recommendation (2004).

[4] M. Smith, C. Welty, D. McGuiness, OWL Web Ontology Language
Guide, W3C Recommendation (2004).

[5] B. Cuenca, B. Parsia, E. Sirin, Working with multiple ontologies on the
semantic web, in: Proc. of the 3thrd International Semantic Web Con-
ference (ISWC 2004), Vol. 3298 of Lecture Notes In Computer Science,
Springer Verlag, 2004.

[6] H. StuckenSchmidt, M. Klein, Structure-based partitioning of large class
hierarchies, in: Proceedings of the Third International Semantic Web Con-
ference (ISWC-2004), Springer Verlag, 2004.

[7] H. StuckenSchmidt, M. Klein, Integrity and change in modular ontologies,
in: Proceedings of the Eighteenth Joint Conference on Artificial Intelli-
gence (IJCAI-2003), Morgan Kaufmann, 2003.

[8] O. Kutz, C. Lutz, F. Wolter, M. Zakharyaschev, E-Connections of Ab-
stract Description Systems, Artificial Intelligence 156 (2004) 1–73.

[9] O. Kutz, E-Connections and logics of distance, Ph.D. thesis, University
of Liverpool (2004).

[10] F. Baader, C. Lutz, H.Sturm, F.Wolter, Fusions of description logics and
abstract description systems, Journal of Artificial Intelligence Research
(JAIR) 16 (2003) 1–58.

[11] A. Kalyanpur, B. Parsia, J. Hendler, A tool for working with web ontolo-

40

gies, International Journal on Semantic Web and Information Systems
1 (1).

[12] E. Sirin, B.Parsia, Pellet: An OWL-DL reasoner,
http://www.mindswap.org/2003/pellet (2004).

[13] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, J. Oberthaler,
The national cancer institute’s thesaurus and ontology, Journal of Web
Semantics 1, (2003) (1).

[14] S. Bechhofer, P. Lord, R.Volz, Cooking the semantic web with the OWL
API, in: Proc. of the Second International Semantic Web Conference
(ISWC-2003), 2003.

[15] D. Brickley, R. Guha, Resource description framework (RDF) model and
syntax specification, W3C Recommendation (2004).

[16] B. Cuenca-Grau, B. Parsia, E.Sirin, Tableau algorithms for e-
connections of description logics, Tech. rep., UMIACS, available at
http://www.mindswap.org/2004/multipleOnt/papers/EconnTableau.ps
(2004).

[17] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for very expressive
description logics, Logic Journal of the IGPL 8 (3) (2000) 239–263.

[18] I. Horrocks, Using an expressive description logic: FaCT or fiction?, in:
Proc. of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR-98), Morgan Kaufman, 1998, pp. 636–
647.

[19] V.Haarslev, R.Moeller, Racer system description, in: Proc. of the Joint
Conf. on Automated Reasoning (IJCAR 2001). Volume 2083 of Lecture
Notes in Artificial Intelligence, pages 701-705, 2001.

[20] I. Horrocks, Optimising tableaux decision procedures for description log-
ics, Ph.D. thesis, University of Manchester (1997).
URL download/1997/phd-2sss.ps.gz

[21] I. Horrocks, U. Sattler, A description logic with transitive and inverse
roles and role hierarchies, Journal of Logic and Computation 9 (3) (1999)
385–410.

[22] I. Horrocks, U. Sattler, Ontology reasoning in the SHOQ(D) description
logic, in: B. Nebel (Ed.), Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), Morgan Kaufmann, 2001, pp. 199–204.

[23] J. Hladik, J. Model, Tableau systems for SHIO and SHIQ, in:
V. Haarslev, R. Möller (Eds.), Proceedings of the 2004 International
Workshop on Description Logics (DL 2004), CEUR, 2004, available from
ceur-ws.org.

[24] I. Horrocks, U. Sattler, A tableaux decision procedure for SHOIQ, in:
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
2005.

[25] F. Baader, U. Sattler, An overview of tableau algorithms for description
logics, Studia Logica 69 (2001) 5–40.

[26] F. Baader, W. Nutt, Basic description logics, in: F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description

41

Logic Handbook: Theory, Implementation, and Applications, Cambridge
University Press, 2003, pp. 43–95.

[27] F. Baader, J. Hladik, C. Lutz, F. Wolter, From tableaux to automata for
description logics, Fundamenta Informaticae 57 (2003) 1–33.

[28] I. Horrocks, Implementation and optimisation techniques, in: F. Baader,
D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The
Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press, 2003, pp. 306–346.

[29] I. Horrocks, U. Sattler, Optimised reasoning for SHIQ, in: Proc. of the
15th European Conference on Artificial Intelligence (ECAI-2002), 2002.

[30] A. Borgida, L. Serafini, Distributed description logics: Assimilating infor-
mation from peer sources, Journal of Data Semantics, 1:153-184 1 (2003)
153–184.

[31] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H. Stucken-
schmidt, C-OWL: Contextualizing ontologies, in: Proc. of the Second In-
ternational Semantic Web Conference (ISWC 2003), 2003.

[32] OpenCYC, Contexts in CYC, http://www.cyc.com/cycdoc/course/what-
is-a-context.html.

[33] B. Cuenca-Grau, B. Parsia, E.Sirin, A.Kalyanpur, Automatic partition-
ing of owl ontologies using e-connections, Tech. rep., UMIACS, available
at http://www.mindswap.org/2004/multipleOnt/papers/Partition.pdf
(2005).

[34] P. F. Patel-Schneider, I. Horrocks, DLP and FaCT, in: N. V. Murray
(Ed.), Automated Reasoning with Analytic Tableaux and Related Meth-
ods: International Conference Tableaux’99, no. 1617 in Lecture Notes in
Artificial Intelligence, Springer-Verlag, 1999, pp. 19–23.

[35] D. Calvanese, G. De Giacomo, Expressive description logics, in:
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation and
Applications, Cambridge University Press, 2003, pp. 178–218.

[36] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific Amer-
ican 284 (2001) 34–43.

[37] S. Tobies, Complexity results and practical algorithms for logics in knowl-
edge representation, Ph.D. thesis, RWTH Aachen (2001).

[38] U. Sattler, A concept language extended with different kinds of transitive
roles, in: B. Nebel (Ed.), Proc. of the 20th German Annual Conf. on
Artificial Intelligence (KI 2001), Vol. 1137 of Lecture Notes In Artificial
Intelligence, Springer Verlag, 2001, pp. 199–204.

42

