
A CSP solution to the "trains" problem

A.W. Roscoe
Programming Research Group, University of Oxford

The problem as stated leaves one in doubt as to what one must do. Is one

meant to abstractly specify the safety and liveness properties one desires of

the network? Is one meant to provide some plausible ~'implementation ~' which

gaurantees the basic principle that two trains must not be simultaneously on

the same piece of track? Perhaps we are even meant to enter ~he realm of inv-

enting scheduling algorit~/ms for the flow of trains. Of course any complete

solution to the problem must, in some sense, address all of these issues. The

scheduling problem seems, however, to be outside the scope of the workshop.

The solution presented here is a CSP program which addresses the second

question above. It can be proved to satisfy certain abstract conditions, and

can of course be used as a base (guaranteeing safety) upon which to build any

scheduling programs. It is by no means the simplest program which guarantees

safety: instead it shows how CSP can be used to create a control structure

more realistic than if, say, the actual events of a train enter&ng or leaving

a piece of track were "negotiable".

The only approach we make towards scheduling is to allow trains to book

line sections one step ahead, and to seek an alternative line if the first one

they try to book is in use. The element of external control left in the network

is in the hands of (notional) train drivers. It would of course be expected

that the drivers be controlled and regulated by some signalling system; this

higher level of detail is omitted.

Of course the particular control structure chosen here is only one of many

which have the desired safety properties. No special merit is claimed for the

particular solution given, and the reader is invited to devise his own program

to model his o,~nideas on how the network should be regulated and controlled.

The main purpose of this solution is to illustrate the power of CaP in precisely

specifying parallel interaction.

As in all CSP programs, communication is achieved by the synchronisation

of euent~, or actions, of the elements of the network. Each process has its

own alp~bet of events; in the operation of the network, an event can only occur

if all the processes in whose alphabets it is are willing to communicate it.

This situation is easiest to imagine when no event is shared by more than two

processes, since we then avoid the situation where three (or more) processes

have to agree on some communication. This convention has therefore been foll-

owed in the present solution.

385

The following solution can be applied to any network of the form described

in the problem, except that one simplifying assumption has been made. This is

that all lines consist of only one section: of course, this restriction is not

serious, as the old section boundaries can be transformed into (rather simple)

extra crossing points. There are three types of process in the network: LINE,

TRAIN, and CP (crossing point).

Each line has a unique name (typically k), and two end (crossing-) points

(typically e, B) which we assume distinct. In use, a line has a direction and

becomes an ordered triple (k,a,B) (the line with name k, being used to travel

from a to 8). We will use the notation i and [to denote the two senses of any

line, and follow the convention that ~ = i. If i is any (directed) line, N(1).

S(1) and E(1) will denote its name, ~arting point, and end point respectively.

For each line k, there will be a process LINE(k) in our network. It acts

as a resource which, when not in use, is prepared to be acquired by either of

its end points. When it is in use it tells anyone wishing to use it that it

is unavailable. Whichever end it is acquired by, it is willing to be released

by either (since a train might have travelled from one end to the other).

Thus, for each line X, whose endpoints are a,8 , 'we define

LINE(k) = get.k.~ ÷ con.k.~ + BUSY(1)

get.k.8 +con. k.B + BUSY(k)

BUSY(1) get.k.a ÷ dis.k.a ÷ BUSY(k)

get.k.~ + dis.k.s + BUSY(k)

rel.k.a + LINE(k)

rel.k.B + LINE(k)

The alphabet of the processes LINE(1), BUSY(k) are defined to be the set

of symbols which they can possibly use. Note that the alphabets of distinct

LINEs are disjoint.

Each train has a unique name (typically t). The train runs around the net-

work, controlled by its driver. Before it can reach a crossing point it must

have a line booked on which to leave the crossing point (it is assumed for simp-

licity that trains always leave a crossing point on a different line to the one

on which they enter it). When a train has no line booked it is prepared either

to negoeiate with its next crossing point to book one, or to reverse its direct-

ion of travel. When a train has a line booked it is allowed either to enter

the new line (via the crossing point) or to reverse (which releases its booked

line). We denote the set of all train names by T.

386

The process TRAIN(t,1) represents train t running along the directed line

i, with no other line booked. The process TRAIN(t,I,!') (where E(1) = S(I'))

represents train t running along line 1 with line I' booked at E(1).

Thus, when B = E(1), E(1) =S(I') we define

TRAIN(t,1) = reverse.t + TRAIN(t,~)

(~ book.t.m ÷req.t.m ~ (cen.t.m ÷ bocked.t.m÷ TRAIN(t,I,m)

S(m)~8 ~ ref.t.m * refused.t.m ÷TRAIN(t,1)))

TRAIN(t,1,1') = reverse.t ÷ rel.t.l' ÷ TRAIN(t,[)

(goto.t.8 ÷ arrive.t.1 ÷ enter.t.l' ÷ leave.t.1 ÷

~ei.~.$ ÷ TRAIN(t,I'))

Once again, the alphabets of TRAIN(t,1) and TRAIN(t,I,I') are the set of all

events which they can possibly ever use. Communication with the driver has one

of the forms "reverse", "book", "booked", "refused", "goto". All other events

are communications with a crossing point. The alphabets of distinct trains are

disjoint, and the alphabets of TRAINs are disjoint from those of LINEs.

Crossing points also have unique names (typically a,8). They have two

roles. Firstly they act as intermediaries between TRAINs and LINEs. Secondly

they control the timings of transitions from one line to another - specifically

they only allow one train to be using them at any time (to avoid crashes). The

solution given here treats these two aspects of their behaviour as independent;

a more sophisticated solution might include a third parallel process representing

a "register of bookings" to prevent "rogue" trains from entering, and perhaps to

assist in the changing of points. (The solution here is good enough for the

well-behaved TRAINs defined above.)

CP(~) = CPI(~) ~ CP2(~) , where

CPI(e) = ~ req.t.1 + get.(N(1)).a ÷ (con.(N(1)).e ÷ con.t.l ÷ CPl(~)

~l)=~ ~ dis.(N(1)).~ + ref.t.1 ~ CPl(a))
t~T

(~ rel.t.1 ÷ rel.N(1).a + CPl(a))
S(1)~
t~T

CP2(~) = ~ arrive.t.l + (~ enter.t.m + leave.t.l ÷ CP2(a))
E(1)=e S(m)=e
t ~T

The a~phabets of CP(a), CPI(~) and CP2(e) again consist of precisely the

symbols which coul< ever be used by them. Note that the alphabets of CPI(~)

and CP2(a) are disjoint, as are the alphabets of distinct CPs. Note further

that with the exception of the "train-driver" commands described above, every

symbol in the alphabet of a LINE or TRAIN is in the alphabet of some CP, and

387

~hat every symbol in the alphabet of each CP is contained in the alphabet of

some LINE or TRAIN.

The solution to the problem is thus

TRAINS 11 CPS It LINES

where TRAIN~, CPS and LINES are respectively the parallel composition of all

TRAINs, CPs and LINEs, correctly initalised to reflect their starting position.

The system as it stands has two levels of "user". Firstly, the TRAINs

can be thought of as using the "network" which consists of the CPs and LINEs.

To these users the communications between CPs and LINEs are irrelevant and should

be hidden from them. We should thus form the process

NETWORK = (CPS II LINES)/L,

where L is the union of the alphabets of the LINEs. NETWORK is a process which

interacts correctly with TRAINS without unnecessary communication. The second
\

level of user is provided by the train drivers. To these users the "booking"

communications between TRAINs and CPs are irrelevant and should be hidden. (The

remaining communications are interesting since they reveal the train's position.)

Thus to the drivers the system appears as

SYSTEM = (TRAINS II NETWORK)/B,

where B is the set of all symbols of the form req.t.m, con.t.m, ref.t.m or

rel.t.m.

We thus see that CSP allows us to construct systems in a structured fashion,

progressively hiding internal communication.

CSP also allows us to analyse our programs by abstract methods. We can,

for example, specify and prove correctness properties of programs by using math-

ematical models such as "traces" and "refusal-sets". The traces model [HI lets

us prove partial correctness properties of processes, by studying their possible

sequences of communications (traces). Such a property one could prove of our

present process SYSTEM is (for each line i)

s etraces(SYSTEM) @ length(sl {leave.t.l, leave.t.~ : t aT})

length(sI{enter.t.l, enter.t.[: t aT}) - C,

where C is 0 or 1 depending on whether there is or is not a train initially on

1 (or [). (This property simply says that at no time can there be more than one

train on any line.)

The slightly more complex refusal-sets model ([HBR], improved in [BRI, [B]

[R]) allows us to specify total correctness properties, for we study not only

the traces of processes, but also the sets of communications which a process can

refuse at each point in its history. A typical (and weak) property one could

prove of SYSTEM is "freedom from deadlock" (i.e. at all times there is at least

388

something SYSTEM can do. This model would allow one to precisely analyse the

causes of local deadlock and related conditions in SYSTEM. In either model it

is easy to show that the structured hiding used to construct SYSTEM has no effect

on the external behaviour of the system: all hiding can be moved to the outside.

SYSTEM = (TRAINS II CPS }l L I N E S) / (L U B)

References

[B] SoD. Brookes, A Model for CDmmunicating Sequential Processes, Oxford D.Phil

Thesis (1983) (available as a Carnegie-Mellon Tech. Report).

[BR] S.D. Brookes and A.W. Roscoe, An Improved Failure-set Model for Communic-

ating Processes, To appear.

[HI C.A.R. Hoare, A Model for Communicating Sequential Processes, Tech. Report

PRG-22, Oxford University Programming Research Group.

[HBR] C.A.R. Hoare, S.D. Brookes and A.W. Roscoe, A Theory of Communicating

Sequential Processes, Tech. Report PRG-16, Oxford University Programming Research

Group. (To appear in an extended form in JACM, also presently available as a CMU

Teeh. Report.)

[R] A.W. Roscoe, A Mathematical Theory of Communicating Processes, Oxford

D. Phil Thesis (1982).

