# SPECIFYING PROBLEM ONE USING THE 'FAILURE' SETS MODEL FOR CSP AND DERIVING CSP PROCESSES WHICH MEET THIS SPECIFICATION

# A.W. Roscoe Programming Research Group University of Oxford

In this note we sketch how an abstract mathematical model can be used to specify the two-way channel. We see how theorems proved about the abstract specification suggest designs of processes which satisfy it. The model used can express safety and liveness properties and allows non-determinism. It does not deal with fairness however.

1. The Failure Sets Model

For a summary description of the failure sets model see the appendix to this paper.

The important points to note are:

- (i) every process is represented by a set of pairs (s,  $\delta$  ), where s is a possible trace and  $\delta$  is either
  - ↑ representing divergence (non-termination), or
  - X representing a set of symbols to which the process can refuse to respond.
- (ii) The model is good for expressing correctness conditions because it -
  - . permits the banning of divergence
  - . allows possible traces to be specified (safety)
  - . allows the banning of refusal by the process (liveness).

If on operating some process A with current trace s we offer it a set X such that (s, X)  $\notin$  A, then we can guarantee that the process will eventually accept some element of X.

First, a notation for manipulating traces.

(i) If 
$$s, t \in \Sigma^*$$
, we say  $s \leq t$  if  $\exists u.su = t$ .  
(ii) If  $s \in \Sigma^*$ ,  $X \subseteq \Sigma$ , we say  
 $s \upharpoonright X = \langle \rangle$  if  $s = \langle \rangle$   
 $= t \upharpoonright X$  if  $s = t \langle a \rangle$  and  $a \notin X$   
 $= (t \upharpoonright X) \langle a \rangle$  if  $s = t \langle a \rangle$  and  $a \in X$ .

- (iii) If a is some name used for symbols, and b∈Σ, then strip(a)(b) = c, if b = ac = b otherwise.

eg.: < a.b, c.b, a.c>
$$\psi$$
 a = < b,c>

2. Problem 1: Two-way Channel with Disconnect

### What is a channel?

- Informally it passes messages either way.
- 'dis' is a message, so its order is preserved, and it is transmitted.
- To be a reliable channel it must accept all input it is offered while empty (in either direction?).
- When it contains a message this must eventually be delivered to a destination which does nothing but wait.
- On delivering or receiving a dis at either end it must die at that end.
   (To die without transmitting a 'dis' to the environment seems unreasonable.)

Specification of a Channel (Abstract)

- The set of ordinary messages is T (dis ∉ T).
- The alphabet  $\Sigma_{CHAN(a,b)}$  of a channel, whose end ports are named a and b, is: { a't', a't', b't', b?t' t'  $\in$  TU {dis}}
- The predicate CHAN(a,b) is defined as follows:

 $CHAN(a,b)(C) = [(s,\delta) \in C \Rightarrow \delta \neq \uparrow ]$   $\& [(s,X) \in C \Rightarrow s \in (\Sigma_{CHAN(a,b)})^{*}]$  $\& [s \downarrow a? \geqslant s \downarrow b! \& s \downarrow b? \geqslant s \downarrow a!]$ 

```
....order of messages preserved
```

```
& [(s↓ a = u<d> v) & de{?dis, !dis}⇒v =<> ]
```

 $\& [(s \lor b = u < d > v) \& d \in \{? dis, :dis\} \Rightarrow v = <> ]$ 

....neither end can do anything after a dis

 $\begin{array}{l} \& \exists \operatorname{dis}(b)(s) \& (s \downarrow a? \geqslant (s \downarrow b!) < t' > ) \Longrightarrow b!t' \notin X \\ \& \exists \operatorname{dis}(a)(s) \& (s \downarrow b? \geqslant (s \downarrow a!) < t' > ) \Longrightarrow a!t' \notin X \\ \dots \text{ the channel can never refuse} \\ & \text{ to output a message it contains} \end{array}$   $\begin{array}{l} \text{where } \operatorname{dis}(\alpha)(s) \equiv s \land \{\alpha : \operatorname{dis}, \alpha ? \operatorname{dis}\} \neq < > \cdot \end{array}$   $\begin{array}{l} A \ \underline{buffer} \ \text{may be defined in the same way:} \\ BUFF(B) \equiv \forall s(s, \tau) \notin B \\ \& (s, \chi) \in B \implies s \in (?T' \cup !T')^* \\ \& s \downarrow ? \geqslant s \downarrow ! \\ \& (s \downarrow ? = s \downarrow ! \implies \chi \land ?T' = \emptyset) \\ \& (s \downarrow ? \geqslant (s \downarrow !) < t >) = it \notin \chi \end{array}$   $\begin{array}{l} \text{where } T' = TU \{ \operatorname{dis} \} \end{array}$   $\begin{array}{l} BUFF(a, b) \ is \ the \ same \ except \ that \ ! \ is \ replaced \ by \ b! \\ and \ ? \ is \ replaced \ by \ a?. \end{array}$   $\begin{array}{l} \text{Assorted theorems can be proved concerning \ channels \ and \ buffers:} \end{array}$ 

eg. CHAN(a,b)(C) & CHAN(b,d)(C\*) & d  $\neq$  a  $\implies$  CHAN(a,d)(C  $\stackrel{*}{\xrightarrow{}}$  C\*) BUFF(A) & BUFF(B)  $\implies$  BUFF(A $\gg$  B) BUFF(A) & BUFF(A $\gg$  B)  $\implies$  BUFF(B) BUFF(A $\gg$  B) & BUFF(B) $\implies$  BUFF(A)

$$a \neq e, \& b \neq d \& CHAN(a,b)(C_1) \& BUFF(b,d)(B_1)$$
  
 $\& BUFF(d,b)(B_2) \& CHAN(d,c)(C_2)$   
 $\implies CHAN(a,e)(C_1 \bigotimes (B_1 || B_2) \bigotimes C_2)$ 

Such theorems are easy, if tedious, to prove. Examples of buffers:

$$B^{1} = ?x:T' \rightarrow :x \rightarrow B^{1}$$
  

$$B^{n} = B^{1} \gg \dots \gg B^{1} \text{ (n times)}$$
  

$$B^{\infty} = ?x:T' \rightarrow (B^{\infty} \gg :x \rightarrow B^{1}) \text{ (unbounded)}$$
  

$$B^{*} = ?x:T' \rightarrow (B^{1} \gg :x \rightarrow B^{*}) \text{ (bounded but growing)}$$

One obvious configuration for a channel is:



This can be realised:

 $INS(\alpha,\beta) = (\alpha?x:T - (\beta!x-INS(\alpha,\beta) [] \alpha!dis-abort ))$   $[ (\alpha?dis-\beta!dis-abort )$   $[ (\alpha!dis-abort ))$   $OUTS(\alpha,\beta) = (\beta?x:T - (\alpha!x-OUTS(\alpha,\beta) [] \alpha?dis-abort ))$   $[ (\beta?dis-(\alpha!dis-abort [] \alpha?dis-abort ))$   $[ (\alpha?dis-abort )$ 

If  $B_1$  is any (b, a) buffer and  $B_2$  is any (a, b) buffer, then

 $a \neq b \implies ((INS(a,b) \parallel OUTS(a,b)) \underset{b}{\times} (B_1 \parallel B_2) \underset{a}{\times} (INS(b,a) \parallel OUTS(b,a)))$ satisfies CHAN(a,b).

### Appendix - A summary of the failure sets model for CSP

For a fuller description of this model the reader should consult any of [1, 2, 3, 4]. The model is similar to, and makes the same basic postulates about processes as, the well-known 'traces' model. It is, however, able to make some important distinctions between processes not made by simple traces.

The agents  $\alpha \cdot \gamma \text{ NIL} + \alpha \cdot \beta \text{ NIL}$  and  $\alpha \cdot (\beta \cdot \text{NIL} + \gamma \cdot \text{NIL})$  would be identified over traces, as would  $(\mu p \cdot \alpha \cdot p) \setminus \alpha$  and NIL. There are good reasons for wishing to avoid these identifications: the idea is to record not only the possible traces (ie. sequences of atomic actions) of a process but also its <u>refusals</u> (the sets which it can reject in a 'stable' state after some trace), and <u>divergences</u> (the occasions when it can become involved in an infinite sequence of internal actions and never give any answer to its environment).

A process is thus a set of pairs  $(s, \delta)$ , the first component being a trace and the second either X, a refusal set  $(X \subseteq \Sigma$ , the alphabet), or  $\uparrow$  indicating divergence.

A process Q will be any subset of  $\Sigma^* \times (\mathbb{P}(\Sigma) \cup \{\uparrow\})$  such that

- 1.  $dom(Q) = \{s \in \Sigma^* | \exists \delta.(s, \delta) \in Q\}$  is non-empty and prefix-closed  $[\langle s \in dom(Q), st \in dom(Q) \longrightarrow s \in dom(Q)]$
- 2.  $(s, X) \in Q & Y \subseteq X \longrightarrow (s, Y) \in Q$
- 3.  $(s, X) \in Q \And Y \cap (Q \text{ after } s)^0 = \phi \longrightarrow (s, X \cup Y) \in Q$

4.  $(\forall finite Y \subseteq X. (s, Y) \in Q) \longrightarrow (s, X) \in Q$ 

5.  $(s, \uparrow) \in Q \longrightarrow (st, \delta) \in Q$  $Q \quad after \quad s = \{(t, \delta) \mid (st, \delta) \in Q\}, \quad Q^0 = \{a \in \Sigma \mid \langle a \rangle \in domQ\}$ 

### Technical Notes

The space M of all processes is a complete semi-lattice under the reverse inclusion order  $A \equiv B \iff A \supseteq B$ . This order is naturally interpreted as  $A \supseteq B \equiv B$  is more non-deterministic than A. The bottom or minimal element of M is  $\Sigma^* x$  (  $P(\Sigma) \times \{\hbar\}$ ) (called <u>CHAOS</u>), one of whose many realisations is a process which can diverge immediately.

There is a natural map from boundedly non-deterministic synchronisation trees to **M**, and a not-quite-so natural one from arbitrary synchronisation trees to **M**. CSP can be given operational semantics which are in each case congruent to the abstract semantics given below.

The failure sets model gives a very expressive language for specification, since it regulates not only traces but also liveness (via divergence and refusals).

CSP can be given a semantics over M:

- <u>abort</u> = {(<>, X) | X ⊆ Σ} the process which does nothing at all
- skip = {(<>, X), (<√>, Y) I √ ∉ X }
  the process which immediately terminates successfully
- $a \rightarrow A = \{(<\rangle, X) \mid a \notin X\} \cup \{(< a \rangle s, \delta) \mid (s, \delta) \in A\}$ communicates 'a' and then behaves like A
- a.x: $T \rightarrow A(x) = \{(\langle \rangle, X) \mid a.T \cap X = \emptyset\} \cup \{(\langle a.b \rangle s, \delta) \mid (b \in T \& (s, \delta) \in A(b)\}$ inputs a value b named by 'a', then behaves like A(b).
- A T B = AUB behaves like A or B at the process' choice

$$A \square B = \{(<>, X \cap Y) \mid (<>, X) \in A \& (<>, Y) \in B\} \cup \{(s, \delta) \mid s \neq <> \& (s, \delta) \in A \cup B\}$$
$$\cup \{(s, \delta) \mid (s, \uparrow) \in A \cup B\}$$
behaves like A or B giving the environment the choice of first steps.

A;B = {(s,X) | s does not contain 
$$\checkmark$$
, and (s, X U{ $\checkmark$ })  $\in$  A}  
U { (st,  $\delta$  )|s does not contain  $\checkmark$ , and (s,  $\uparrow$ )  $e$  A}  
U { (st,  $\delta$  )|s does not contain  $\checkmark$ , (s< $\checkmark$ ),  $\phi$  ) $\in$  A, (t,  $\delta$ )  $\in$  B}  
behaves like A until it terminates successfully, then like B.

$$A \setminus b = \{(s \setminus b, X) \mid (s, X \cup \{b\}) \in A\}$$

$$\cup \{((s \setminus b)t, S) \mid (s, \uparrow) \in A\}$$

$$\cup \{((s \setminus b)t, S) \mid \forall n \ (s < b > n, \phi) \in A\}$$
where  $< > \setminus b = <>$ 

$$s < a > \setminus b = (s \setminus b) < a > \text{ if } a \neq b$$

$$= s \setminus b \qquad \text{ if } a = b$$
hides the event 'b' in A (note the divergence introduced by an infinite sequence of b's)

$$A \setminus X = (...(A \setminus b_1)....) \setminus b_n$$
, where  $X = \{b_1,...,b_n\}$ , is any finite set.

 $(A \parallel B)$  will be used as an abbreviation in the case where both A and B have as their alphabets the totality of symbols they can ever use.

X, II and easy alphabetical transformations can be used to derive operators.

- which expects both arguments to have alphabet ?T U !T, and connects the ! channel of its left-hand argument to the ? channel of its right-hand argument. Internal communication is hidden.
- which expects the intersection of the alphabets of its arguments to be a?T U a!T. The outputs (a!) of each argument are connected to the input (a?) of the other. Internal connection is hidden.

There are of course many theorems connecting these operators.

#### References

- Hoare, C.A.R., Brookes, S.D., Roscoe, A.W. "A Theory of Communicating Sequential Processes". Oxford PRG monograph PRG-16 (1981) and JACM July 1984.
- 2. Brookes, S.D. Oxford D.Phil thesis, 1983 (SDB)
- 3. Roscoe, A.W. Oxford D.Phil thesis, 1982 (AWR)
- 4. Brookes, S.D., Roscoe, A.W. "An Improved Failure-Sets Model for Communicating Processes" To appear in Proceedings of NSF-SERC Seminar on concurrency, Springer-Verlag LNCS. Available as a Carnegie-Mellon Technical Report.

#### Note

The failures model has appeared in several forms. The original version [1,2,3] was deficient in its treatment of divergence and was improved in [2,3]. The version described in this note is the improved form from [2]; this differs in presentation from the "standard" improved form of [4] but is easily seen to be isomorphic to it.