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ABSTRACT
The ability to extract meaningful fragments from an ontology is key
for ontology re-use. We propose a definition of a module that guar-
antees to completely capture the meaning of a given set of terms,
i.e., to include all axioms relevant to the meaning of these terms,
and study the problem of extracting minimal modules. We show
that the problem of determining whether a subset of an ontology
is a module for a given vocabulary is undecidable even for rather
restricted sub-languages of OWL DL. Hence we propose two “ap-
proximations”, i.e., alternative definitions of modules for a vocab-
ulary that still provide the above guarantee, but that are possibly
too strict, and that may thus result in larger modules: the first ap-
proximation is semantic and can be computed using existing DL
reasoners; the second is syntactic, and can be computed in poly-
nomial time. Finally, we report on an empirical evaluation of our
syntactic approximation which demonstrates that the modules we
extract are surprisingly small.
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1. INTRODUCTION
The design, maintenance, reuse, and integration of ontologies

are highly complex tasks—especially for ontologies formulated in
a logic-based language such as OWL. Like software engineers, “on-
tology engineers” need to be supported by tools and methodologies
that help them to minimise the introduction of errors, i.e., to ensure
that ontologies have appropriate consequences. In order to develop
this support, important notions from software engineering, such as
module, black-box behavior, andcontrolled interaction, need to be
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adapted so as to take into account the fact that an OWL ontology is,
in essence, a logical theory; due to the expressive power of OWL,
this turns out to be difficult.

In earlier work [4], we have studied modularity in the context
of collaborative ontology developmentandcontrolled integration,
and defined what it means for an ontology we are developing to be
safely integrated with a “foreign” ontology; roughly speaking, such
an integration is safe if it does not change the meaning of the terms
in the foreign ontology.

In this paper, we focus on the use of modularity to support the
partial reuseof ontologies: continuing with the above integration
scenario, as a next step, we would like toextract, from the for-
eign ontology, a small fragment that captures the meaning of the
terms we use in our ontology. For example, when building an
ontology describing research projects, we may use terms such as
Cystic Fibrosis andGenetic Disorder in our descriptions of med-
ical research projects. In order to improve the precision of our on-
tology, we may want to add more detail about the meaning of these
terms; for reasons of cost and accuracy, we would prefer to do this
by reusing information from a medical ontology. Such ontologies
are, however, typically very large, and importing the whole ontol-
ogy would make the consequences of the additional information
costly to compute and difficult for our ontology engineers (who are
not medical experts) to understand. Thus, in practice, we need to
extract a module that includes just the relevant information. Ideally,
this module should beas small as possiblewhile still guaranteeing
to capture the meaning of the terms used; that is, when answering
arbitrary queries against our projects ontology, importing the mod-
ule would give usexactly the same answersas if we had imported
the whole medical ontology. In this case, importing the module in-
stead of the whole ontology will have no observable effect on our
ontology—apart from allowing for more efficient reasoning.

Concerning the efficiency of reasoning, the time needed to process
an ontology is often too high for ontology engineering, where fast
response under changes in the ontology is required, or for deploy-
ment in applications, where fast response to queries is required.
The ability to extract modules in the sense described above would
address both these problems: it would allow us to identify a (hope-
fully small) part of the ontology that is affected by a given change
or that is sufficient to answer a given query—and then to reason
over this part only without losing any consequences.

The contributions of this paper are as follows:

1. We propose a definition of amoduleQ1 within a given on-
tologyQ for a given vocabularyS.

2. We take the above definition as a starting point, and investi-
gate the problem of computing minimal modules. We show
that none of the reasonable variants of this problem is solv-



able in general already for rather restricted sub-languages of
OWL DL. In fact, it is even not possible to determine whether
a subsetQ1 of an ontologyQ is a module inQ for S.

3. Given these negative results, we propose two “approxima-
tions”, i.e., alternative definitions of a module that still guar-
antee to completely capture the meaning of the terms inS,
but that are possibly too strict, and that may thus result in
larger modules; these approximations are based on the no-
tion of locality of an ontology with respect to a vocabulary,
as first introduced in [4]. The first approximation is semantic,
and can be computed using existing OWL reasoners; the sec-
ond one is a restriction of the first one which can be computed
in polynomial time. We propose an algorithm for computing
the smallest module for each of these approximations.

4. Finally, we describe our implementation and present our ex-
perimental results on a set of real-world ontologies of vary-
ing size and complexity. We show that, using our syntac-
tic approximation, we obtain modules that are much smaller
than the ones computed using existing techniques, but still
sufficient to capture the meaning of the specified vocabulary.

This paper comes with a Technical Report [3], available online,
which contains the complete proofs for the results we discuss here.

2. PRELIMINARIES
In this section we introduce description logics (DLs) [2] which

underly modern ontology languages, such as OWL DL. Thesyn-
tax of a description logicL is given by a signature and a set of
constructors. Asignature(or vocabulary) S of a DL is the (dis-
joint) union of a setC of atomic concepts(A, B, . . . ) represent-
ing sets of elements, a setR of atomic roles(r, s, . . . ) represent-
ing binary relations between elements, and a setI of individuals
(a, b, c, . . . ) representing elements. Every DL providesconstruc-
tors for defining the setRol(S) of (general)roles (R, S, . . . ), the
setCon(S) of (general)concepts(C, D, . . . ), and the setAx(S) of
axioms(α, β, . . . ) for a signatureS which is a union ofrole axioms
(RBox), terminological axioms(TBox) andassertions(ABox).
EL [1] is a simple description logic which allows one to con-

struct complex concepts usingconjunctionC1 uC2 andexistential
restriction∃R.C starting from atomic conceptsA, rolesR and the
bottom concept⊥. EL provides no role constructors and no role
axioms; thus, every roleR in EL is atomic. The TBox axioms of
EL can be eitherconcept definitionsA ≡ C or general concept in-
clusion axioms(GCIs)C1 v C2. EL assertions are eitherconcept
assertionsa : C or role assertionsr(a, b).

The basic description logicALC [14] is obtained fromEL by
addingcomplement of concepts¬C. We introduce some additional
constructors as abbreviations: thetop concept> is a shortcut for
¬⊥, thedisjunction of conceptsC1tC2 stands for¬(¬C1u¬C2),
and thevalue restriction∀R.C stands for¬(∃R.¬C).
S is an extension ofALC where, additionally, some atomic roles

can be declared to betransitiveusing a role axiomTrans(r).
Further extensions of description logics includeinverse rolesr−

(indicated by appending a letterI), role inclusion axioms(RIs) also
calledrole hierarchiesR1 v R2 (+H), functional rolesFunct(R)
(+F ), number restrictions(> n S) (+N ), qualified number re-
strictions(> n S.C)1 (+Q), andnominals{a} (+O). Nominals
make it possible to construct a concept representing a singleton
set{a} (a nominalconcept) from an individuala. These exten-
sions can be used in different combinations, for exampleALCO
1the dual constructors(6 n S) and(6 n S.C) are abbreviations for
¬(> n S.¬C) and¬(> n S.¬C), respectively

is an extension ofALC with nominals;SHIQ is an extension of
S with role hierarchies, inverse roles and qualified number restric-
tions; andSHOIQ is the DL that uses all the constructors and
axiom types we have presented.

Modern ontology languages, such as OWL [12], are based on
description logics and, to a certain extent, are syntactic variants
thereof. In particular, OWL DL corresponds toSHOIN [8]. In
this paper, we assume anontologyO based on a description logic
L to be a set of axioms inL. Thesignature of an ontologyO (of
an axiomα) is the setSig(O) (Sig(α)) of atomic concepts, atomic
roles and individuals that occur inO (respectively inα).

The main reasoning task for ontologies isquery answering: given
an ontologyO and an axiomα, check ifO impliesα.

The logical entailment|= is defined using theusual Tarski-style
set-theoretic semanticsfor description logics as follows. Given a
signatureS = R ∪ C ∪ I, anS-interpretation I is a pairI =
(∆I , ·I), where∆I is a non-empty set, called thedomainof the
interpretation, and·I is theinterpretation functionthat assigns: to
everyA ∈ C a subsetAI ⊆ ∆I , to everyr ∈ R a binary relation
rI ⊆ ∆I ×∆I , and to everya ∈ I an elementaI ∈ ∆I .

The interpretation function·I is extended to complex roles and
concepts via DL-constructors in the standard way (see [2, 3] for
details). ThesatisfactionrelationI |= α between an interpretation
I and a DL axiomα (read asI satisfiesα) is also standard and can
be found in [2, 3]. An interpretationI is amodelof an ontology
O if I satisfies all axioms inO. An ontologyO impliesan axiom
α (writtenO |= α) if I |= α for every modelI of O. An axiomα
is atautologyif it is implied by the empty ontology.

Let S1,S be signatures such thatS1 ⊆ S. Therestriction of an
S-interpretationI = (∆I , ·I) to S1 is an interpretationI|S1 =
(∆I1 , ·I1) over S1 such that∆I1 = ∆I and XI1 = XI for
everyX ∈ S1. An expansion of anS1-interpretationI1 to S is
anS-interpretationI such thatI|S1 = I1. A trivial expansion of
an S1-interpretationI1 to S is an expansion ofI1 to S such that
XI = ∅ for every atomic concept and atomic roleX ∈ S \ S1.

3. MODULES FOR KNOWLEDGE REUSE
For exposition, suppose that an ontology engineer wants to build

an ontology about research projects. The ontology defines dif-
ferent types of projects according to the research topics they fo-
cus on. Suppose that the ontology engineer defines two concepts
Genetic Disorder Project and Cystic Fibrosis EUProject in his
ontologyP. The first one describes projects about genetic disor-
ders; the second one describes European projects about cystic fi-
brosis, as given by the axioms P1 and P2 in Figure 1.

The ontology engineer is supposed to be an expert on research
projects: he knows, for example, that aEUProject is a Project
(axiom P3). He is unfamiliar, however, with most of the topics the
projects cover and, in particular, with the termsCystic Fibrosis and
Genetic Disorder mentioned in P1 and P2. In this case, he decides
to reuse the knowledge about these subjects from a well-established
and widely-used medical ontology

The most straightforward way to reuse these concepts is to im-
port the medical ontology. This may be, however, a large ontology,
which deals with other matters in which the ontology engineer is
not interested, such as genes, anatomy, surgical techniques, etc.
Ideally, one would like to extract a (hopefully small) fragment of
the medical ontology—amodule—that describes in detail the con-
cepts we are reusing in our ontology. Intuitively, importing the
moduleQ1 into P instead of the full ontologyQ should have no
impact on the modeling of the ontologyP.

Continuing with the example, suppose thatCystic Fibrosis and
Genetic Disorder are described in an ontologyQ containing ax-



Ontology of medical research projectsP:
P1 Genetic Disorder Project ≡ Project u

u ∃has Focus.Genetic Disorder

P2 Cystic Fibrosis EUProject ≡ EUProject u
u ∃has Focus.Cystic Fibrosis

P3 EUProject v Project

Ontology of medical termsQ:
M1 Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u

u ∃has Origin.Genetic Origin

M2 Genetic Fibrosis ≡ Fibrosis u
u ∃has Origin.Genetic Origin

M3 Fibrosis u ∃located In.Pancreas v Genetic Fibrosis

M4 Genetic Fibrosis v Genetic Disorder

M5 DEFBI Gene v Immuno Protein Gene u
u ∃associated With.Cystic Fibrosis

Figure 1: Reusing medical terminology for an ontology on medical
research projects

ioms M1-M5 in Figure 1. If we include in the moduleQ1 just the
axioms that mentionCystic Fibrosis or Genetic Disorder, namely
M1, M4 and M5, we lose the following dependency:

Cystic Fibrosis v Genetic Disorder (1)

The concept inclusionsCystic Fibrosis v Genetic Fibrosis v
Genetic Disorder follow from M1-M5, but not from M1, M4, M5,
since the dependencyCystic Fibrosis v Genetic Fibrosis does not
hold after removing M2 and M3. The dependency (1), however, is
crucial for our ontologyP as it (together with axiom P3) implies
the following axiom:

Cystic Fibrosis EUProject v Genetic Disorder Project (2)

This means, in particular, that all the projects annotated with
Cystic Fibrosis EUProject must be included in the answer for a
query onGenetic Disorder Project. Consequently, importing a
part ofQ containing only axioms that mention the terms used in
P instead ofQ results in an underspecified ontology. We stress
that the ontology engineer might be unaware of dependency (2),
even though it concerns the concepts of his primary scope.

The example above suggests that the central requirement for a
moduleQ1 ⊆ Q to be reused in our ontologyP is thatP ∪ Q1

should yield thesamelogical consequences in the vocabulary ofP
asP ∪Q does. Note that, as seen in the example, this requirement
does not force us to include inQ1 all the axioms inQ that mention
the vocabulary to be reused, nor does it imply that the axioms inQ
that do not mention this vocabulary should be omitted.

Based on the discussion above, we formalize our first notion of
amoduleas follows:

Definition 1 [Module]. Let Q1 ⊆ Q be two ontologies andS
a signature. We say thatQ1 is anS-module inQ w.r.t. a language
L, if for every ontologyP and every axiomα expressed inL with
Sig(P∪{α})∩Sig(Q) ⊆ S, we haveP∪Q |= α iff P∪Q1 |= α.

In Definition 1 the signatureS acts as theinterfacesignature be-
tweenP andQ in the sense that it contains the symbols thatP and
α may share withQ. It is also important to realize that there are
two free parameters in Definition 1, namely the ontologyP and the
axiomα. BothP andα are formulated in some ontology language
L, which might not necessarily be a sub-language of OWL DL.

Fixing the languageL in which P and α can be expressed is
essential in Definition 1 since it may well be the case thatQ1 is
a module inQ w.r.t. a languageL1, but not w.r.t.L2. Fixing L,
however, is not always reasonable. IfQ1 is anS-module inQ,
it should always be possible to replaceQ with Q1 regardless of
the particular language in whichP andα are expressed. In fact,
we may extend our ontologyP with a set of Horn rules, or ex-
tend our query language to support arbitrary conjunctive queries.
In any case, extending the ontology language forP and the query
language forα should not preventQ1 from being a module inQ.

It is therefore convenient to formulate a more general notion of
a module which abstracts from the particular language under con-
sideration; that is, we say thatQ1 is anS-module inQ iff it is
anS-module inQ, according to Definition 1 foreverylanguageL
with Tarski-style set-theoretic semantics. The modules we obtain
in this paper will be modules in precisely this stronger sense.

In our knowledge reuse scenario, small modules are preferred
over large modules. Therefore, it makes sense to focus only on min-
imal modules. We say thatQ1 is aminimalS-module inQ if there
is noQ2 ( Q1 that is also anS-module inQ. In our example from
Figure 1, there are two minimalS-modulesQ1 = {M1, M2, M4}
andQ2 = {M1, M3, M4}: if we remove any axiom from them,
the dependency (1) will no longer hold. Hence minimal modules
are not necessarily unique. While in some cases it is reasonable to
extract all minimal modules, in others it may suffice to extract just
one. Thus, givenQ andS, the following tasks are of interest:

T1. computeall minimalS-modules inQ
T2. computesomeminimalS-module inQ (3)

Surprisingly, we can show (see [3] for detail) that these tasks are
inter-reducible; that is, an algorithm that solves T1 can be used to
solve T2 and vice-versa. Let us now consider the axioms M1–M4.
These axioms occur in both minimalS-modulesQ1 andQ2; thus,
they are, in a certain sense, essential for dependency (1). In certain
situations, one can be interested in computing just the setQe of
such essential axioms, instead of computing all minimal modules.
This is the case, for example, if the ontology engineer wants to
compute a module that is “safe” under removal of axioms: if we
remove M2 fromQ, thenQ′1 = Q1 \ M2 = {M1, M4} is no
longer anS-module for the updated ontologyQ′ := Q \ {M2}
since the dependency (1) is lost, butQ′e := Qe \ {M2} is still a
module inQ. This example suggests the following definition:

Definition 2 [Essential Axiom]. Given a signatureS and an on-
tologyQ, we say that an axiomα ∈ Q is S-essential inQ w.r.t. L
if α belongs to some minimalS-module inQ w.r.t. L.

Hence, the following task may also be of interest:

T3. computethe unionof all minimalS-modules inQ,
which is the set of allS-essential axioms inQ (4)

Obviously, task T3 is not harder then task T1: a procedure for com-
puting all minimal modules can be used in a straightforward way
to compute the union of these minimal modules.

PROPOSITION 1. Tasks T1 and T2 are reducible to task T3; that
is, any procedure for T1 or T2 can be used for solving T3.

In the last few years, numerous techniques for extracting frag-
ments of ontologies for knowledge reuse purposes have been de-
veloped. Most of these techniques rely on syntactically traversing
the axioms in the ontology and employ various heuristics for deter-
mining which axioms are relevant and which are not.

An example of such a procedure is the algorithm implemented
in the PROMPT-FACTOR tool [11]. Given a signatureS and an



ontologyQ, the algorithm retrieves a fragmentQ1 ⊆ Q as follows:
first, the axioms inQ that mention any of the symbols inS are
added toQ1; second,S is expanded with the symbols inSig(Q1).
These steps are repeated until a fixpoint is reached. In our example,
the axioms M1-M5 would be retrieved.

Another example is the algorithm in [15], which was used for
segmentation of the medical ontology GALEN [13]. Given a signa-
tureS and an ontologyQ, the algorithm adds toQ1 all definitions
A ≡ C for symbols inS, expandsS with symbols inSig(Q1), and
then repeats these steps again until a fixpoint is reached. The main
idea of this algorithm is to prune irrelevant axioms by traversing the
class hierarchy only “upwards” and across existential restrictions.
Unfortunately, this algorithm does not detect other dependencies,
in particular those expressed by GCIs. In our example, when ini-
tialized withCystic Fibrosis andGenetic Disorder, the algorithm
retrieves only the axiom M1 and the dependency (1) is lost.

Therefore, none of these algorithms is appropriate for extracting
modules according to Definition 1. On the one hand, the PROMPT-
FACTOR algorithm extracts many unnecessary axioms (such as
M5 in our case) whereas, on the other hand, the segmentation algo-
rithm from [15] misses essential axioms (like M2, M3 and M4).

In our example, the PROMPT-FACTOR algorithm would ex-
tract a module (though not a minimal one). In general, however,
this is also not the case. For example, consider an ontologyQ =
{> v {a}, A v B}, α = (A v ∀r.A), andS = {A}. It is easy
to see thatQ admits only single element models andα is satisfied
in every such a model; that is,Q |= α. The PROMPT-FACTOR
algorithm extracts in this caseQ1 = {A v B}, which does not
imply α.

The main problem with these algorithms is that they ignore the
semantics of the ontologies. As a consequence, they may, on the
one hand, extract irrelevant axioms and, on the other hand, miss
essential axioms. These algorithms, however, were not intended
to extract modules in accordance to a formal collection of require-
ments; instead, they were intended to extract “relevant parts” of
ontologies which are “likely to be related” to the given signature,
and they do not guarantee the correctness of the results. Correct-
ness, however, is the primary requirement for the procedures we
present in this paper.

3.1 Modules and Conservative Extensions
The notion of a module is closely related to the notion of a con-

servative extension which has been used to characterize formal re-
quirements in ontology integration tasks [7, 5, 4, 10]. In the lit-
erature we can find at least two different notions of conservative
extensions in the context of ontologies [10]:

Definition 3 [Conservative Extensions].
LetQ1 ⊆ Q be two ontologies,S a signature andL a logic.
We say thatQ is a deductiveS-conservative extensionof Q1

w.r.t. L, if for every axiomα over L with Sig(α) ⊆ S, we have
Q |= α iff Q1 |= α.

We say thatQ is a modelS-conservative extensionof Q1 if,
for every modelI1 of Q1, there exists a modelI of Q such that
I|S = I1|S.

Intuitively, an ontologyQ is a deductive conservative extension of
an ontologyQ1 ⊆ Q for a signatureS iff every logical conse-
quenceα ofQ constructed using only symbols fromS is already a
consequence ofQ1; that is, the additional axioms inQ do not add
new logical consequences over the vocabularyS. Analogously to
modules, the notion of a deductive conservative extension depends
on the ontology languageL in whichQ andα are expressed.

In contrast, model conservative extensions are not defined in

terms of logical entailment, but using the models directly. Intu-
itively, an ontologyQ is a model conservative extension ofQ1 ⊆
Q if every model ofQ1 can be expanded to a model ofQ by in-
terpreting new symbols and leaving the interpretations of the old
symbols unchanged.

The notion of semantic conservative extension is strictly stronger
than the syntactic one [10] since it does not depend on expressivity
of the ontology language. That is, ifQ is a modelS-conservative
extension ofQ1, it is also a deductiveS-conservative extension of
Q1, but not necessarily vice versa.

Example 1.LetQ be the ontology consisting of axioms M1 −
M5 in Figure 1. LetQ1 consist of the axioms M1 − M4 and let
S = {Cystic Fibrosis, Genetic Disorder}. We show thatQ is a
modelS-conservative extension ofQ1 and, hence, also a deductive
conservative extension ofQ1.

Let I1 be an arbitrary model ofQ1. We demonstrate that we can
always construct a modelI ofQwhich interprets the symbols from
S in the same way asI1 does, i.e.I|S = I1|S.

Indeed, letI be identical toI1 except for the interpretation of the
atomic conceptsDEFBI Gene andImmuno Protein Gene, and the
atomic roleassociatedWith, all of which we interpret inI as the
empty set. Note that these atomic concepts and this atomic role do
not occur inQ1. Hence,I interprets the concepts inQ1 exactly
like I1, and soI is a model ofQ1. Furthermore,I is a model of
M5 since the concepts on the left-hand-side and the right-hand-side
of this axiom are both interpreted as the empty set. Thus,Q is a
modelS-conservative extension ofQ1.

Although Definition 1 is close to the notion of deductive con-
servative extension, there are two important differences. First, in
the definition of deductive conservative extension, the logical con-
sequences are considered only w.r.t. the ontologiesQ andQ1 of
interest whereas, in our definition of module, all the possible on-
tologiesP in which the module can be used are taken into account.
Second, in the definition of deductive conservative extension, the
signature ofα is required to be a subset ofS whereas, in our defin-
ition of module, only the common part ofα ∪ P andQ is required
to be a subset ofS. Despite these differences, the two notions of
conservative extensions are related to our notion of module:

PROPOSITION 2. LetQ1 ⊆ Q be two ontologies. Then:

1. If Q1 is an S-module inQ w.r.t. L thenQ is a deductive
S-conservative extension ofQ1 w.r.t. L;

2. If Q is a modelS-conservative extension ofQ1 thenQ1 is
anS-module inQ for every ontology languageL with Tarski-
style set-theoretic semantics.

PROOF. 1. Letα be an axiom withSig(α) ∈ S such thatQ |=
α. We have to show thatQ1 |= α (?). TakeP := ∅ (the empty
ontology). SinceQ1 is a module inQ, Sig(P∪{α})∩Sig(Q) ⊆ S,
andP∪Q = Q |= α, by Definition 1, we haveQ1 = P∪Q1 |= α.

2. Assume thatQ is a modelS-conservative extension ofQ1,
butQ1 is not anS-module inQ w.r.t. some logicL. According
to Definition 1, this means that there exists an ontologyP and an
axiom α over L with Sig(P ∪ {α}) ∩ Sig(Q) ⊆ S, such that
P ∪ Q |= α but P ∪ Q1 6|= α. The last implies that for some
interpretationI1, we haveI1 |= P ∪ Q1, but I1 6|= α. Let
I′1 := I1|S∪Sig(Q). Obviously,I′1 |= Q1. By Definition 3, since
Q is a modelS-conservative extension ofQ1, there exists an in-
terpretationI′ such thatI′ |= Q andI′|S = I′1|S. Let I be the
expansion ofI′|S∪Sig(Q) to Sig(P ∪ {α}) by settingXI := XI1

for everyX ∈ Sig(P ∪ {α}) \ S. Note that we also haveI|S =



I′|S = I′1|S = I1|S, henceI|Sig(P∪{α}) = I1|Sig(P∪{α}), and so
I |= P andI 6|= α. SinceI|S∪Sig(Q) = I′|S∪Sig(Q) andI′ |= Q,
we haveI |= Q, which yields a contradiction.

Proposition 2 shows that our notion of module stays “in be-
tween” the two notions of conservative extensions. In particular,
by applying Property 2 in Proposition 2 to Example 1, we can show
that the axioms M1-M4 in Figure 1 constitute a module in the on-
tology Q, consisting of M1-M5. The converse of Property 1 in
Proposition 2, however, does not hold in general:

Example 2.LetQ1 = {}, Q = {> v ∃R.A} andS = {A}.
The ontologyQ is a deductiveS-conservative extension ofQ1

w.r.t. ALC. Indeed, everyALC-axiom α = (C1 v C2) over
S = {A}, is equivalent inALC to either> v >,> v ⊥,> v A
or A v ⊥, which are indistinguishable byQ1 andQ—that is, the
axiom is implied byQ1 iff it is implied by Q. Q1, however, is not
anS-module inQ. Consider anALC-ontologyP = {A v ⊥},
which is constructed overS. It is easy to see thatP∪Q |= > v ⊥,
butP ∪Q1 6|= > v ⊥.

Given the relationships between our definition of module and
conservative extensions, it is worth examining the computational
complexity of the associated problems. The problem of deciding
whetherQ is anS-conservative extension ofQ1 has been stud-
ied in [10], where it is proved to be 2NEXPTIME-complete for
ALCIQ (roughly OWL-Lite) and undecidable for OWL DL. For
model conservative extensions, the problem is highly undecidable
(non recursively enumerable), even forALC [10].

The decidability result from [10] for deductive conservative ex-
tensions, however, does not transfer to our problem since an ontol-
ogyQ may well be anS-deductive conservative extension ofQ1,
but stillQ1 might not be anS-module inQ. In fact, we show that
our problem is already undecidable forALC ontologies when the
language allows for nominals:

THEOREM 1. Given a signatureS, anALC-ontologyQ and
an axiomα ∈ Q, it is undecidable whetherα is S-essential inQ
w.r.t. L = ALCO.

The proof of Theorem 1 is a variation of the proof from [10] for
undecidability of deductive conservative extensions inALCQIO,
which is based on a reduction to domino tiling problems. The proof
is rather technical and we refer the reader to [3] for details.

COROLLARY 1. There exists no algorithm for performing any
of the tasks T1-T3 from(3), and(4) for ALC.

PROOF. Theorem 1 implies directly that there is no algorithm
for task T3 from (4), because otherwise, one can check if an axiom
α is S-essential inQ by simply computing the set of all essential
axioms by this algorithm for T3 and then checking ifα is contained
in this set. The remaining tasks from (3) are unsolvable since they
are reducible to T3 by Proposition 1 .

COROLLARY 2. Given a signatureS, anALC-ontologyQ and
an ontologyQ1 ⊆ Q, it is undecidable whetherQ1 is anS-module
inQ w.r.t. L = ALCO.

PROOF. The procedure for deciding ifQ1 is anS-module inQ
can be used for solving task T1, which is not possible by Corol-
lary 1. Indeed, by enumerating the subsets ofQ and checking if
they are modules, one can compute all subsetsM of Q that are
S-modules inQ. The set of all minimal modules inQ can be then
computed fromM by filtering out those sets inM that are proper
subsets of some other sets inM.

Corollary 2 has a strong impact on the problem of knowledge
reuse and forces us to revisit the original problem we aim at solv-
ing. As the problem of extracting minimal modules cannot be com-
putationally solved for OWL DL in none of the forms T1-T3, we
propose to relax some of the requirements in these tasks. We cannot
drop the requirements that extracted fragments should be modules
since, in this case, we have no guarantee for the correctness of the
result. We can sacrifice, however, the minimality requirements for
the computed modules and consider the following weakened ver-
sion of the task T2:

T2w. computesomesmall enoughS-module inQ (5)

Although it is always possible to extract anS-module inQ (one
can simply returnQ which is always anS-module inQ), it still
makes sense to develop, compare, and practically apply procedures
that compute reasonably small modules. In the rest of the paper
we describe two procedures of this form, based on the notions of
locality, which we first introduced in [4]. The modules we obtain
might be larger than the minimal modules and therefore we need to
show that, in practice, they are still reasonably small.

4. MODULES BASED ON LOCALITY
In this section, we formulate the notion of locality, first intro-

duced in [4] which will constitute the basis of our algorithm for
extracting modules.

4.1 Locality
As a consequence of Case 2 in Proposition 2, model conserva-

tive extensions can be used as a sufficient condition for the notion
of module. It is not possible, however, to design a procedure that
extracts modules based on this condition since the problem of de-
ciding model conservative extensions is highly undecidable [10].
The idea underlying this notion, however, can be used to establish
sufficient conditions for the notion of module which are decidable
and can be used in practice.

Consider Example 1, where we show that the setQ of axioms
M1-M5 in Figure 1 is a modelS-conservative extension ofQ1 =
{M1, . . . , M4}, for S = {Cystic Fibrosis, Genetic Disorder}. In
this example, the model conservative extension property was shown
by finding expansions ofSig(Q1)-interpretations to models ofQ in
which all concept and atomic roles not inSig(Q1) were interpreted
as the empty set. One could consider the cases where conservative
extensions (and hence modules) can be determined in this manner.
This idea can be formalized using the notion of locality:

Definition 4 [Locality [4]]. Let S be a signature. We say that
an axiom α is local w.r.t. S if every trivial expansion of anyS-
interpretation toS∪Sig(α) is a model ofα. We denote bylocal(S)
the collection of all axioms that are local w.r.t.S. An ontologyO
is local w.r.t.S if O ⊆ local(S).

Intuitively, an ontologyO is local w.r.t. a signatureS if we can take
any interpretation for the symbols inS and extend it to amodelof
O that interprets the additional symbols as the empty set.

Example 3.Consider axiom M5 from Figure 1. This axiom
is local w.r.t.S = {Cystic Fibrosis, Genetic Disorder}. Indeed,
as shown in Example 1, for every trivial expansionI of an S-
interpretation toS ∪ Sig(α), the atomic conceptDEFBI Gene is
interpreted as the empty set, and so,I satisfies M5.

On the other hand, M5 is not local w.r.t.S = {DEFBI Gene}.
Indeed, take anyS-interpretationI1 in which DEFBI Gene is in-
terpreted as a non-empty set. Then, for every trivial expansionI of
I1, the concept on the left-hand-side of M5 is always interpreted



as a non-empty set, whereas the concept on the right-hand-side is
always interpreted as the empty set. SoI does not satisfyα.

Locality can be used to formulate a sufficient condition for an
ontology to be a model conservative extension of another ontology:

PROPOSITION 3. LetO1,O2 be two ontologies andS a signa-
ture such thatO2 is local w.r.t.S ∪ Sig(O1). ThenO1 ∪ O2 is an
S-model conservative extension ofO1.

PROOF. Let I1 be a model ofO1. We show that there exists a
modelI of O1 ∪ O2 such thatI|S = I1|S.

Let I be a trivial expansion ofI1|S∪Sig(O1) to S ∪ Sig(O1) ∪
Sig(O2), thus, in particular,I|S∪Sig(O1) = I1|S∪Sig(O1). We need
to show thatI is a model ofO1 ∪ O2. SinceO2 is local w.r.t.
S∪ Sig(O1), by Definition 4,I is a model ofO2. Moreover, since
I|Sig(O1) = I1|Sig(O1) andI1 |= O1, we haveI |= O1. Hence,
I |= O1 ∪ O2 what was required to show.

Using Proposition 3 and Property 2 of Proposition 2 we obtain:

COROLLARY 3. LetO1,O2 andS be as given in Proposition 3.
ThenO1 is anS-module inO1 ∪ O2.

Next, we introduce our first restricted class of modules:

Definition 5 [Modules based on Locality Condition].
Given an ontologyQ and a signatureS, we say thatQ1 ⊆ Q is a
locality-basedS-module inQ if Q\Q1 is local w.r.tS∪ Sig(Q1).

Example 4 [Example 3, continued].We have seen in Example 3
that axiom M5 is local w.r.t. everyS that does not contain the
atomic conceptDEFBI Gene. In particular, forQ1 consisting of
axioms M1-M4 from Figure 1, M5 is local w.r.t.Sig(Q1). Hence,
according to Definition 5,Q1 is a locality-basedS-module inQ =
{M1, . . . , M5} for everyS ⊆ Sig(Q1).

4.2 Computing Locality-Based Modules
As demonstrated in Example 3, for testing locality of an axiomα

w.r.t.S, it is sufficient to interpret every atomic concept and atomic
role not inS with the empty set and then check ifα is satisfied
for all interpretations of the remaining symbols. This observation
suggests that locality can be tested by first simplifying the ontology
by eliminating atomic roles and concepts that are not inS, and then
checking if the resulting axioms are satisfied in every interpretation
for the remaining symbols. This idea is formalized as follows:

PROPOSITION4 (TESTING LOCALITY ).
LetO be aSHOIQ ontology andS a signature. LetOS be ob-
tained fromO by applying the transformations below, where every
A is an atomic concept, everyr is an atomic role withA, r /∈ S,
and everyR is a roler or r− with r /∈ S: (1) replace all concepts
of formA, ∃R.C or (> n R.C) with⊥; (2) remove every transitiv-
ity axiomTrans(r) ; (3) replace every assertiona : A andr(a, b)
with the contradiction axiom> v ⊥.

ThenO is local w.r.t.S iff every axiom inOS is a tautology.

PROOF. It is easy to check that the transformation above pre-
serves the satisfaction of axioms under every trivial expansionI of
everyS-interpretation toS ∪ Sig(O). Hence, the resulting ontol-
ogyOS is local w.r.t.S iff the original ontologyO was local w.r.t.
S. Moreover, it is easy to see that there are no atomic concepts and
atomic roles outsideS left in OS after the transformation. Hence,
every axiomα fromOS is a tautology iffQ is local w.r.t.S.

Note that according to Definition 4, assertionsa : A andr(a, b)
can never be local since they can only be satisfied by interpretations
that interpretA andr as non-empty sets. Hence, assertions must be
included in every locality-based module, which is reflected by the
step (3) of the transformation in Proposition 4.

An important conclusion of Proposition 4 is that one can use the
standard capabilities of available DL-reasoners2 for testing local-
ity since these reasoners can test for DL-tautologies. Checking for
tautologies in description logics is, theoretically, a difficult prob-
lem (e.g. for DLSHOIQ is NEXPTIME-complete). There are,
however, several reasons to believe that the locality test would per-
form well in practice. First, and most importantly, the size of the
axioms in an ontology is usually small compared to the size of the
ontology. Second, DL reasoners are highly optimized for standard
reasoning tasks and behave well for most realistic ontologies.

In case this is too costly, it is possible to formulate a tractable
approximation to the locality conditions forSHOIQ:

Definition 6 [Syntactic Locality forSHOIQ].
Let S be a signature. The following grammar recursively defines
two sets of conceptsC⊥S andC>S for a signatureS:

C⊥S ::= A⊥ | (¬C>) | (C u C⊥) | (∃R⊥.C)
| (∃R.C⊥) | (> n R⊥.C) | (> n R.C⊥) .

C>S ::= (¬C⊥) | (C>
1 u C>

2 ) .

whereA⊥ /∈ S is a atomic concept,R is a role, andC is a concept,
C⊥ ∈ C⊥S , C>

(i) ∈ C>S , i = 1, 2, andR⊥ /∈ Rol(S) is a role.
An axiom α is syntactically local w.r.t.S if it is of one of the

following forms: (1) R⊥ v R, or (2) Trans(R⊥), or (3) C⊥ v C
or (4) C v C>. We denote bys local(S) the set of allSHOIQ-
axioms that are syntactically local w.r.t.S. A SHOIQ-ontology
O is syntactically local w.r.t.S if O ⊆ s local(S).

Intuitively, every concept inC⊥S becomes equivalent to⊥ if we
replace every symbolA⊥ or R⊥ not inS with the bottom concept
⊥ and the empty role respectively, which are both interpreted as the
empty set under every interpretation. Similarly, the concepts from
C>S are equivalent to> under this replacement. Syntactically local
axioms become tautologies after these replacements.

For example, the axiom M2 from Figure 1 is local w.r.t.S =
{Fibrosis, has Origin}: if we replace the remaining symbols in this
axiom with⊥, we obtain a tautology⊥ ≡ ⊥:

⊥
z }| {

Genetic Fibrosis ≡ Fibrosis u ∃has Origin.

⊥
z }| {

Genetic Origin
| {z }

⊥

Syntactic locality is an approximation for (semantic) locality:

PROPOSITION 5. Let S be a signature. Thens local(S) ⊆
local(S).

PROOF. Let α be an axiom that is syntactically local w.r.t.S and
let I = (∆, ·I) be a trivial expansion of someS-interpretation to
S ∪ Sig(α). We have to demonstrate thatI is a model ofα. By
induction over the definitions ofC⊥S andC>S from Definition 6, it
is easy to show that:(i) every roleR /∈ Rol(S) and every every
concept fromC⊥S is interpreted inI with the empty set, and(ii)
every concept fromC>S is interpreted inI with ∆. By checking all
the possible cases for a syntactically local axiomα in Definition 5,
it is easy to see that in every of these casesI is a model ofα.

2Seehttp://www.cs.man.ac.uk/∼sattler/reasoners.html for a list of
currently available reasoners.



Algorithm 1 extractmodule(Q,S)

Input:
Q: ontology
S: signature

Output:
Q1: a locality-basedS-module inQ

1: Q1 ← ∅ Q2 ← Q
2: while not empty(Q2) do
3: α← selectaxiom(Q2)
4: if locality test( α, S ∪ Sig(Q1) ) then
5: Q2 ← Q2 \ {α} . α is processed
6: else
7: Q1 ← Q1 ∪ {α} . moveα intoQ1

8: Q2 ← Q \Q1 . resetQ2 to the complement ofQ1

9: end if
10: end while
11: return Q1

Q1 is a syntactical locality-basedS-module inQ

Q1 is a locality-basedS-module inQ

Q1 contains allS-essential
axioms w.r.t.L inQ

(Proposition 8)

Q is a modelS-conservative
extension ofQ1

Q1 is anS-module in Q w.r.t. L

Q is a deductiveS-conservative extension ofQ1 w.r.t. L

(Proposition 2, part 1)

(Proposition 2, part 2)

(Proposition 3)

(Corollary 4)

(Definition 2)

Figure 2: Summary for the main theoretical results of the paper

The converse of Proposition 5 does not hold in general since
there are semantically local axioms that are not syntactically lo-
cal. For example, the axiomα = (A v A t B) is a tautology
and thus is local w.r.t. everyS. This axiom, however, is not syn-
tactically local w.r.t.S = {A, B} since it involves symbols inS
only. Another example, which is not a tautology, is the GCIα =
(∃R.¬A v ∃R.¬B), which is semantically local w.r.t.S = {R}
(∃R.> v ∃R.> is a tautology), but not syntactically local. Thus,
the limitation of syntactic locality is its inability to perform reason-
ing elements fromS.

We distinguish the notion of modules based on these two lo-
cality conditions assemantic locality-based modulesandsyntactic
locality-based modules.

COROLLARY 4. If Q1 is a syntactic locality-basedS-module
inQ, thenQ1 is a semantic locality-basedS-module inQ.

For the reference and for the convenience of the reader, we il-
lustrate in Figure 2 the relationships between the key theoretical
results of this paper.

Recall that, according to Definition 5, in order to construct a
locality-basedS-module in an ontologyQ, it suffices to partition
the ontologyQ asQ = Q1 ∪ Q2 such thatQ2 is local w.r.t.
S ∪ Sig(Q1). Algorithm 1 outlines a simple procedure which
performs this task. Assuming there is an effective locality test
locality test(α,S) (either using a reasoner or the syntactical ap-
proximation) that returns true only for axiomsα that are local w.r.t.
S, the algorithm first initializes the partition to the trivial one:Q1 =

] Q1 Q2 New elements inS ∪ Sig(Q1) α loc.?

1 ∅ M1−M5 Cystic Fibrosis,
Genetic Disorder M1 No

2 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M2 No

3 M1, M2 M3−M5 Genetic Fibrosis M3 No
4 M1−M3 M4, M5 − M4 No
5 M1−M4 M5 − M5 Yes
6 M1−M4 − − −

Table 1: A trace of Algorithm 1 forQ = {M1, . . . , M5} andS =
{Cystic Fibrosis, Genetic Disorder}

∅ andQ2 = Q, and then repeatedly moves toQ1 those axioms
fromQ2 that are not local w.r.t.S ∪ Sig(Q1) until no such axioms
are left inQ2.

In Table 1 we provide a trace of Algorithm 1 for the input(Q,S),
whereQ consists of the axioms M1-M5 from Figure 1 andS =
{Cystic Fibrosis, Genetic Disorder}. Each row in the table corre-
sponds to an iteration of the while loop in Algorithm 1. The last
column of the table provides the result of the locality test in line 4.
Note that the syntactic locality condition was sufficient in all tests:
all axioms that were semantically non-local were also syntactically
non-local.

PROPOSITION6 (CORRECTNESS OFALGORITHM 1).
For every inputQ andS, Algorithm 1 computes a locality-based
S-module inQ.

PROOF. We have to show that (1) Algorithm 1 terminates for
every inputT andS, and (2) the output extractmodule(S,Q) is a
locality-basedS-module inQ.

(1) Termination of the algorithm follows from the fact that in
every iteration of the while loop either the size ofQ1 increases, or
the size ofQ1 remains the same but the size ofQ2 decreases. Note
that this means that Algorithm 1 terminates in quadratic time in the
number of axioms inQ, assuming constant time locality test.

(2) It is easy to observe that every axiomα that is neither inQ1

nor inQ2 is local w.r.t.S ∪ Sig(Q1), since the only way such an
α can appear is at the line 3 of the algorithm, andα remains in
Q \ (Q1 ∪ Q2) only if S ∪ Sig(Q1) does not change.

Note that there is an implicit non-determinism in Algorithm 1,
namely, in line 3 in which an axiom fromQ2 is selected. It might
well be the case that several choices forα are possible at this mo-
ment. For example, in Table 1 at step 2 we might have selected
axiom M3 instead of M2. It is possible to show (see [3] for detail)
that the output of Algorithm 1 is uniquely determined by its input
Q andS, and, moreover, is a subset of every locality-based module:

PROPOSITION 7. The output of Algorithm 1 forQ andS is the
smallest (syntactic) locality-basedS-module inQ.

4.3 Properties of Locality-based Modules
In this section, we outline some interesting properties of locality-

based modules which make it possible to use them for applications
other than knowledge reuse.

Let Qloc
S be the smallest locality-basedS-module inQ, which

is unique by Proposition 6 and is the output of Algorithm 1 forQ
andS. The first property is a consequence of Proposition 6:

PROPOSITION 8. Qloc
S contains allS-essential axioms inQ

w.r.t. every logicL with Tarski-style set-theoretic semantics.



Ontology Language ] Atomic A1: Prompt-Factor [11] A2: Modularization from [6] A3: Locality-based mod.

Concepts Max. Size (%) Avg. Size (%) Max. Size (%) Avg. Size (%) Max. Size(%)Avg. Size(%)

NCI EL 27772 24342 (87.6) 21045 (75.8) 15254 (55) 8565 (30.8) 226 (0.8) 22 (0.08)

SNOMED EL 255318 255318 (100) 255318 (100) 255318 (100) 255318 (100) 136 (0.5) 12.8 (0.05)

GO EL 22357 226 (1) 22 (0.1) 226 (1) 22 (0.1) 92 (0.4) 13 (0.05)

SUMO EL 869 869 (100) 869 (100) 869 (100) 869 (100) 18 (2) 8 (0.09)

GALEN-Small SHF 2749 2748 (100) 2748 (100) 2748 (100) 2748 (100) 297 (10) 47.7 (1.7)

GALEN-Full SHIF 24089 24089 (100) 24089 (100) 24089 (100) 24089 (100) 7379 (29.8) 865.5 (3.5)

SWEET SHOIF 1816 1750 (96.4) 1610 (88.7) 1512 (83.3) 935 (51.5) 34 (1.9) 1.7 (0.1)

DOLCE-Lite SHOIN 499 498 (100) 497.9 (100) 498 (100) 497.9 (100) 186 (37.3) 123.4 (24.6)

Table 2: Comparison of Different Modularization Algorithms

As shown in Table 1, the minimal locality-basedS-module ex-
tracted fromQ contains allS-essential axioms M1–M4. In our
case, the module contains only essential axioms; in general, how-
ever, locality-based modules might contain non-essential axioms;
otherwise, they would provide a solution for our task T3 in (4).

PROPOSITION 9. LetQ be ontology,A andB atomic concepts
andS(i) a signature. Then:

1. S1 ⊆ S2 implies Qloc
S1 ⊆ Q

loc
S2 (monotonicity);

2. Q |= (A v B) iff Qloc
{A} |= (A v B).

Proposition 9 (see [3] for a proof) gives two interesting proper-
ties of locality-based modules. The first one states that such mod-
ules may only grow if the input signature extends. The second one
implies that the module for a single atomic conceptA provides
complete information about all the super-classes ofA. This prop-
erty can be used for optimizing classification: in order toclassify an
ontologyQ, i.e. to compute allsubsumption relationsA v B be-
tween pairsA, B of atomic concepts inQ, it is sufficient to(1) ex-
tract all modulesQloc

{A} of Q for each atomic conceptA (2) clas-
sify each of these modulesindependently(possiblyin parallel), and
(3) merge the results of the individual classifications. By Property
2, if the subsumptionA v B is implied by the ontologyQ then it
is implied by the moduleQloc

{A} and, hence, it will be obtained in
step(2).

5. RELATED WORK
The problem of extracting modular fragments of ontologies has

recently been addressed in [16], [11] and [15].
In [16], the authors have proposed an algorithm for partitioning

the concepts in an ontology. The intended application is to facilitate
the visualization of and navigation through the ontology. The al-
gorithm uses a set of heuristics for measuring the degree of depen-
dency between the concepts in the ontology and outputs a graphical
representation of these dependencies. The algorithm is intended as
a visualization technique, and does not establish a correspondence
between the nodes of the graph and sets of axioms in the ontology.

The algorithms in [11] and [15], which we have briefly outlined
in Section 3, use structural traversal to extract modules of ontolo-
gies for a given signature. None of these approaches provides a
characterization of the logical properties of the extracted modules,
nor do they establish a notion of correctness of the modularization.

In [6], the authors propose a definition of a module and an algo-
rithm for extracting modules based on that definition. The notion

of a module in an ontologyQ for a signatureS is also based on
conservative extensions: ifQ1 ⊆ Q is anS-module inQ as in
[6], then it can be shown thatQ is a modelS-conservative exten-
sion ofQ. The definition in [6], however, makes use of additional
requirements which lead, in many cases, to the extraction of mod-
ules which are larger than one may wish. The reason is that, for
every atomic conceptA ∈ S, the moduleQ1 for A in Q must be a
module for all its sub-classes and super-classes.

It is worth pointing out that, givenQ andS, the fragment ob-
tained using the algorithm in [6] is anS-module according to Def-
inition 1. This is not the case, however, for the fragment extracted
using [15], as we have illustrated in Section 3.

6. IMPLEMENTATION AND EVALUATION
Given an input ontology and an input signature, locality-based

modules are not the only possible modules we can obtain. It re-
mains to be shown that the locality-based modules obtained in re-
alistic ontologies aresmall enoughto be useful in practice.

For evaluation and comparison, we have implemented the fol-
lowing algorithms using Manchester’s OWL API:3

A1: The PROMPT-FACTOR algorithm, as described in [11];

A2: The algorithm for extracting modules described in [6];

A3: Our algorithm for extracting modules (Algorithm 1), based
on syntactic locality.

As a test suite, we have collected a set of well-known ontologies
available on the Web, which can be divided into two groups:

Simple. In this group, we have included the National Cancer In-
stitute (NCI) Ontology,4 the SUMO Upper Ontology,5 the Gene
Ontology (GO),6 and the SNOMED Ontology7. These ontologies
use a simple ontology language and are of a simple structure; in
particular, they do not contain GCIs, but only definitions.

Complex. This group contains the well-known GALEN ontology
(GALEN-Full),8 the DOLCE upper ontology (DOLCE-Lite),9 and
3http://sourceforge.net/projects/owlapi
4http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
5http://ontology.teknowledge.com/
6http://www.geneontology.org
7http://www.snomed.org
8http://www.openclinical.org/prj galen.html
9http://www.loa-cnr.it/DOLCE.html



(a) Modularization of NCI(a) Modularization of NCI (b) Modularization of GALEN-Small(b) Modularization of GALEN-Small

(c) Modularization of SNOMED(c) Modularization of SNOMED (d) Modularization of GALEN-Full(d) Modularization of GALEN-Full

(e) Small modules of GALEN-Full(e) Small modules of GALEN-Full (f) Large modules of GALEN-Full(f) Large modules of GALEN-Full

Figure 3: Distribution for the sizes of syntactic locality-based modules for atomic concepts: the X-Axis gives the number of concepts in the
modules and the Y-Axis the number of modules for each size range.

NASA’s Semantic Web for Earth and Environmental Terminology
(SWEET)10. These ontologies are complex since they use many
constructors from OWL DL and/or include a significant number of
GCIs. In the case of GALEN, we have also considered a version
GALEN-Small that has commonly been used as a benchmark for
OWL reasoners. This ontology is almost 10 times smaller than the
original GALEN-Full ontology, yet similar in structure.

For each of these ontologies, and for each atomic concept in
their signature, we have extracted the corresponding modules us-
ing algorithms A1-A3 and measured their size. We use modules
for single atomic concepts to get an idea of the typical size of
locality-based modules compared to the size of the whole ontology.
Also, modules for atomic concepts are especially interesting for op-
timized classification of ontologies, as discussed in Section 4.3.

The results we have obtained are summarized in Table 2. The
table provides the size of the largest module and the average size
of the modules obtained using each of these algorithms. In the ta-
ble, we can clearly see that locality-based modules are significantly
smaller than the ones obtained using the other methods; in partic-
ular, in the case of SUMO, DOLCE, GALEN and SNOMED, the
algorithms A1 and A2 retrieve the whole ontology as the module
for each atomic concept. In contrast, the modules we obtain using

10http://sweet.jpl.nasa.gov/ontology/

our algorithm are significantly smaller than the size of the input on-
tology. In fact, our modules are not only smaller, but are also strict
subsets of the respective modules computed using A1 and A2.

For NCI, SNOMED, GO and SUMO,we have obtained very small
locality-based modules. This can be explained by the fact that these
ontologies, even if large, are simple in structure and logical expres-
sivity. For example, in SNOMED, the largest locality-based mod-
ule obtained is approximately 1/10000 of the size of the ontology,
and the average size of the modules is 1/10 of the size of the largest
module. In fact, most of the modules we have obtained for these
ontologies contain less than 40 atomic concepts.

For GALEN, SWEET and DOLCE,the locality-based modules are
larger. Indeed, the largest module in GALEN-Small is 1/10 of
the size of the ontology, as opposed to 1/10000 in the case of
SNOMED. For DOLCE, the modules are even bigger—1/3 of the
size of the ontology—which indicates that the dependencies be-
tween the different concepts in the ontology are very strong and
complicated. The SWEET ontology is an exception: even though
the ontology uses most of the constructors available in OWL, the
ontology is heavily underspecified, which yields small modules.

In Figure 3, we have presented a more detailed analysis of the
modules for NCI, SNOMED, GALEN-Small and GALEN-Full.
Here, the X-axis represents the size ranges of the obtained mod-



(a)DNA Structure in NCI (b) Synt. Locality-based Module
for DNA Structure in NCI

Figure 4: The Module Extraction Functionality in Swoop

ules and the Y-axis the number of modules whose size is within the
given range. The plots thus give an idea of the distribution for the
sizes of the different modules.

For SNOMED, NCI and GALEN-Small, we can observe that the
size of the modules follows a smooth distribution. In contrast, for
GALEN-Full, we have obtained a large number of small modules
and a significant number of very big ones, but no medium-sized
modules in-between. This abrupt distribution indicates the pres-
ence of a big cycle of dependencies in the ontology, which involves
all the concepts with large modules. The presence of this cycle
can be spotted more clearly in Figure 3(f); the figure shows that
there is a large number of modules of size in between 6515 and
6535 concepts. This cycle does not occur in the simplified version
of GALEN and thus we have the smooth distribution for that case.
In contrast, in Figure 3(e) we can see that the distribution for the
“small” modules in GALEN-Full is smooth and much more similar
to the one for the simplified version of GALEN.

In order to explore the use of our results for ontology design and
analysis, we have integrated our algorithm for extracting modules
in the ontology editor SWOOP [9]. The user interface of SWOOP
allows for the selection of an input signature and the retrieval of the
corresponding module.

As an illustration, consider in Figure 4 the locality-based mod-
ule for the atomic conceptDNA Structure in the NCI ontology, as
obtained in SWOOP. Recall that, according to Case 2 of Propo-
sition 9, the locality-based moduleOloc

{A} for every atomic con-
cept A ∈ Sig(O) contains all necessary axioms for, at least, all
the (entailed) super-concepts ofA in O. ThusOloc

{A} can be seen
as the “upper ontology” forA. In fact, Figure 4 shows that the
locality-based module forDNA Structure contains only the con-
cepts in the “path” fromDNA Structure to the top level concept
Anatomy Kind. This suggests that the knowledge in NCI about
the particular conceptDNA Structure is very shallow in the sense
that NCI only “knows” that aDNA Structure is a macromolecular
structure, etc. which, in the end, is an anatomic structure.

7. CONCLUSION
In this paper, we have proposed a definition of a module for a

given vocabulary within an ontology to be reused. Based on this
definition, we have formulated three reasoning problems concern-
ing the extraction of minimal modules and shown that none of them
is algorithmically solvable, even for simple fragments of OWL DL.
We have introduced locality-based modules as an approximation
to minimal modules and have empirically demonstrated that such
modules are reasonably small for many real-world ontologies.

For the future work, we would like to study other approxima-
tions which can produce small modules in complex ontologies like
GALEN, and exploit modules for optimizing ontology reasoning.
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