
Working with Multiple Ontologies on the
Semantic Web

Bernardo Cuenca Grau12, Bijan Parsia1, and Evren Sirin1

1 Maryland Information and Network Dynamics Laboratory, USA
2 Department of Computer Science, University of Valencia, Spain

Abstract. The standardization of the second generation Web Ontology
Language, OWL, leaves a crucial issue for Web-based ontologies unsat-
isfactorily resolved: how to represent and reason with multiple distinct,
but linked, ontologies. OWL provides the owl:imports construct which,
roughly, allows Web ontologies to include other Web ontologies, but only
by merging all the linked ontologies into a single logical “space.” Re-
cent work on multidimensional logics, fusions and other combinations of
modal logics, distributed and contextual logics, and the like have tried
to find formalisms wherein knowledge bases (and their logic) are kept
more distinct but yet affect each other. These formalisms have various
degrees of robustness in their computational complexity, their modular-
ity, their expressivity, and their intuitiveness to modelers. In this paper,
we explore a family of such formalisms, grounded in E-connections as
extensions to OWL, with emphasis on a novel sub-formalism that seems
very straightforward to implement on existing tableau OWL reasoners,
as witnessed by our implementation of this formalism in the OWL rea-
soner Pellet. We discuss how to integrate those formalisms into OWL,
as well as some of the issues that modelers have to face when using such
formalisms in the context of a large number of heterogeneous, indepen-
dently developed, richly interconnected ontologies that we expect to be
the norm on the Semantic Web.

1 Introduction

Combining ontologies in a controlled and scalable way is crucial for the success
of the Semantic Web. However, at the current stage, the means provided by
the Web Ontology Language (OWL) for such a purpose are clearly insufficient.
OWL provides a construct, ’owl:imports’ 3, that allows to include by reference in
a knowledge base the axioms contained in another ontology, presumably retriev-
able from the Web and identified by a URI. However, the functionality provided
by owl:imports is unsatisfactory for a number of reasons.

First, it does not support information hiding or filtering, which means that
everything in (the transitive closure of the imports of) the imported ontologies
gets into the original ontology. Thus, it relies on developer discipline to avoid
3 Throughout, we abbreviate the URI, http://www.w3.org/TR/2004/REC-owl-

semantics-20040210/#owl imports, with the pseudo-qname ‘owl:imports’.

2

unmanageable blow up of ontology size. Indeed, as ontology reuse via owl:imports
increases, so does the chance than an innocuous owl:imports will bring into the
local ontology a large chunk of the Semantic Web. Second, none of the imported
axioms or facts retain their context. While it is possible to track down the
originator(s) of some assertions by inspection of the imported ontology, OWL
reasoning does not take such context into account. Finally, the use of a “foreign”
URI reference without a corresponding owl:imports brings nothing from any of
the foreign owner’s ontologies

Hence, with owl:imports, OWL can let in either all the axioms of a foreign
ontology, or none. The primary distinction, in practical terms, between using
owl:imports and directly adding all the assertions in the imported ontology is
that with owl:imports, the modeler can break an ontology into different docu-
ments. This is a very important distinction, but it is not quite the distinction
many hope for.

2 Logical Formalisms for Combining Knowledge Bases

Fortunately, there is a growing body of work about combining multiple ontologies
in ways that strike a middle ground between importing all and nothing. In this
paper, we consider two formalisms, which are natural extensions of OWL-DL:
Distributed Description Logics (DDLs) [2], and E-connections [4].

2.1 Distributed Description Logics.

Distributed Description Logics (DDL) [2] is a formalism for combining different
DL knowledge bases in a loosely coupled information system. The idea of the
combination is to preserve the “identity” and independence of each local ontol-
ogy. The coupling is established by allowing a new set of inter-ontology axioms,
called bridge rules. A bridge rule is an expression of one of the following forms 4

Ci
v→ Cj ; ; Ci

w→ Cj ; ai→bj

Where, Ci, Cj are classes and ai,bj individuals in the ontologies Oi,Oj re-
spectively.

From the modeling point of view, bridge rules have been conceived for es-
tablishing directional (“view dependent”) subsumption relationships between
classes and correspondences between individuals in different ontologies. The mo-
tivation for bridge rules, hence, covers a wide variety of intuitive modeling sce-
narios on the Semantic Web. For example, suppose that in ontology O1 we have
a class “Beer” defined as a subclass of “GermanProduct” and which doesn’t ex-
ist in ontology O2. However, in ontology O2 there is a class “Drink”, but there
is no class modeling the concept of “Beer”. Both ontologies could be linked by

4 We will consider bridge rules without complete individual correspondences along the
paper

3

using a bridge rule stating that “Beer” in ontology O1 is a subclass of “Drink”
in O2 .

These kind of modeling scenarios are appealing, because they nicely fit in the
vision of the Semantic Web in which the notion of a universal upper ontology
is abandoned by the notion of a web of distributed, linked and independently
developed ontologies. Researchers in the Semantic Web community are starting
to realize the importance of extending OWL with a suitable formalism that pro-
vides inter-ontology mappings with a precise logical semantics. A first attempt in
this direction resulted in C-OWL [3], a syntax and semantic extension of OWL
that adds the DDL formalism to the language.

However, C-OWL, as presented in [3] has some difficulties. First, no reasoning
support is provided for the language. Extending the existing tableau reasoners
to deal with such an extension is certainly a crucial issue. Second, some ex-
pressive features that are beyond DDLs (and also beyond E-connections), like
the inclusion of inter-ontology role subsumption statements, are included in the
language without the required discussion. This kind of expressive power could
even make the reasoning undecidable. Finally, from the modeling perspective,
no distinction is made between the idea of partially importing concepts from a
foreign KB and the idea of linking ontologies through the use of inter-ontology
subsumption relationships. It is unclear whether the semantics of DDLs capture
that idea of linking, as we will discuss in section 5.

2.2 E-connections

The E-connections technique [4] is a method for combining logical formalisms
that are expressible in the Abstract Description System (ADS) framework. ADSs
are a generalization of description, modal and epistemic logics and many logics
of time and space (see [1] for a detailed discussion).

The advantages of this technique are twofold: On one hand, E-connections
provide a quite expressive way for combining knowledge bases written in a wide
variety of logical languages, while, on the other hand, the coupling between
the combined logical formalisms is loose enough for ensuring the decidability
of the combined formalism. Hence, E-connections provide a trade-off between
the tightness of the coupling between the component logical languages and the
computational robustness of the combination.

The E-connection method can be applied, for example, to the following set-
ting. Assume that we have n disjoint domains D1, ..., Dn and two languages l1
and l2 for talking about them, and suppose that l1 and l2 are two propositionally
closed description logics (two extensions of ALC) with decidable satisfiability
(and hence subsumption) problem and such that they can be expressed as an
Abstract Description System. Assume we want to define a combined formalism
C(l1, l2) which talks about the domains and also about the relationships among
them. First, we define countable and disjoint sets εij with i, j = 1, ..., n; i 6= j of
link names. A link E ∈ εij can be seen as a property that relates elements from
the domain Di to elements of the domain Dj , as opposed to object properties,
which relate elements of the same interpretation domain.

4

For example, let K1 and K2 be two knowledge bases written in l1 and l2 re-
spectively. The knowledge base K1 deals with people, while K2 describes the do-
main of Pets; then we can define the links Owns ∈ ε12, and LovesToP layWith ∈
ε21. Intuitively, the link Owns represent the relationships of a person to own a
pet, while the link lovesToP layWith would represent the relation of pets liking
to play with people. In its basic form, the syntax of the combination is specified
by extending the syntax of l1 and l2 with two new constructors: existential and
value restrictions on links. For example, in our ontologies K1,K2 it is possible
to define in K1 a “DogOwner” as a person who owns at least one dog and in K2

an “unfriendly pet” as a pet that doesn’t like to play with people:

DogOwner ≡ Person u ∃Owns.Dog
UnfriendlyPet ≡ Pet u ∀LovesToP layWith.(¬Person)

Finally, we can also use inverses on the links and define an “Unhappy Cat”
in K2 as a cat that is owned by a “Dog Owner”:

UnhappyCat ≡ Cat u ∃Owns−(DogOwner)

Given n ontologies, the semantics of the combined KB, written in C(l1, l2),
is given by a combined interpretation I = ({Ii}ni=1ε

I
ij), where Ii = (Wi, .

Ii)
is an interpretation and Wi ∩ Wj = ∅,∀i 6= j. A link E ∈ εij is interpreted
as a cross-domain relation EI ⊆ Wi ×Wj , and its inverse E− as the relation
(E−)I = {(a, b) ∈ Wj × Wi|(b, a) ∈ EI}. Finally, the expressions ∃E.C, and
∀E.C, where E ∈ εij and C a concept in the jth KB, are interpreted as subsets
of Wi, as follows:

(∃E.C)I = {x ∈Wi|∃y ∈Wj , (x, y) ∈ EI , y ∈ CI}
(∀E.C)I = {x ∈Wi|∀y ∈Wj , if (x, y) ∈ EI ,→ y ∈ CI}

E-connections are strictly more expressive than DDLs (without individual
correspondences), and in [4] it is shown how DDLs can be translated into axioms
in an E-connection.

3 Integrating E-connections into OWL

In this section, we define a syntax and semantic extension of OWL that integrates
the E-connections formalism into the language in a compact and natural way.
The extension is based on the definition of a new set of properties, called links,
that stand for the inter-ontology relations in the E-connections framework. The
OWL-DL 5 language is then enriched with a new set of constructors that basically
allow to define new classes by placing restrictions on the link properties.

5 We are considering OWL-DL/OWL-Lite along the paper because OWL-Full is be-
yond the ADS framework, and hence E-connections cannot be used to combine OWL-
Full with OWL-DL KBs

5

3.1 Abstract Syntax

The syntax presented in this section is an extension of the normative OWL
abstract syntax, as described in the OWL abstract syntax and semantics rec-
ommendation [5]. We use the same Extended BNF syntax as in the normative
document. A new set of properties, called link properties, are named using a
URI, and hence a linkID is defined to be a URIreference

In order to ensure the separation of vocabularies, a URI-reference cannot
be both a linkID, an individual-valued property ID, a datatype property ID, an
annotation property ID or an ontology property ID. Intuitively, while individual-
valued properties relate individuals to other individuals in the same ontology,
while link properties relate individuals corresponding to different interpretation
domains. Thus, link properties act as a bridge between different ontologies, which
remain separate, and keep their own identity.

Our proposal extends OWL-DL with a new kind of property axiom, by adding
the following production rule:

axiom::= ‘Link(‘linkID[’Deprecated’] { annotation }
[‘inverseOf(‘ linkID ’)’]
{ ‘ domain (‘ Description’)’ }
{ ‘ range (‘Description’)’ }
‘ForeignOntology (‘ OntologyID’)

Informally, link properties are used to bring or import class descriptions
from a foreign OWL ontology to the local context, without having to import
the whole external knowledge base. The addition of inverses in link properties
is a distinguishing feature of E-connections, which has important consequences,
both conceptually and in practice.

Link properties can be used to define new classes by means of restrictions
on them. Intuitively, a restriction on a link property is applied to a concept in
a foreign ontology, and returns a concept defined over the local interpretation
domain.

restriction::= ‘Restriction(’linkID
linkRestrictionComponent
{ linkRestrictionComponent } ’)’

linkRestrictionComponent::= ‘allValuesFrom(’Description)’
| ‘someValuesFrom(’Description)’

The intuition is that the classes specified in link restriction properties are
evaluated according to the semantics of the foreign ontology specified in the
definition of the link property. Finally, the set of facts is defined by extending
the set of facts in OWL in order to provide the means for instantiating link
properties. This is achieved by simply adding to the OWL abstract syntax a
new alternative to the non-terminal “value”

6

value ::= ‘value(‘ linkID individualID ’)’

Essentially, link properties are similar to Datatype properties. In OWL DL,
datatypes constitute a domain disjoint from the domain of classes. Similarly,
classes defined in foreign ontologies belong to a domain separate from the do-
main of classes defined in the importing ontology. The reasoning about datatypes
is done by a so-called “Datatype Oracle” and this process is a black-box opera-
tion for the rest of the reasoning procedure. Analogously, reasoning about link
properties are done with respect to the foreign ontology in an isolated process.

3.2 Direct Model-Theoretic Semantics

The semantics starts with the notion of vocabulary.

Definition 1. (Combined OWL Vocabulary)
A combined OWL vocabulary V consists of a tuple V = {V1, ..., Vn, Vlink},

where V1, ..., Vn is a set of OWL vocabularies, as defined in [5], and Vlink is a
set whose elements are triples of the form:

(Oi, Oj , Lk), i, j = 1, ..., n, i 6= j

Where Oj , Oi are ontologyIDs with i 6= j, Lk a linkID (a URI), and where none
of the linkIDs are contained in any of the Vi, i = 1..., n

Definition 2. (Combined OWL interpretation)
A combined OWL interpretation with vocabulary V = {V1, ..., Vn, Vlink} is a

tuple of the form:

I = ({Ii}ni=1, εij = (Oi, Oj , Lk)I), i, j = 1, ..., n; i 6= j;

Where Ii, i = 1, ..., n is an abstract OWL interpretation with vocabulary Vi,
and with respect to a datatype map Di, and domain Wi, and (Oi, Oj , Lk)I =
Wi ×Wj, for (Oi, Oj , Lk) ∈ Vlink.

Class and property axioms are interpreted as in OWL-DL, with the remark
that now the concepts built using the new constructors can appear in class axioms
and the semantics applied to them must be the semantics of table 1.

Definition 3. (E−Connection of OWL ontologies)
A combined OWL ontology is a combined KB Σ = {O1, ..., On} written in

the extended abstract syntax, such that it is closed under ‘owl:imports’ and for
every ontology in Σ, all the link properties it contains refer to a foreign ontology
which is also contained in Σ.

Finally, we say that a combined interpretation I satisfies Σ, iff it satisfies all
the axioms of all the ontologies in it.

7

Abstract Syntax EC Syntax Semantics

Link(Lk) defined in Oi Lij
k

(Lij
k

)I ⊆ Wi ×Wj

ForeignOntology(Oj)

inverseOf((Em)) Lij
k
≡ (Eji

m)− ((Lk)ij)I = ((Eji
m)I)−

domain(C) (Lij
k

)I ⊆ CI ×Wj

range(D) (Lij
k

)I ⊆ Wi ×DI

restriction(Lk ∃Lij
k

(C) (∃Lij
k

(C))I = {x ∈ Wi|∃y ∈ Wj , [x, y] ∈ (Lij
k

)I and y ∈ CI}
someV aluesFrom(C))

restriction(Lk ∀Lij
k

(C) (∀Lij
k

(C))I = {x ∈ Wi|∀y ∈ Wj , if [x, y] ∈ (Lij
k

)I → y ∈ CI}
allV aluesFrom(C))

value (t Lk o) (t, o) : Lij
k

(tI , oI) : (Lij
k

)I

Table 1. Semantics

4 Reasoning With E-connections on the Semantic Web

Finding efficient and easy to implement algorithms for reasoning on E-connections
is a challenging task. Two possible ways of simplifying the problem are, on one
hand, defining subformalisms of E-connections which still preserve most of the
expressive power of E-connections, and, on the other hand, restricting to partic-
ular ADS of special practical relevance.

In this paper we do both. We define Perspectival E-connections (PECs), an
expressive sublanguage of E-connections, and we restrict ourselves to combi-
nations of OWL-Lite (SHIF(D)) ontologies without ABoxes. We will use the
notation Cε(SHIF (D)), for the PEC language that enables the combination of
OWL-Lite ontologies.

The main motivation for introducing PECs is that they can be implemented
in a quite straightforward way by extending the existing tableaux-based DL
reasoners, at least for logics that do not include nominals (hence the restriction
to SHIF(D)/OWL-Lite).

4.1 Perspectival E-connections

Perspectival E-connections (PECs) are obtained from E-connections by disal-
lowing the use of inverses on link properties. This implies that links cannot be
“navigated” in both directions anymore. In the abstract syntax, PECs would be
obviously defined by suppressing the inverse clause in the definition of link prop-
erties. In our example of persons and pets, we would still be able to define the
concept of a “dog owner” and “unhappy pet owner” in K1, but not the concept
of “unhappy cat” in K2.

As a consequence of the restrictions imposed to the formalism, PECs are
strictly less expressive than E-connections, but remain strictly more expressive
than DDLs.

The syntax and semantics of the combined language Cε(SHIF (D)) is defined
as follows:

Definition 4. Let Ci, Ri, δi, εij be disjoint sets, for i, j = 1...n; i 6= j, where the
Ci, Ri, δi, εij are respectively sets of concept, role, datatype properties, and link

8

names. The set of i-roles is the set Ri ∪ {R−|R ∈ Ri}. We will use the notation
Inv(R) = S if R = S−.

For R,S i-roles, a role inclusion axiom is an assertion of the form R v S. An
i-role axiom is either a role inclusion axiom, an assertion of the form Inv(R) = S
or a transitivity axiom Trans(R) , with R ∈ Ri. An i-role box <i is a finite set
of i-role axioms.The combined role box is given by the tuple < = (<1, ...,<n). An
i-role R is called simple if for v∗ the transitive reflexive closure of v on <i, and
for each i-role S, S v∗ R implies Trans(R) /∈ <i. The set of ij-links is the set
of atomic links εij, and the set of i-datatype properties is the set δi.

Finally, the set of i-concepts in Cε(SHIF (D)) is recursively defined, for
i = 1, ..., n as the smallest set such that each concept name A ∈ Ci, is an i-
concept and, for R an i-role, U an i-datatype property, S a simple i-role, G ∈ εij

C,D i-concepts, and Z a j-concept, the following constructions are also valid
i-concepts:

– C uD, C tD, ¬C, ∀R.C, ∃R.C, (≤ 1S), (≥ 2S), ∀U.d, ∃U.d

– ∃G.Z, ∀G.Z

A combined TBox is defined as K = (K1, ...,Kn), where Ki is a set of
assertions of the form C v D, with both C,D i-concepts. The semantics is
given by means of an interpretation I = ({Ii}εI

ij), i, j = 1, ..., n; i 6= j where
Ii = (Wi, .

Ii), with Wi∩Wj = ∅. The interpretation function maps every atomic
concept A ∈ NCi

to AI ⊆ Wi, every role R ∈ NRi
to RI ⊆ Wi ×Wi, every link

G ∈ εij to GI ⊆ Wi ×Wj, every i-datatype property U to U I ⊆ Wi ×∆D, and
every datatype d to dD ⊆ ∆D. Table 1 shows the extension of the interpretation
function to complex descriptions. In the table, C,D are i-concepts, R is an i-role,
S is an simple i-role, U is an i-datatype property, Z is a j-concept, G ∈ εij, and
d is a datatype.

Syntax Semantics

R− (R−)I = {(a, b)|(b, a) ∈ RI}
¬C (¬C)I = Wi − CI

C uD (C uD)I = CI ∩DI

C tD (C tD)I = CI ∪DI

∃R.C (∃R.C)I = {x ∈ Wi|∃y ∈ Wi, (x, y) ∈ RI , y ∈ CI}
∀R.C (∀R.C)I = {x ∈ Wi|∀y ∈ Wi, (x, y) ∈ RI → y ∈ CI}
≤ 1S (≤ 1S)I = {x ∈ Wi|∀y, z, if (x, y) ∈ SI ∧ (x, z) ∈ SI → y = z}
≥ 2S (≥ 2S)I = {x ∈ Wi|∃y, z : (x, y) ∈ SI , (x, z) ∈ SI ,∧y 6= z}
∃U.d (∃U.d)I = {x ∈ Wi|∃y ∈ ∆D, (x, y) ∈ UI , y ∈ dD}
∀U.d (∀U.d)I = {x ∈ Wi|∀y ∈ ∆D, (x, y) ∈ UI → y ∈ dD}
∃G.Z (∃G.Z)I = {x ∈ Wi|∃y ∈ Wj , (x, y) ∈ GI , y ∈ ZI}

(∀G.Z) (∀G.Z)I = {x ∈ Wi|∀y ∈ Wj , if (x, y) ∈ GI ,→ y ∈ ZI}

Table 2. Semantics of i-concepts

9

An interpretation satisfies an i-role inclusion axiom R v S, if RIi ⊆ SIi ,
where R,S are both i-roles and the axiom is in <i, and satisfies a transitivity
axiom Trans(R), iff RIi = (RIi)+. An interpretation satisfies the combined
role box < iff it satisfies all the axioms in each <i. If C,D are i-concepts, an
interpretation satisfies the axiom C v D if CI ⊆ DI , and satisfies the combined
TBox K iff it satisfies all the axioms in each Ki. A combined knowledge base
is defined as Σ = (T,<), where K is a combined TBox and < a combined role
box. An interpretation satisfies Σ if it satisfies both K and <. An i-concept C
is satisfiable wrt Σ iff there is an interpretation I such that it satisfies Σ, and
CI 6= ∅. Such an interpretation is called a model of C w.r.t. Σ. An i-concept C
is subsumed by another i-concept D wrt Σ iff CI ⊆ DI , for each interpretation
satisfying Σ.

We can transform each component Ki of a combined TBox K into a single
equivalent concept equation >i ≡ CKi , where:

CKi
= uCi

j
vDi

j
∈Ki

(¬Ci
j tDi

j)

An interpretation I will satisfy the TBox K iff >i = CI
Ki

, for i = 1, ..., n.

5 A Combined Tableau for Cε(SHIF (D))

We will assume concepts written in NNF. To transform an i-concept into NNF,
we can push negation inwards using De Morgan’s laws and the following equiv-
alences:

For R an i-role, U an i-datatype role S an i-simple role, E ∈ εij , i, j =
1, ..., n; i 6= j, C an i-concept, Z a j-concept and d a datatype:

¬∃R.C ≡ ∀R.¬C ¬∀R.C ≡ ∃R.¬C ¬ ≥ 2S ≡≤ 1S ¬ ≤ 1S ≡≥ 2S
¬∃U.d ≡ ∀U.¬d ¬∀U.d ≡ ∃U.¬d ¬∃E.Z ≡ ∀E.¬Z ¬∀E.Z ≡ ∃D.¬Z

We will use the notation ∼ C for the NNF of ¬C.
Let X be an i-concept, then the set subi(X,<) of i-subconcepts of X w.r.t.

the combined role box < is defined as follows, for all i, j = 1, ..., n; i 6= j :

– If X is an atomic primitive i-concept or its negation, then subi(X,<) = {X},
subj(X,<) = ∅

– If X is of the form ∃R.C where ∃R.C is an i-concept, then subi(X,<) =
{X} ∪ subi(C,<), subj(X,<) = subj(C,<)

– If X is of the form ∀R.C, where ∀R.C is an i-concept then subi(X,<) =
{X} ∪ subi(C,<)

⋃
k{∀Sk.C} for every Sk v∗ R, with Trans(Sk) in <i.

Again, subj(X,<) = subj(C,<)
– If X is of the form C1 uC2, or C1 tC2 where C1 and C2 are i-concepts, then

subi(X) = {X,<} ∪ subi(C1,<) ∪ subi(C2,<), subj(X,<) = subj(C1,<) ∪
subj(C2,<)

– If X is of the form ≤ nS or ≥ nS, where S is a simple role, then subi(X,<) =
{X} and subj(X,<) = ∅

10

– If X is a concept of the form ∃U.d, or ∀U.d, where U is a datatype property
and d a datatype, then subi(X,<) = {X} ∪ {d} and subj(X,<) = ∅

– If X is an i-concept of the form ∃G.D or ∀G.D, where G ∈ εij , D a j-concept,
then subi(X,<) = {X} ∪ subi(D,<), subj(X,<) = subj(D,<)

For X and a combined knowledge base Σ, we define subi(X, Σ) as the union
of subi(X,<) and all the subi(CTk

,<), k = 1, ..., n. From now on, we will call ρi

and δi to the set of i-roles and i-datatype properties respectively occurring in
X,Σ, and εij will be the set of ij-links appearing in X, Σ

Definition 5. (Combined Tableau)
Let X be a valid i-concept (written in NNF), and Σ a combined KB. A com-

bined tableau T for X wrt Σ is defined as a tuple T = ({Ti}, εX), i = 1, ..., n
where:

– Ti = (Oi, Li, αi, µi), with Oi a set of individuals, and:
• Li : Oi → 2subi(X,Σ)

• αi : ρi → 2Oi×Oi

• µi : δi → 2Oi×∆D

– εX : εij → 2Oi×Oj

In a combined tableau for an i-concept X, there must exist n individuals
oj ∈ Oj such that {X, CKj} ⊆ Lj(oj) if j = i and {CKj} ⊆ Lj(oj) otherwise,
for all j = 1, ..., n.

Moreover, for all i, j = 1, ..., n; i 6= j, si, ti ∈ Oi, C, D ∈ subi(X, Σ), Z ∈
subj(X, Σ), R,S ∈ ρi, E ∈ εij U ∈ δi, and d a datatype, the following conditions
must hold:

1. If C ∈ Li(si), then ¬C /∈ Li(si)
2. If (C uD) ∈ Li(si), then C ∈ Li(si), and D ∈ Li(si)
3. If (C tD) ∈ Li(si), then C ∈ Li(si), or D ∈ Li(si)
4. If ∀R.C ∈ Li(si), and (si, ti) ∈ αi(R), then C ∈ Li(ti)
5. If ∃R.C ∈ Li(si), then there is some ti ∈ Oi such that (si, ti) ∈ αi(R), and

C ∈ Li(ti)
6. If ∀R.C ∈ Li(si), and (si, ti) ∈ αi(S), for some S v∗ R with Trans(S),

then ∀S.C ∈ Li(ti)
7. If (≤ 1R) ∈ Li(si), and (si, ti) ∈ αi(R), and (si, t

′
i) ∈ αi(R), then ti = t′i

8. If (≥ 2R) ∈ Li(si), then there are some ti, t
′
i ∈ Oi, such that (si, ti) ∈ αi(R),

(si, t
′
i) ∈ αi(R), and ti 6= t′i

9. If (si, ti) ∈ αi(R) and R v∗ S, then (si, ti) ∈ αi(S)
10. (s, t) ∈ αi(R) iff (t, s) ∈ αi(Inv(R))
11. If ∀U.d ∈ Li(si), and (si, ti) ∈ µi(U), then ti ∈ dD

12. If ∃U.d ∈ Li(si), then there is some ti ∈ ∆D such that (si, ti) ∈ µi(U), and
ti ∈ dD

13. If ∀E.Z ∈ Li(s) where s ∈ Oi, and (s, t) ∈ εX(E), then Z ∈ Lj(t), t ∈ Oj

14. If ∃E.Z ∈ Li(s), where s ∈ Oi, then there exists some t ∈ Oj such that
(s, t) ∈ εX(E), and Z ∈ Lj(t)

Lemma 1. An i-concept X in Cε(SHIF (D)) is satisfiable wrt a combined knowl-
edge base Σ iff X has a combined tableau wrt Σ.

11

5.1 Description of the Algorithm

We suggest a tableaux-based reasoning algorithm for determining the satisfia-
bility of i-concepts (i=1,2) wrt a combined knowledge base Σ in the language
Cε(SHIF (D)).

From the structure of a combined TBox it is easy to see that the combined
TBox K cannot be internalized into a single concept. This means that we cannot
directly use a concept satisfiability algorithm with empty TBox as a decision
procedure for the reasoning problems in the combined TBox. We add a rule
→ CE that ensures that every i-node contains the concept CKi

.
The algorithm works on a finite combined completion, which is a forest of

SHIF (D) completion trees. The labels of the i-nodes in the model are restricted
to subsets of subi(X, Σ).

The algorithm tries to build a combined tableau for the input concept. If it
succeeds, it returns “satisfiable”, while if it fails to build the tableau, it returns
“unsatisfiable”.

The algorithm generates n kinds of nodes, called i-nodes, and can generate n
different types of trees, called i-trees. An i-tree is expanded using the SHIF (D)
rules, plus the additional rules and can contain i-nodes and j-nodes, i 6= j.
The root node of an i-tree is always an i-node and the j-nodes of the i-trees are
always leaves. The algorithm will keep track of all the generated i-trees, together
with the dependencies between them. If the algorithm is building an i-tree T and
during the process generates a new j-tree, the algorithm will continue expanding
T , potentially generating new j-trees on the way, which are all processed after
T is finished. A j-node g in an i-tree contains a clash iff the corresponding j-tree
contains a clash when expanded. Otherwise, it is satisfiable and g is marked with
the label “visited”.

The algorithm adds three new expansion rules:

– → ∃link Rule: If ∃E.C is in Li(x) (E ∈ εij), x is not blocked and has no
E-successor y with L(x, y) = {E}, and {C} ∈ Lj(y), then create a new E-
successor (a j-node) y of x with Lj(y) = {C}. A new j-tree is created with
root y labeled with Lj(y). The j-tree won’t be expanded until no more rules
apply in the i-tree.

– → ∀link Rule:If ∀E.C is in Li(x) (E ∈ εij), x is not blocked and there exists
an E-successor y of x, such that C /∈ Lj(y), then Lj(y) = Lj(y) ∪ {C}.

– → CE Rule: If CKi
/∈ Li(x), then Li(x)← Li(x) ∪ {CKi

}

However, the algorithm as we have described it so far may not terminate. In
order to ensure termination an extra blocking condition is required. Each time
the algorithm starts expanding a new i-tree T with root g, created as a successor
of a certain j-node, the algorithm checks if there exists a node x in a not yet
completed i-tree such that Li(g) ⊆ Li(x). In that case the algorithm blocks the
root of the new tree, which returns “satisfiable”. Given as an input an i-concept
X and a combined KB Σ the algorithm creates an i-tree with a single i-node xi,
labeled Li(xi) = {X}, and a j-tree for each j = 1, ..., n; j 6= i, each with a single
j-node labelled with the emptyset.

12

A tree is complete when some node in it contains a (SHIF(D)) clash, or when
none of the rules is applicable in the i-nodes and all the j-nodes it contains are
marked as “visited”.

If for the input i-concept X, the expansion rules can be applied to all the
trees in such a way that each initial tree yields to a complete, clash-free comple-
tion tree, then the algorithm returns “X is satisfiable”, and “X is unsatisfiable”
otherwise.

The algorithm presented in this section is a decision procedure for satisfia-
bility and subsumption of i-concepts w.r.t. a combined knowledge base Σ, as a
direct consequence of the following lemma:

Lemma 2. Let Σ = (K,<) a combined knowledge base in the PEC Cε(SHIF (D))
and let X be an i-concept. Then:

1. The algorithm terminates when applied to Σ and X

2. The rules can be applied such that they generate a clash-free and complete
combined completion iff X is satisfiable w.r.t. Σ

This technique shows that the generated i-trees in a combined completion are
independent, in the sense that they do not affect each other, and hence the deci-
sion procedure we have presented has a “black box” property. A a slight modifi-
cation of existing DL reasoners suffices for implementing the algorithm. However,
this technique cannot be straightforwardly extended to basic E-connections. If
the algorithm is naively applied to the basic E-connections case, then it happens
to be unsound.

As an example, consider the concept in the pet ontology:

Man u ∃Owns(∀Owns−(¬Man))

The concept is clearly unsatisfiable; however, the algorithm will return the
wrong answer. The unsoundness is caused by the presence of inverses on the
links, which breaks the black box property of the algorithm.

Nominals (presence of the oneOf constructor) also cause unsoundness if the
algorithm is naively extend to PECs whose component logics contain nominals.
For example, a concept of the form:

∃E.({o} uA) u ∃F.({o} u ¬A)

Would be unsatisfiable. However, a straightforward extension of the algo-
rithm would return the wrong answer 6. Similar considerations do apply to the
Cε(SHIF (D)) combination when ABoxes are included.

6 We would like to thank the anonymous reviewer of the DL-2004 workshop that
pointed out this example to us in an earlier presentation of some of this work

13

5.2 Implementation

We have implemented the algorithm in the OWL reasoner Pellet, a tableau based
DL reasoner specifically developed to work with OWL ontologies. The reasoner
also supports XML Schema datatypes and includes a datatype oracle for this
purpose.

In Pellet, an OWL ontology is normally parsed into one KB that has the
associated TBox/ABox components. The effect of importing an OWL ontology
results in the merging of these two KBs. For PECs, the component ontologies
should be kept separate. Hence, each ontology is loaded into a disjoint KB during
the parsing process. A global ontology manager stores this set of ontologies along
with the cached results of satisfiability results for the different KBs. Please note
that we are considering combinations of an arbitrary number of ontologies.

The modification to the existing tableau algorithm implies marking each node
with the ontology it belongs to. When a successor node is being created due to a
link property, the new node is marked as belonging to the ontology which defined
that link. The clash detection for the nodes that belong to foreign ontologies is
performed by the ontology manager.

This ensures termination and also provides some caching of the satisfiabil-
ity results. For each ontology two different caches are stored: one for satisfiable
concepts and the other for unsatisfiable concepts. After a satisfiability test suc-
ceeds, the labels of all the nodes in the resulting completion tree are added to
the satisfiability cache of that ontology. In the case of an unsatisfiable concept,
only the label of the root node is stored in the unsatisfiability cache. When a
new satisfiability test is asked, these caches are first searched for the previous
answers.

6 Difficulties when Modeling with C-OWL and DDLs

Consider the ontology Figure 1a. The ontology O defines two disjoint concepts
Flying and NonFlying, the concept Bird and the concept Penguin. The axioms
in O state that all birds fly and also that a penguin is a bird, but it doesn’t fly.
In this case, in which all the axioms are gathered in a single logical space, the
concept Penguin would be clearly unsatisfiable.

Now, imagine that we split the knowledge about the domain in two coupled
ontologies, shown in Figure 1b. The ontology A states that the concepts Flying
and NonFlying are disjoint and states that all birds fly. On the other hand, the
ontology B defines the concept Penguin and states, using DDL subsumption
links, that a penguin doesn’t fly and that a penguin is a bird. However, it is easy
to see by direct application of the semantics that in this case the obvious (and
relevant) contradiction is not detected, and Penguin is satisfiable in the coupled
system.

The reason for this is that what bridge rules actually do is to place restrictions
on a link property, which is nothing but an “ordinary” E-connection link. Intu-
itively, there’s nothing contradictory in these bridge rules in the same way that

14

O = { NonFlying = ¬Flying,
Bird v Flying,
Penguin v Bird,
Penguin v NonFlying}

A = { FlyingA,
NonFlyingA = ¬FlyingA,
BirdA v FlyingA }

B = { PenguinB ,

BirdA
w−→ PenguinB ,

NonFlyingA
w−→ PenguinB}

(a) (b)

Fig. 1. Figure (a) shows a single ontology where concept Penguin is unsatisfiable.
Figure (b) shows the same definition with bridge rules where contradiction cannot be
detected anymore

there is no inconsistency between two axioms like Father v ∃hasChild.Male
and Father v ∃hasChild.¬Male in an ordinary ontology.

This result, together with the fact that inter-ontology subsumption links do
not propagate transitively, shows that DDLs can be misleading and counterin-
tuitive, and do not seem to capture the notion of subsumption links across a
“Web of ontologies”. The example suggests that a formalism for dealing with
inter-ontology subsumption relationships is still lacking. E-connections, though
suitable for covering a wide variety of relevant modeling scenarios in the Seman-
tic Web context, do not capture the idea of linking ontologies with subsumption
relationships, but, as opposed to DDLs, were not conceived for such a purpose.

7 Conclusion and Future Work

One of the most important challenges for the Semantic Web is to understand
how to represent and reason with multiple, distinct, independently developed,
but linked ontologies in a distributed environment. In this paper, we have ex-
plored the E-connections framework as a powerful formalism for combining OWL
ontologies.

We argue that E-connections capture the intuition behind many relevant
modeling scenarios in which ontology developers “partially import” concepts
from other ontologies and use them for the definition of new concepts without
having to bring to the local logical space all the axioms in the foreign ontology.
We have shown how to integrate the formalism into OWL in a natural and
compact way. The resulting syntax and semantic extension of OWL is strictly
more expressive than earlier proposals, like C-OWL.

We have defined an expressive subformalism of E-connections, strictly more
expressive than DDLs, which can be implemented in a quite straightforward
way for the combination of OWL-Lite ontologies by extending existing tableaux-
based reasoners. The resulting algorithm has been satisfactorily implemented in
the OWL reasoner Pellet. Finally, we have shown how DDLs seem unsatisfactory,
because on one hand they are too inexpressive for the modeling scenarios for
which E-connections are suitable, and on the other hand because they seem not

15

to capture the intuitive idea behind subsumption links across multiple ontologies.
This suggests further work in defining a new semantics for DDLs that correctly
describes inter-ontology subsumption links.

Another important application for E-connections for knowledge engineering
and also for the Semantic Web is the ability to factor large ontologies. Instead
of combining and integrating ontologies, E-connections could be used the other
way round, namely for decomposing large and heterogeneous 7 knowledge bases
into smaller, more homogeneous E-connected ontologies. When ontologies grow,
they become more difficult to understand for modelers and also harder to reuse.
Hence, the ability to “break” large ontologies into smaller, connected pieces may
yield to the development of more effective and modular knowledge modeling
techniques. Factoring ontologies in this way may also result in a computational
efficiency gain when performing reasoning, since the number of non-absorbable
general concept inclusion axioms in the original knowledge base is partitioned
into different sets, corresponding to the different ontologies in the combination,
which may result in a remarkable performance gain.

Future work includes the development of reasoning techniques for handling
nominals in the combination (and hence OWL-DL ontologies), and also to ex-
plore the transition from PECs to full E-connections. We also plan to extend
the algorithm presented here to reason with Aboxes. When reasoning with in-
dividuals using this technique, we expect a major performance gain, since the
number of individuals in the original ontology is divided among the different on-
tologies in the combination. Finally, we are also looking into integrating support
for multiple ontologies in the SWOOPed ontology editor in order to make these
formalisms as usable and intuitive as possible for modelers, which is crucial for
successfully bringing them to the Semantic Web.

References

1. F. Baader, C. Lutz, H.Sturm, and F.Wolter. Fusions of description logics and ab-
stract description systems. Journal of Artificial Intelligence Research (JAIR), 16:1-
58, 2003.

2. A. Borgida and L. Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153-184, 2003.

3. Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt. C-owl: Contextualizing ontologies. In Proc. of the 2003
International Semantic Web Conference (ISWC 2003), 2003.

4. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artificial Intelligence 156(1):1-73, 2004.

5. P.F. Patel-Schneider, P. Hayes, and I.Horrocks. Web ontology language (owl) ab-
stract syntax and semantics. W3C Recommendation, 2004.

7 The word heterogeneous is used here to state that a certain ontology covers different
topics or domains

