TRANSFORMATION OF occam PROGRAMS

M. H. Goldsmith and A. W.Roscoe

University of Oxford, UK

INTRODUCTION

The value of formal techniques in conventional software
engineering is starting to gain recognition even outside
academic computer science departments. We maintain
that their use is essential in taming the extra complex-
ity that accompanies the extra power that concurrency
brings: for while in a FORTRAN program, say, the contri-
bution of the ‘program counter’ to the number of states
that need to be considered is the sum of the contributions
of its component modules, in a highly parallel program it
is their product.

Various paradigms of parallel programming have been sug-
gested, all with much the same expressive power. We
choose to deal with one of the most tractable: synchro-
nising communications. The mathematical process calculi
csp (Hoare (1), (2)) and ccs (Milner (3)) both allow in-
dependent concurrent processes to influence one another
only by cooperating in events which require the simulta-
neous participation of those involved.

occam

The programming language occam (INMOS (4)) owes much
to these theoretical predecessors. Any memory location
shared between two parallel processes is read-only to both
of them, and the synchronising events are provided by
point-to-point communications. Programs are built up
from assignments, input (‘?’) and output (‘") processes,
by combining them in sequence or in parallel, and by
choosing between them by conditional expressions or arbi-
tration between alternative communications. Rather than
begin/ﬂxﬂ brackets, block structure is expressed in the
Tayout; grouped processes have the same fixed indentation
relative to the surrounding code.

A more recent variant of the language, occam 2 (INMOS
(5)) adds simple data-typing and communication channel
classification. Both were conceived primarily as a very-
high-level assembler for the transputer family of micro-
processors, which make it easy both to combine many
processors to cooperate on a single problem, and equally
to support efficiently many processes time-sliced on an in-
dividual processor.

This paper describes our work on formal manipulation of
occam, and gives an example of a practical application of
program transformation techniques.

PROGRAM TRANSFORMATION

By program transformation we mean replacing (some part
of) a program by another (in the same language) with the
same ‘meaning’. (What we mean by ‘meaning’ is the topic
of the next section.) On the face of it this may not seem a
very profitable thing to do, but there are several reasons
why one might want to.

One is in order to take a description of a system by a
piece of software, and to transform it so that the resulting
equivalent form is built out of ‘clichés’ which are particu-
larly easy to implement as hardware. In this way a trans-
formation phase would form the ‘front-end’ of a silicon
compiler. This is a technique which is under active inves-
tigation by at least one chip manufacturer, and a related
application (in microcode development) has already been
used in the design of a successful commercially produced
processor (Shepherd (6)).

Another, perhaps more obvious, one is simply to improve
the performance of a program; source code optimisation.
An automated transformation might serve as a first pass
in a conventional software compiler too. This is again a
promising line of research, although it is somewhat hin-
dered by the fact that introducing concurrency is a much
harder problem than eliminating it.

In the immediate future it will probably still be neces-
sary to rely on the skills of experienced programmers to
produce efficient parallel solutions to problems. These
solutions will not necessarily be easy to relate to their
specification. But all is not lost: if a (possibly very in-
efficient) solution can also be produced which is easily
proved to satisfy the specification, then we may exploit a
very useful property of our semantics. Any loop-free pro-
gram is equivalent to one in a canonical normal form—
this happens to be a decision tree of alternate condition-
als and arbitrations, with assignments at the leaves and
carefully controlled variable usage, but the precise form is
not important—and indeed the same is true of any pro-
gram with bounds on the number of iterations that any
loop may make. For programs with potentially infinite be-
haviours there is a similar but infinite normal form, which
is in a rigorous sense the limit of finite approximations,
which can be calculated. Thus the normal forms of the
two solutions can be directly compared, and any discrep-
ancies in the efficient implementation will show up.

Other less dramatic, but equally useful, transformations
are possible: the use of local variables, for instance, can be
manipulated, so as to minimise the store requirements of a

program; this may be important in embedded systems, or
where the speed-up from using on-chip memory is vital.
At an even lower level, global renaming of a particular
variable—not all variables which happen to have the same
name—can be expressed as a transformation in this sense,
and carried out by our transformation tool.

A further application area is explored below, that of fitting
logical process structure onto physical processor topolo-
gies. Among the transformations this needs is one ensur-
ing that arbitrations exhibit short-term fairness.

SEMANTIC DESCRIPTIONS

A semantic description of a programming language is some
systematic way of giving a mathematical meaning to pro-
gram text. There are at least three major styles of ap-
proach to this task, and a considerable body of research
in each of them has been carried through from csP and
CCS to apply to occam.

Denotational Semantics

The most direct way to assign an abstract meaning to a
program is by denotational semantics. This consists of
a set of functions, one for each syntactic category (e.g.,
‘expression’, ‘process’) of the language, mapping into a
mathematical domain of ‘meanings’; and so constructed
that the meaning of a compound construction is entirely
determined by the meaning, not the form, of its subcom-
ponents.

It is important to realise that there is quite a wide de-
gree of freedom in the choice of such functions, depending
on the level of abstraction desired. At two (ridiculous)
extremes there is on the one hand the functions which
identify absolutely every object, and on the other those
that distinguish every two objects which are not syntacti-
cally identical. In the middle ground there may be several
contenders with equal claims to capture the essence of the
language: for instance, one debatable point is whether
deadlock, where no two processes have an action in com-
mon to perform and none is able to communicate with the
outside world, should be identified with divergence, where
either a network is able to carry on an infinite internal
conversation, where the actions are hidden from the ob-
server, or else some process is able to consume unlimited
amounts of processor time without making any progress.
In both cases, the immediate view from the outside world
is the same: the network remains unwilling to communi-
cate, forever. But in the one case the electricity bill will
be considerably smaller than in the other!

The published denotational semantics of a large subset of
occam (Roscoe (7)) owes much to the failures-divergence
models of CSP (Brookes and Roscoe (8)), and does distin-
guish these two conditions. Two processes are identified
if they are able to engage in the same sequences of com-
munications with their environment, and if at each stage
they are able to (non-deterministically) refuse the same
sets of communications; and if moreover, whenever they

181

terminate successfully, they have the same possible com -
binations of values stored in their free variables. This at-
stracts away such notions as efficiency, timing and amour t
of true concurrency.

Operational Semantics

The approach of operational semantics is to consider the
space of possible states of an ideal machine implemen:-
ing the language, and the transitions between them coi-
responding to atomic actions. The modern style is to
present a natural deduction logic which again allows the
behaviour of compound terms to be deduced from the be-
haviour of their components. Such a semantics of cCs
is well established (Milner (9)) and one has been deve -
oped for CSP (Brookes et al (10)), which is proved to be
congruent to the denotational semantics of (8).

The behaviour of occam processes has much in commoa
with those of both cCs and CsP, with some extra compl -
cations. This semantics is the subject of current research
(Barrett (11)), especially dealing with aspects of schedu -
ing and arbitration when the program assigns priority to
particular alternatives and pseudo-parallel components.

Algebraic Semantics

Both the previous approaches may be able to attach an ir-
tuitive, as well as a mathematical, meaning to a program,
if the models are well chosen and easily understood. But
one of the main reasons to consider the semantics of 1
language, and the most important for this work, is to de-
cide when two programs mean ‘the same’; and so one wit1
more desirable properties can be substituted for another.

Repeated calculation of the meanings of programs for this
purpose would soon become exhaustingly tedious. Alge-
braic semantics takes the notion of program equivalence a;
central, and directly encodes the relationship by means of
laws: axiom schemata relating equivalent forms. Such ar
axiomatisation (Roscoe and Hoare (12)) completely gen-
erates the equivalence induced by (7).

Such equivalences, which amount to intersubstitution pre-
serving some notion of gross behaviour, lie at the heart of
program transformation. It is here that the choice of the
level of abstraction takes effect: if too few processes are
identified, then there is little room for manceuvre; if too
many, then the gross behaviour of the program will be
different, and it may no longer meet its specification.

The characterisation of the language of (7) and (12) is
arguably the weakest useful one: for any two programs
which it does not identify can potentially be told apart by
some context. That is to say, there is some testing envi-
ronment in which one process is bound to ‘succeed’ but
the other may not. The notion of testing is similar to that
of Hennessy (13). A program is driven to perform a par-
ticular sequence of external communications, by the envi-
ronment refusing any others; any deadlock at this stage is
regarded as success. There are then four conditions which

may be tested: absence of divergence, that is that the pro-
gram can be forced to deadlock; safety, that it must refuse
some undesirable communication; liveness, that it cannot
refuse all of some set of desirable communications; and
termination, that it has reached a successful conclusion
with some desired relation holding between its free vari-
ables. Note that this does not mean that the programs can
be distinguished by such tests in reality: non-determinism
means that executing the programs, however often, may
never actually complete the sequence of communications
after which the behaviours differ, even though that se-
quence might have arisen had the internal choices been
resolved differently; and the stability required to show di-
vergence freedom may take an arbitrary length of time to
manifest itself. The mathematics, on the other hand, is
able to take an overview of all potential experiments, and
notice every possibility of success or failure.

The properties which are ignored in the equivalence in-
clude all matters of timing, which on the one hand means
that an inefficient but obviously correct program can be
shown to have the same overall behaviour as a more effi-
cient and opaque one that is thus seen to be equally cor-
rect; but on the other means that reasoning about meeting
real-time deadlines, for instance, must be carried on in a
more discriminating semantic framework. Another aspect
which requires a stricter equivalence is fairness in arbi-
tration of alternatives: whether a communication which
one partner is prepared to engage in can be indefinitely
held up by the other repeatedly choosing another alterna-
tive, when it might have chosen the one in question. Con-
versely, in some circumstances, such as reasoning about
the effect of buffers (see below), it may be desirable to
relax the distinctions somewhat. But in a wide area of
application, the semantics of (12) capture precisely what
matters towards a process meeting its specification, while
leaving the rest unconstrained.

TRANSFORMATION TOOL

It is entirely possible to sit down and calculate transforma-
tions with pencil and paper. As the programs to transform
grow larger, however, and the transformations to perform
become more complex, this process necessarily grows more
time consuming and prone to error. This is an area where
mechanisation as a computer program can help on both
those counts, and also provide a more powerful tool.

One of the fruits of a research project we have been in-
volved in for the past two and a half years is an interactive
occam Transformation System. This consists of a suite of
routines in the functional language Standard ML (Harper
et al (14), Wikstrom (15)) implementing an abstract syn-
tax for occam, together with a number of operations on
it.

A fuller description can be found in Goldsmith (16), and
operational details in Goldsmith (17).

182

Laws

The most important operations are implementations of
the laws of (12), interpreted as rewrite rules and imple-
mented as functions mapping processes to processes. The
laws are mainly quite trivial, expressing such facts as the
commutativity of the parallel operator:

PAR PAR
P = Q 6y
Q P

There are one or two of slightly greater profundity, such as
that elaborating the behaviour of the parallel composition
of two ALT arbitrations: the processes guarded by external
communications may proceed in parallel with the other
branch after performing it, as may those which may be
selected non-deterministically by an internal SKIP guard;
internal communications which are not permitted by both
halves are blocked, and cannot proceed at this point; and
those which do have the consent of both parties elide into
a SKIP guard followed by, in sequence, an assignment of
the value output to the input variable and the parallel
composition of the two processes which were guarded.

In addition to the laws of (12) certain others have also
been coded explicitly, either to shortcut long derivations
for the sake of efficiency, or to avoid the use of induc-
tion which would be required in their proof from the basic
axioms. They are nearly all at the same low level of com-
plexity.

Actions

In order to operate on real programs, routines are required
to parse and display textual representations of the pro-
cesses; these are provided. In addition, on top of the sim-
ple process type an abstract datatype maintains a stack
of contexts, allowing the user to browse through a pro-
cess, to concentrate attention on one part, and to apply
laws there rather than to the whole program. One of the
features of the browser is a facility to ‘fold up’ extraneous
detail, so as to be able to see the general structure of a
large program all at once.

All these features are available through a window-based
interface for SUN workstations, with syntax-directed cur-
sor movement and user-definable keys. On other machines
the interface is via the standard ‘read-eval-print’ loop of
the ML interpreter.

Strategies

Although the basic laws have a minimalist quality, and
a large number of applications in sequence are required
to achieve any substantial transformation, the presence
of the underlying functional programming system allows
these to be composed by higher-order functionals. Re-
cursive strategies may thus be encoded, which apply a
transformation throughout a process, or otherwise work
at a higher level.

In particular a strategy has been programmed to imple-
ment the normal-form reduction. In fact, two have: one
operating depth-first, suitable for finite (loop-free) pro-
grams; and one which will calculate any desired approxi-
mation to an infinite normal form, breadth-first. Both of
these are hand-crafted recursive programs, which rely for
their validity on careful application of specialist knowledge
and programming skills. Other strategies could be simi-
larly encoded, but again this would require a high degree
of expertise.

To allow application oriented strategies to be programmed
by less specialist users, the basic laws may be treated as
the ‘machine-code’ for a transformation engine. There is
a small procedural language whose atomic commands are
‘apply L’, for each law L, together with the browser com-
mands for moving around the program structure. These
can be combined with combinators such as THEN (se-
quencing) and ELSE (failure trapping) and recursion to
give strategies which are guaranteed to implement valid
transformations provided all the laws appealed to are them-
selves valid.

Among strategies which have been encoded in this way
is one which appeals to a powerful theoretical result (a
unique fixed-point theorem) to demonstrate the equiva-
lence

CHAN ¢, ...:
PAR
WHILE bo _ WHILE b’
P = P (2)
WHILE b,
P

(when it holds) under certain not very restrictive condi-
tions on the processes involved.

CONFIGURING NETWORKS

In this section we examine one of the large number of
applications of program transformation. This is getting a
logical network of occam programs to work on a network
of transputers which it does not match, typically because
the physical network does not have enough links. The
main virtue of automated transformations here is that the
user is freed from the need to do a lot of delicate and
difficult programming, and of course that the results are
guaranteed to be semantically valid.

The Problem

Let us suppose we are given an occam program which is
the parallel composition of a number (N, say) of simpler
programs Fi. Any or all of these can be connected by
occam channels, and each pair of processes may have any
number of channels between them. The most convenient
representation of this structure is a directed graph £ with
a node for each P, and an edge from P; to P; just when
there is a channel from P; to P;. This will be termed the
logical network. There is no reason why the individual
P; cannot contain any PAR constructs, even at the highest

183

level. The decomposition into P; will simply be the desired
granularity for the actual parallel implementation of tle
system.

We are also given a network of M transputers, which can
be thought of as a graph P with a node for each transputer
and a pair of directed edges for each bidirectional link
between connected transputers. Since each transputer his
four links, there can be at most four pairs of edges leading
to and from each node. This will be termed the physicil
network.

Of course the partitioning of a program or algorithm into
P; will be done with the available architecture in mind and
there will usually be many ways of going about this. And
often the available transputer network will not be fixec,
so that it possible to re-configure the physical network
to better match the logical one. When designing parallel
programs these are both very important issues and the de-
cisions that are made will be crucially dependent on which
logical networks are implementable (and how efficiently)
on which networks of processors. In the interest of sepa-
ration of concerns and brevity, however, in this paper we
will do no more than touch on them from time to time.

The logical network is consistent with the physical one if
there is some assignment of nodes and edges in £ to nodes
and edges in P in such a way that no two logical nodes
or edges are mapped to the same physical one and suca
that a logical edge joining a pair of P; must be mapped t>
a physical one joining the images of this pair. Note that
this implies that M > N.

Where L is consistent with P there is no problem: it is
possible to implement the program with no tricks. We
will concern ourselves with the case where they are nct
consistent. We will assume that M > N, for if not it is
clearly impossible to run the P; truly in parallel and so it is
necessary either to increase M or re-partition the networ«
(possibly combining groups of the old P; in parallel t>
make single new ones). We will see later on that it can be
useful to have M > N, so we will not assume that equality
necessarily holds.

The most common case of inconsistency will be where
the logical network is simply too highly connected to be
mapped onto any system of transputers (i.e., some P; have
more than their allowance of four pairs of input and out-
put channels), though a simple inconsistency between 1
fixed physical array and the logical network will also ap-
pear sometimes.

We should perhaps note here that there will be widely dif-
ferent cases of this problem: ranging from (i) a large net-
work where every process needs a channel to every other,
through (ii) a two- or three-dimensional rectangular ar-
ray where each process needs to be connected in a regula:
way to more than four neighbours (perhaps 8 in two di-
mensions, or 6, 18 or 26 in three), to (iii) the case where
there is simply the need to have more than one pair o’
channels between adjacent transputers. It should there-
fore come as no surprise that there is also a wide range

of possible solutions. We will shortly introduce a num-
ber of transformations, essentially dealing with these sit-
uations in reverse order. The solution adopted for any
network will probably be a mixture of ordinarily imple-
mented channels and channels implemented using one or
more of these transformations, for there is no reason why
all our solutions cannot be mixed arbitrarily with each
other and ordinary link communication.

All the methods below carry a significant overhead in
terms of communication speed and bandwidth. There-
fore they should be avoided where possible in applications
where these are close to being overall limiting factors.

Multiplexing

We may very well want a large number of channels be-
tween adjacent transputers, even though there will almost
always be only one pair of links between them. This might
happen because there are channels of different types or be-
cause there are in fact several processes running on each
transputer which require connection to one or more on the
other. The solution to this problem is to multiplez all the
channels into a single pair.

The transformation requires an extra process (multiplexer)
to be tun on each of the two transputers. We will refer to
all the other processes as the user processes. The various
logical channels are then connected to the multiplexer on
the same transputer. Note that half of them will have to
be renamed. The two multiplexers are then connected by
the link pair of channels, and have the function of convey-
ing the communications between the relevant processes.
This has the effect of replacing each channel by a buffer,
which is not in general semantic-preserving: see the later
section on buffer tolerance. But, as described in that sec-
tion it is possible to eliminate these buffers at the cost
of doubling each output by a user process and only al-
lowing the multiplexer to accept the second output when
its mate has told it that the relevant communication has
been delivered at the other end.

The construction of the multiplexer is only summarised
here because of lack of space: the reader is referred to
Jones and Goldsmith (18) for the more detailed occam
code of such a multiplexer. For simplicity, we suppose
that the program is to run forever, and thus avoid the
added complexities of organising distributed termination.

Bach multiplexer is in fact the parallel composition of a
number of parts: this is necessary because the multiplexer
must at times be able to output on several channels at
once, and while it is possible for a sequential process to
be ready to communicate on a number of channels at the
same time in an ALT arbitration, the language (to allow ef-
ficient implementation) imposes a restriction that all these
communications should be inputs. It is convenient to split
each up into K + 2 processes, where K is the number of
channels being multiplexed: there are processes P, and
P, respectively handling the multiplexer inputs and out-
puts from the link and one for each external channel. An
external channel ¢ which is an input to the multiplexer is

184

given a process of the form

VAR x:
WHILE TRUE
_ SEq
Q = c? x
' x
e? x

where d is connected to Poy: and e to P, If it were de-
sired to eliminate the buffering referred to earlier, an ex-
tra communication on ¢ should be placed after that on e
to match the extra communication which the transformed
user process will be performing. Alternatively the Q. pro-
cess could be omitted altogether since the transformed
user process would then be performing the main function
of Q., which is that of waiting for an acknowledgement be-
fore trying to output again. If this last optimisation were
adopted the correct functioning of the whole multiplexer
system would depend on the good behaviour of one of the
user processes. This will be safe if the coding is performed
by the automated transformation system, but is probably
unwise in other circumstances!

An external channel which is an output to the multiplexer
corresponds to a process of the form

VAR x:
WHILE TRUE
_ SEQ
R = d? «x
c! x
e? x

where d is connected to Pi, and e to Pout. Pyt 1s con-
structed as an infinitely looping alternative construct that
alternately accepts an input from any of the Q. and R.
and transmits it, together with information on which chan-
nel it refers to, over the link. This would be one place
where the use of fair alternative constructs would be de-
sirable (see Roscoe (19) for transformations which realise
these). Pin is constructed to repeatedly input values from
the link, to decode them into destination and content, and
pass them on to the waiting Q. or R.. The reason why
this system works is that no message which comes into
P.,. can ever be refused by Q. or Rc: the end-to-end ac-
knowledgement which is executed by each pair Q. or Rc
ensures this.

Pip and Poye will very probably use (in occam 2) a vari-
ant type channel between them, since it is very likely that
the different channels being multiplexed will themselves
be of different types, and even if not the tag of variant
types may be an efficient way of encoding which channel
is being transmitted. Besides, half the traffic is simple
acknowledgements and therefore can .be straightforward
tagged synchronisations. If the users’ channels are them-
selves of variant types the encoding problem may get a
little more complex, but should not be impossible to per-
form automatically.

This completes our description of the transformation which

multiplexes multiple channels between transputers. Like
all the others we will be describing, it involves a relatively
small change to the original program except for the addi-
tion of the transport mechanism.

Dedicated Channels

Given that we can now implement as many channels as we
please between adjacent processors, it is a small step to
implement channels between distant parts of the network.
For all one has to do to connect processor 7; with proces-
sor Tj is to choose a route between them and implement
on each intervening processor Tk an extra buffer process
(to run in parallel with what was already running on T}).
These buffers are then simply connected together using
extra channels to form one long buffer connecting T; and
T;. If no countermeasures were taken the buffering intro-
duced could be considerable, but it is easy to implement
end-to-end acknowledgement to eliminate it altogether if
desired. This is perhaps the most obvious and transparent
way of implementing ‘long channels’.

This method can be quite effective if only a few extra chan-
nels are required or if all extra channels are short, such
as the example mentioned earlier of joining all processes
in an array to those diagonally adjacent as well as those
immediately adjacent. However even here the overhead is
not insignificant, particularly as the required multiplexing
slows down not only the long channels but also the ones
with which their communications are multiplexed. If the
communication patterns in the network are very regular,
as is the case in most numerical programs on grids, for
example, it will almost certainly be far more efficient to
program the indirect passing of information directly into
the main program.

Highly Connected Networks

The method outlined in the last section becomes very ex-
pensive in terms of space if there are very many channels
to implement between distant processors. However it is
possible to achieve the same effect in a way in which the
space consumed in each processor is a constant plus a con-
stant times the number of channels used by that processor.
What one does is to implement the processes Q. and R, as
before to receive and transmit messages from and to users,
but have these processes communicating with some gen-
eral mail service rather than just two-way links. Provided
the mail service satisfies the following conditions this will
implement a one-place buffer on every channel.

The mail service should have a node on each relevant pro-
cessor. The mail service must deliver all messages to their
correct destinations in a finite time. Also, a node must
not be able to refuse the input of a message from its user
for ever. One would also hope that, allowing for nodes
which become over-used or blocked, it will choose a sen-
sible route for a message from its sender to destination,
taking advantage of the full range of connections in the
network. Because of the end-to-end acknowledge between
Q. and R. the mail service can rely on its users never
refusing to accept messages it may bring.

185

Designing such a mail service is a difficult problem. One
solution was given in (19) which built on a correct but
inefficient solution for rings of processes to give a practi-
cal solution for general connected networks which, except
in heavy traffic, is able to pick shortest routes. An el-
egant solution for two-dimensional rectangular arrays is
given in Jesshope and Yantchev (20) where each node is
split into two halves: A and B. Suppose one wants tc
pass a message from (z,y) to (z',y’). The A layer is for
increasing either the z or y co-ordinate of a message if nec-
essary until it reaches (z*,y*) where z* = maz(z,z’) and
y* = maz(y,y’). It is then passed to the B layer which
is for decreasing co-ordinates as necessary until it reaches
(z',3'). Each half node simply cycles between waiting
for an input from any of its input channels to outputting
what it receives in an appropriate direction. The results
of Roscoe and Dathi (21) are used to prove this systemr
deadlock free. (In fact, we remark that this solution wil
work in any number of dimensions—still with two layers o
processes performing exactly the same function as above
Of course more than two dimensions would require more
than four links per transputer!)

BUFFER TOLERANCE

A buffer is a process with a single input channel (in, say:
and a single output channel (out, say) which satisfies the:
following specification. The formal semantics referred to
is that of (7).

a) At all times the sequence of values output is an
initial subsequence of the sequence of values inpu:
(formally shout < slin, for all of its traces s).

b) If it is empty then it cannot refuse to input (for-
mally shout = shin = in & Ref for all its failure:;
(s, Ref)).

c) If it is not empty then it cannot refuse to outpu;
(formally shout < shin = out & Ref for all its
failures (s, Ref)).

To avoid considerations of fairness, we will assume addi-
tionally that a buffer never inputs infinitely often withou.
performing an output (a condition which trivially holds
for buffers with any fixed bound).

All of the methods for overcoming the configuration prob-
lems described in the previous section introduce, in their
simplest form, a buffer along all the channels other thar
those mapped directly onto links. Thus they typically re-
place a program such as

CHAN ¢, ...
CHAN d;, ...
PAR

B

Py

s Cpt

, dy:

Pﬂ
where the ¢; are the channels which are to be mapped
directly onto links and the d; are those which are to be

implemented by the transformation, by one which is se-
mantically equivalent to

CHAN ¢1, ..., Cr:
CHAN d1, ..., ds:
CHAN d}, ..., d}:
PAR

P

P

P,
By

B,
where P! is P; with each d-output (i.e., one of the form
d;jle) has been replaced by a d’ one (i.e., djle) and Bj is a
buffer whose input channel is d; and whose output channel
is dj. The length of the buffers may be fixed or may vary
non-deterministically, depending on which transformation
is used.

In each case these buffers can be eliminated and a system
which is equivalent to the original one above implemented,
but there is always a significant cost to this. In each of
the solutions the method is the same: all outputs have to
be doubled, so in the P} above we would replace each

SEQ

d; ! e by dj !
!
&

(where c is arbitrary) and the service does not permit the
second output until the message has been delivered to its
destination. This will be seen to be particularly costly
where the distance between P and Q is large.

This buffer elimination is undoubtedly often necessary. In
general the introduction of buffers permits a larger set of
traces, which can often be strictly larger. To see this one
only has to consider the following.

Example 1. Consider the parallel composition of two
processes P and Q with a single channel between them. If
each process repeatedly inputs an item and then outputs
a single item in response, the introduction of a buffer in
the internal channel does not change the sequence of input
and output values, but can change the relative order be-
tween these. If some user of this system relies on the fact
that each output results from one of the last two inputs, it
will not be satisfied with the buffered version. It is easy to
create other occam programs which might run in parallel
with this combination and whose function would be de-
stroyed totally by the introduction of the buffer between
P and Q.

Example 2. In the previous example the individual be-
Faviours of P and Q were not really altered by the addition
of the buffer. This is not always so: consider the pair be-
low where there are two channels leading from P to Q and Q

has external channel c. For dramatic effect let us suppose
they are part of the program running inside a bomb.

1

P WHILE TRUE
SEQ
a! o
b! O
VAR x, z:
SEQ
z:=0
WHILE TRUE
SEQ
ALT
a

o
il

WK
N
+
-

b

N 9 N 9

x
=
IF
z<0
EXPLODE

z >= 0
c! O

If a buffer is inserted only on the b channel then nothing
changes, but if one is placed on the a channel (or both)
disaster may strike at any time (non-deterministically).
Notice also that if z rather than 0 were output in the last
line then a b-buffer could change the values output—this
could of course significantly affect the rest of the program.

On the other hand there are many widely varying cases
where the buffers do not seem to matter. A general classi-
fication seems very difficult, but we would like to describe
three broad categories with examples.

a) Strong buffer tolerance. Sometimes the introduc-
Tion of a bulfer does not change the semantics of the overall
program at all. A channel where this is true can be termed
strongly buffer tolerant. Indeed it may not be necessary
to look beyond the pair of processes using that channel: if
buffering does not affect the semantic value of those two
running in parallel it cannot affect that of the whole net-
work. One curious example of this was seen above (on
the b channel), but far more common are cases where the
double communication described above as a way of elim-
inating buffers is already present. This typically happens
where one has a pair of opposite direction channels be-
tween two processes: a and b say. If these processes are
P and Q, suppose that communications on a and b are
paired into initiating communications and replies in the
sense that any initiating communication on one is imme-
diately followed by a reply on the other so that neither
process can carry out any other communication until the
reply has occurred. (It is easiest to imagine this when all
initiating communications are one channel and all replies
on the other, but it is quite possible to achieve a ran-
dom mixture—see the crosslink communications of the
program developed in (19) for an example of the latter.)
In this case both channels can have a buffer added with
no semantic effect.

It is also possible for larger scale effects to eliminate the

semantic effect of buffers. If in the very first example
described above the environment always prevents a dif-
ference of more than two between the inputs and outputs
of this system, then the introduction of a buffer between
the two processes has no effect. In other words rigidity
elsewhere might compensate for the buffers.

b) Weak buffer tolerance. Sometimes, although the
semantic value does change one does not mind. For ex-
ample, in a system which takes in inputs at one end and
delivers outputs at the other, one might not care about
the exact phasing of these. In a broader sense, we might
not be concerned with the exact set of traces possible for a
network, only with the relationships between the complete
traffic on all channels through a process’ history. (Here
complete might mean finite or infinite.) A good example
of this is the Example 1 above, where the introduction of
a buffer did not affect this whole-time behaviour, only the
phasing of it. We might term such a system weakly buffer
tolerant.

Formally speaking, we are observing that in certain cir-
cumstances the usual semantic model records too much
detail and we wish a weaker one where a process is repre-
sented by a relation between the complete behaviours on
all its channels. Unfortunately, as we have already essen-
tially seen in the Example 2 and in our observations on
possible environments for Example 1, this is not a proper
semantic model for the whole of occam in that one can-
not determine the value of a complete program from the
values of its parts. If, however, there were a substantial
class of programs for which it were a sensible model this
would be very relevant to the study of buffer indepen-
dence. For a buffer is characterised by the fact that its
complete input sequence is always equal to its complete
output sequence—if they are infinite, at least—and so the
introduction of a buffer on a channel in such a network
would have no effect on the semantic value.

This is a topic on which more formal work will have to
be done before we can be completely confident. However
there are two substantial classes of network which seem
to fulfil these conditions and therefore be weakly buffer
tolerant. In both cases we have assumed below that the
network is nonterminating since this makes analysis easier:
if the network were to terminate one would have to be
careful about the contents of buffers at that time.

1. The first class of networks is that where (i) there
are no edge-cycles in the undirected graph with an
edge between two processes for each channel—so
in particular there is at most one channel between
any pair of processes (ii) the network is deadlock-
free and nonterminating and (iii) in each infinite
execution sequence every channel is used infinitely
often. Notice that for (ii) and (iii) to hold it is
sufficient that (i) holds, that (ii) and (iii) hold of
each process individually and that the network is
connected.

2. The second class is that of networks where (i) there
are no ALT constructs, (ii) the network is deadlock
free and nonterminating and (iii) in each infinite

187

execution sequence every channel is used infinitely
often. Here, (iii) holds if it holds of each process,
(i1) holds and the network is connected. Note that
a proof of deadlock freedom is required: see (21)
for some suitable techniques. The intuition behinc
this example is that (i) (ii) and (iii) ensure that
as soon as any communication becomes enabled it
must eventually occur. The absence of ALT con-
structs (plus condition (iii)) also ensures that the
pattern of communications of each component is
determined totally by the component itself and is
not influenced by the order in which its neighbours
communicate. (This is not a trivial idea, since the
reader will note that the components are entitled tc
include the parallel operator in their definitions, in-
cluding terminating parallel constructs to commu-
nicate on two or more channels in parallel.) This
class of networks also has the property of being de-
terministic.

As we said above, this is an area where further work is
required to analyse this weak form of equivalence and tc
provide formal justifications for these and similar claims.
Perhaps the most important thing to bear in mind about
weak buffer tolerance is that it seems to be a global prop-
erty of a whole network: adding an extra process on the
edge of a weakly buffer tolerant network (for example one
with an ALT in the second case above) can destroy the
tolerance throughout the whole network.

c) Buffer tolerant specifications. This final class is
less well-defined than the previous two, but seems to be
important nonetheless. Sometimes a subnetwork (which
may vary in size from a single process upwards) is con-
structed to satisfy some specification: typical examples
are the specification of a buffer above and the much more
complex requirement for a message routing system set out
in (19). A specification can be buffer tolerant in that, if a
process satisfies it, then so does the same process with an
extra buffer placed on one or more channels. Both of those
mentioned above are buffer tolerant on all their external
channels.

If the only property which is required of the subnetwork
(for the correct functioning of the whole with respect to
some overall specification) is that it satisfies this local
specification then clearly all of the local specification’s
buffer tolerant channels may have buffers placed on them.
(Note that this may change the overall semantic value of
the network, however.)

These observations only allow us to place buffers on the
external channels of the subnetwork (for these are the only
ones which will be visible to its specification). It is some-
times possible to prove that the network one creates con-
tinues to satisfy this specification if a buffer were placed
on some internal channel. Of course this would be true
if the internal channel were strongly buffer tolerant, but
there are certainly other cases. For example, if a buffer
is implemented as a chain of smaller buffers then each of
the internal channels is buffer tolerant in this sense. Less
trivially, it was shown in (19) that the ring channels of the

system developed there are buffer tolerant in this sense.
Unfortunately this sort of analysis is likely to remain ad
hoc.

ACKNOWLEDGEMENTS

We are grateful to Geoff Barrett and Geraint Jones of
the Programming Research Group for many conversations
which have influenced the ideas contained in this paper.

The initial development of the Transformation System was
largely funded by project CAD-036 of the UK Alvey Ini-
tiative, and owes much to the efforts of A.D.B. Cox, then
of the Rutherford Appleton Laboratories. Subsequent de-
velopments have been supported by a contract from the
Science and Engineering Research Council/Department of
Trade and Industry Transputer Initiative.

‘occam’ is a trademark of the INMOS group of companies.
REFERENCES
1. Hoare, C.A.R., 1978, CACM, 21(8), pp 666-677

2. Hoare, C.A.R., 1985, “Communicating Sequential Pro-
cesses”, Prentice/Hall International, Hemel Hempstead,
England

3. Milner, R., 1980, “A Calculus of Communicating Sys-
tems”, Lecture Notes in Computer Science 92, Springer-
Verlag, Berlin

4. INMOS Ltd, 1984, “occam Programming Manual”,
Prentice/Hall International, Hemel Hempstead, England

5. INMOS Ltd, 1988, “occam 2 Reference Manual”, Pren-
tice/Hall International, Hemel Hempstead, England

6. Shepherd, D., 1988, ACM SIGMICRO, (forthcoming)

7. Roscoe, A.W., “A Denotational Semantics for occam”,
in Brookes, S.D., Roscoe, A.W. and Winskel, G. (edd.),
1985, “Seminar on concurrency, Carnegie-Mellon Univer-
sity, Pittsburgh, PA., July 9-11, 1984”, Lecture Notes in
Computer Science 197, Springer-Verlag, Berlin, pp 306-
329

8. Brookes, S.D. and Roscoe, A.W., “An Improved Fail-
ures Model for Communicating Processes”, ibid., pp 281—
305

9. Milner, R., “Operational and Algebraic Semantics of
Concurrent Processes”, in van Leeuwen, J. (ed.), 1989,
“Handbook of Theoretical Computer Science”, North Hol-
land, Amsterdam (forthcoming)

10. Brookes, S.D., Roscoe, A.W. and Walker, D.J., 1988,
“An Operational Semantics for CSP”, to appear

11. Barrett, G., 1988(?), “Semantics and Implementation
of occam”, DPHIL Thesis, Oxford University (forthcom-
ing)

188

12. Roscoe, A.W. and Hoare, C.A.R., 1986, “Laws of
occam Programming”, Technical Monograph PRG-53, Pro-
gramming Research Group, Oxford University

13. Hennessy, M., 1985-6, Lecture Notes, University of
Arhus

14. Harper, R., MacQueen, D. and Milner, R., 1986,
“Standard ML”, LFCS Report Series ECS-LFCs-86-2, Lab-
oratory for the Foundations of Computer Science, Edin-
burgh University

15. Wikstrom, A., 1987, “Functional Programming in
Standard ML?, Prentice/Hall International, Hemel Hemp-
stead, England

16. Goldsmith, M.H., 1987, “occam Transformation at
Oxford”, in Muntean, T. (ed.), Proceedings of 7** accam
Users Group & International Workshop on Parallel Pro-
gramming of Transputer based Machines, Laboratoire de
Génie Informatique-Informatique et Mathématiques Ap-
pliquées de Grenoble, Grenoble

17. Goldsmith, M.H., 1988, “The Oxford occam Transfor-
mation System”, documentation, Programming Research
Group, Oxford University

18. Jones, G. and Goldsmith, M.H., 1988, “Programming
in occam2”, Prentice/Hall International, Hemel Hemp-
stead, England

19. Roscoe, A.W., “Routing messages through networks:
an exercise in deadlock avoidance”, in Muntean, T. (ed.)
loc. cit. (16)

20. Jesshope, C. and Yantchev, J., 1988, “Deadlock free
packet routing with bounded buffering for asynchronous
regular arrays”, Technical Report, Southampton Univer-
sity '

21. Roscoe, A.W. and Dathi, N., 1986, “The Pursuit of
Deadlock Freedom”, Technical Monograph PRG-57, Pro-
gramming Research Group, Oxford University

