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1. Introduction 

The parallel language CSP [9], an earlier version of which was described in [7], 

has become a major tool for the analysis of structuring methods and proof systems 

involving parallelism. The significance of CSP is in the elegance by which a few 

simply stated constructs (e.g., sequential and parallel composition, nondeterministic 

choice, concealment, and recursion) lead to a language capable of expressing the 

full complexity of distributed computing. The difficulty in achieving satisfactory 

semantic models containing these constructs has been in providing an adequate 

treatment of nondeterminism, deadlock, and divergence. Fortunately, as a result of 

an evolutionay development in [S], [lo], [15], [l], [14], [2], and [4] we now have 

several such models. 

The purpose of this paper is to report the development of the first real-time models 

of CSP to be compatible with the properties and proof systems of the above- 

mentioned untimed models. Our objective in this development is the construction 

of a timed CSP model which satisfies the following: 

(1) Continuous with respect to time. The time domain should consist of all non- 

negative real numbers, and there should be no lower bound on the time difference 

between consecutive observable events from two processes operating asynchronously 

in parallel. 

(2) Realistic. A given process should engage in only finitely many events in a 

bounded period of time. 

(3) Continuous and distributive with respect to semantic operators. All semantic 

operators should be continuous, and all the basic operators as defined in [2], except 

recursion, should distribute over nondeterministic choice. 

(4) Verijiable design. The model should provide a basis for the definition, 

specification, and verification of time critical processes with an adequate treatment 

of nondeterminism, which assists in avoidance of deadlock and divergence. 
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(5) Compatible. The model and its associated proof systems should be a “natural” 

extension of untimed models and proof systems, and the model should contain the 

timed equivalents of those CSP constructs modelled in [2,4]. 

A crucial element in achieving a CSP model satisfying the above requirements 

proved to be in making the subtle distinction between deadlock and divergence in 

timed processes. As indicated in Section 7, previous constructions of timed CSP 

models have either relied on unrealistic (in the sense defined above) processes to 

make this distinction [ll], or else by design have not distinguished between these 

two concepts [ 121. In this paper, we present the resolution of this issue via concentra- 

tion on a formal description of the Timed Stability Model. This model (with appropri- 

ate restrictions such as those utilised for the Deterministic Trace Model in [8] allows 

a complete treatment of deadlock and divergence for deterministic timed processes. 

In [17], we describe our Timed Failures-Stability Model, which meets all the above 

requirements over the full range of CSP processes. At a later date, we shall present 

a hierarchy of timed models analogous to the existing range of untimed models. 

The paper is organised as follows: The second section contains a brief review of 

CSP. The third section discusses the rationale for basing our semantic domains on 

a complete metric structure. The fourth section discusses our timing assumptions. 

The fifth section describes the Timed Stability Model. The sixth section illustrates 

the applicability of the Timed Stability Model to the definition, specification, and 

verification of time-critical processes. Finally, the seventh section contains our 

conclusions and a comparison with other work. 

2. A review of CSP 

Throughout this paper, we will assume the background material of [2,4,9]. A 

breif reminder is given below. 

Nondeterministic processes are those which make internal progress leading to 

arbitrary choices which cannot be observed from the outside; such choices serve to 

reduce the range of possible future behaviours of the processes. Deadlock occurs 

in a distributed system when each component process is prepared to engage in some 

further action; but since the processes involved cannot agree on what the next action 

will be, nothing further can happen. Divergence occurs when a process is engaged 

in an infinite unbroken sequence of internal actions invisible to the environment, 

and as a result leaves its environment waiting eternally for a response. 

A CSP process communicates with its environment in some alphabet 2 of atomic 

communications or “events”. Communications require the co-operation of all par- 

ticipants and are considered to be instantaneous. At each point in the history of a 

process, there is a finite sequence of elements of the alphabet which the process 

may have been “observed” to communicate with its environment. Such sequences 

are called traces of the process, and all our knowledge about a given process is 

limited to statements about such traces and about possibilities of future behaviour 
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of the process after a particular trace has been observed. As indicated, there are 

now a variety of CSP models and associated proof systems. 

We shall use essentially the same abstract syntax for CSP given in [2,4] with the 

addition of a process WAIT f for each t 2 0: the process that terminates successfully 

after t units of time, and I, the diverging process which engages in no event visible 

to the environment. We use P, Q, R to range over syntactic processes; a, b over the 

alphabet E, X, Y over subsets of E;f over the set of finite-to-one functions from 

2 to 1; and F over “appropriate” compositions of our syntactic operators. 

P::=lI STOP1 SKIP1 WAITtI (a+P) 1 POQl ITlQIliQI 

Px II y 0 I Pill0 I RQ I P\X If-‘(p) If(P) I PQ.F(Q) 

We will generally write P\a rather than P\{a} when hiding the single event a. 

We assume (from [2], for example) that the reader is familiar with recursive 

processes ~.LP.F( P), which are defined as the least fixed point of continuous mappings 

on a semantic domain structured as a complete partial order. We also assume 

familiarity with the concept of such recursive processes defined as the unique fixed 

point of contraction mappings on a semantic domain structured as a complete metric 

space (see [13, 15,5,6, 161). 

3. Time and topology 

In this paper, we propose a theory of communicating sequential processes based 

on an underlying topological structure. Most of the above-mentioned untimed CSP 

models have been based on domains of complete partial orders, and different models 

often have incompatible orderings. Our reasons for choosing a topological approach 

based on domains of complete metric spaces are primarily that 

(1) topological embeddings seem a natural method by which to induce a hierarchy 

on the various models, and 

(2) topological domains appear more appropriaate for modelling continuous 

concepts such as real time. 

To illustrate the intuitive appeal of topological limits in the analysis of CSP 

processes, consider the following example in the Trace Model [8]: 

Q=b+Q PO= Q 

P=u+P Vn>l, P, = a + PI,__, 

Recall that, by P = a + P, we mean P = pP.F( P) where F(R) = a + R is an appropri- 

ate mapping on our semantic domain. In the Trace Model semantics, we have 

PO = {( ), (b), (bb), (bbb), . . .>, 

PI = {( ),(a), Cab), (abb), (abbb), . . .I, 
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Pz = it ), (a), (au), (aab), (aabb), (aabbb), . . .>, 

P3 = {( ), (a), (au), (uuu), (uuub), (uuubb), (uuubbb), . . .}, 

P={( ),(a), (au), (uuu), (uuau), (uuuuu), (uuuuuu), . . .}. 

Clearly, an observer looking at a record of all traces of length s n cannot distinguish 

between P and P,,. Hence, it seems intuitive that lim,,,P, = P. Indeed this is the 

case under a complete metric structure based on d(R,, R,) = l/2”, where n is the 

greatest integer such that R, and R2 agree on all traces of length sn. However, 

based on the standard complete partial order structure under set inclusion for the 

Trace Model, lim,,, P,, does not exist. When we move to the timed CSP models, 

this situation becomes critical. If an observer looking at a record of all traces 

completed in n units of time cannot distinguish between P, and P, we would certainly 

expect lim,,, P, = P. 

Of course, the price paid for intuition in the topological Trace Model is the loss 

of continuity of the hiding operator and the restriction to guarded recursions to 

ensure contraction mappings. For example, note that 

lim (P,\u)=Q#(P\u)={( )}=STOP, 
n+‘ZV 

p P. P is undefined. 

Surprisingly, we shall see that, as we move to topological timed models, we are able 

to retain intuition and to avoid such problems. 

In constructing the topological timed models, we regard the treatment of diver- 

gence as the crucial issue. It would seem useful to distinguish between deadlock, a 

property which we can recognize in a finite period of time and divergence, a property 

which we cannot. In particular we wish lim,,,(WAIT n) = I, where _I_ # STOP. 

In untimed CSP, it is only necessary to know that a given process can or cannot 

diverge after engaging in a trace s; in the timed models, it is necessary to know (if 

the process cannot diverge after s) when it will again be ready to respond to the 

environment. This analysis leads us to consider the untimed Divergence Models 

[15, 1, 14, 41 as providing discrete information for a given trace s (“0” cannot 

diverge, “a” can diverge), and our corresponding timed model as providing con- 

tinuous information (a E [0, CO] such that the process is guaranteed to be stable 

within LY time after engaging in s). Our topological models will be based on this 

notion of stability, which is the dual of divergence. 

In a forthcoming paper giving our hierarchy of timed CSP models, we shall use 

the above analysis to present the Timed Stability Model as a natural extension of 

an untimed, topological Stability Model. Due to space limitations here, we present 

only the former. 
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4. Timing postulates 

Before giving a formal description of the Timed Stability Model, let us first present 

our basic assumptions about timing in a distributed system. 

(1) A global clock. We assume that all events recorded by processes within the 

system relate to a conceptual global clock. 

(2) A system delay constant. As previously indicated, we realistically postulate 

that a process can engage in only finitely many events in a bounded period of time. 

The structure of our timed models allows several parameters by which to ensure 

adherence with this postulate. In the current presentation, for simplicity we assume 

the existence of a single delay constant 6 such that 

(a) For each a E E and each process P, the process (a -+ P) is ready to engage 

in P only after a delay of time 6 from participation in the event a. 

(b) A given recursive process is only ready to engage in an observable event after 

a delay of 6 time from making a recursive call. 

(3) Hiding. We wish (a + P) to denote the process that is willing at any time to 

engage in the event a and then to behave like the process P. Clearly, if P = a + P, 

we then wish P\a = 1. However, consider P = a + STOP (the process that is willing 

to engage in a at any time ~0 and then to deadlock). What do we wish P\a to 

denote? By hiding, we remove external control. Hence, any time a process is willing 

to engage in an internal action, it is permitted to do so. Thus, we assume that each 

hidden event has taken place as soon as such event was possible. In the above 

example, we would wish 

(a + STOP)\a = WAIT 6 ; STOP 

Our hiding assumption can be illustrated in terms of “Hoare’s vending machines” 

from [9]. Suppose we have a timed vending machine TVM which is willing to make 

one transaction by first accepting a 5p coin, then after a wait of 2 seconds, becoming 

ready for a button to be pushed, which after an additional two seconds will result 

in a chocolate being offered to the customer. 

Suppose now, we wish to automate the vending machine by hiding Push. Clearly, 

we would wish the button to be pushed internally as soon as possible. 

ATVM = TVM\Push 

= (5p + (WAIT 2 ; WAIT S ; WAIT 2 ; (Choc + STOP))) 

In order to model this idea of an event occurring as soon as it becomes available, 

we shall record not only those times at which events are available, but also those 

at which they can become available. 
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(4) Timed stability. We shall model a timed CSP process as a specified set of 

ordered pairs (s, (Y), where s is a timed trace of the process and (Y is the time at 

which the process is guaranteed to be stable after engaging in s. If (s, LY) is in the 

process P and (Y <a, then the next observable event in the life of the process 

following s may occur at any time on or after time (Y at the discretion of the 

environment, and the set of possible next events must be the same at all such times. 

Clearly no event can become available after (Y. We think of timed stability as a red 

light on the outside of a process which goes off when the process can make no more 

internal progress. 

5. The Timed Stability Model 

As indicated above, we need to distinguish between the times when a process can 

communicate an event, and the times at which it can become ready to communicate 

it. Therefore we need two ways to record each event that might occur: for CY E E, a 

will denote the communication of a at any time, but we shall use the special notation 

a^ to denote communication of a the moment it becomes available We shall denote 

the set 2 u {a^/ a E 2} by 2’; e will be a typical element of 2. A timed event is an 

ordered pair (t, e), where e is the communication and t E [0, 00) is the time at which 

it occurs. The set [0, ~0) x 3 of all timed events is denoted TC. The set of all timed 

traces is 

(TX)% = {s E TX* /if (t, e) precedes (t’, e’) in s, then t s t’}. 

If s E (TI;):, we define #s to be the length (i.e., the number of events) of s and 

Z(s) to be the set of communications appearing in s (i.e., the second components 

of all its timed communications, with any *‘s removed). T is the sequence where 

any *‘s have been removed from the communications in s: thus, if s = 

((t, a), (t’, g)), T=((t, a), (t’, b)). 
begin(s) and end(s) are respectively the earliest and latest times of any of the 

timed events in s. (For completeness we define begin (( )) = co and end(( )) = 0.) 

If X E 2, s YX is the maximal subsequence w of s such that -E(G) C_ X. s\X = 

sl(E -X). If t E [0, co), s r t is the subsequence of s consisting of all those events 

which occur no later than t. If tE[-begin(s),oo) and s=((T,, e,), 

(t,, e,), . . , (t,, en)), 

s+ t =((h+ 4 ed, (4 + 4 4,. . . , (t, + 4 en)>. 

If s, w E (TI;) $, Tmerge( s, w) is defined to be the set of all traces in (TX) Z! obtained 

by interleaving s and w. 

If, s, w E (TZZ)z, we define s = w if and only if s is a permutation of W. 

Let STAB = [0, CD]= [0, co) u {co}. This is the set of all “stability values”. Whenever 

S c (TX): x STAB, we define 

Traces(S) = {s E (TX): / 3~ E STAB.(s, a) E S}, 
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CL,(S) = {(s, a) I3( w,(~)~Ssuchthats=w}, 

SUP(S) ={(s, a) Is l Traces(S) A (Y = sup{/3 I3(w, p) E S such that s”= G}>. 

We are now in a position to define our evaluation domain. We formally define 

TMs to be the set of all those subsets S of (TX): x STAB satisfying 

(1) (s, (Y), (s, a’) E s * cy = cy’, 

(2) ( ) E Traces(S), 

(3) s.wETraces(S) * sETraces( 

(4) (S,(Y)ESJ($Q)ES, 

(5) (S,(Y)ESAS=wW(w,CY)ES, 

(6) s.((t, a))~Traces(S) 3 3t’d t. (srt’).((f’, a^))ETraces(S) 

A (t’s t”< t 2 (~lt”).((t”, a))ETraces(S)), 

(7) (~,c~)~S+end(s)sa, 

(8) (s,(~)~S~~.((t,&))~Traces(S)+t~cw, 

(9) (s,cu)ES*iftBa, a E E and w E (TX)?! is such that w = ((t, a)). w’, then 

(%W,(Y’)ES@ (S.(Wf((Y-r)),cx’+(CY-f))ES, 

(10) Vt~[O,co). 3n(t)~N.V(s,a)~S.end(s)st + #ssn(t). 

Condition (1) states that each trace has a unique stability value (the time after 

which stability is guaranteed). Conditions (2) and (3) are inherited from the traces 

model of CSP. Condition (4) states that when an event becomes available (a^), it 

can also be communicated “normally” (a). Condition (5) states that the order of 

events which happen at the same time is irrelevant. Condition (6) states that when 

an event is available, it must have been continuously available since becoming 

available at some earlier time. Condition (7) states that the stability value for a trace 

cannot be less than the time of the last event in the trace. Conditions (8) and (9) 

assert that, after a process has become stable, the range of future behaviours that 

are available does not change (until some further communication). Condition (10) 

reflects our realism requirement that infinitely many events cannot occur in a finite 

period. 

If SE TMs and I E [0, cc), we define 

S(t)=Us,+SI a<t}u{(s,oo)lend(s)<tr\3a~r.(s,a)ES}. 

This set, which is not necessarily in TMs, records everything which can be observed 

about S before time t. Note that S(0) = P, for every S. The metric on TMs is defined 

as 

d(S,,S,,.)=inf{2-‘IS,(t)=S,(t)}. 

We now show how to define a semantic function F : CSP+ TMs. Notice how, in 

SKIP, WAIT and a + P, the event becomes available once, but remains available 

forever after. 

4-LII = {CC ), co)>, 4STOPil = {Cl ), O)), 

4SKIPl= {(Cd, 0)) u {(((‘A h, 0)) u ((((4 J)), t) 10 s f), 
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&WAIT dl = i(( ), f)i u ((((4 ?,A t)l u {(((t’, d)), 0 ( f 6 t’), 

da + a = i(( ), 0)) u {(((O, a^)>.(s + 61, a + 6) I (s, @I E EUPII>, 

u{(((t,a>>.(s+(t+s)),a+t+s)~(s,CY)EE[[P~hf~0}, 

00 on = supwn u mn), 

&u~n Qj = suryEpq u &uQj). 

When two processes are running synchronously in parallel, they co-operate on all 

events. An event can become available just when it becomes available in one of the 

partners and is already available in the other. When U, w E (TZ)$ have v” = 6, they 

can run in parallel yielding the trace s = u v w with s”= 6, such that its nth element 

is “hatted” if and only if the nth element of Y or w is. 

&up11 OIi = sup{(sp v sQy max(ap~ aQ)) / by %) E dpn v (SO, LyQ) 

E E[IQ] A cp = ;Q}. 

Similar considerations apply to the alphabetised parallel operator. 

&I& 11 y on = ~up{6% max{aPp aQ>) 1 3(spy %) E Eum bQ, aQ) E mn. 

s E (+X 11 YsQ)), 

where 

v~~~~w={sE(T~)~~~~(XU Y)=s~irX=fi~;rY=G 

Asrx-y=tlrx-YASrY-X=wrY-X 

AsrXn Y=(vrXn YvwfYnX)}. 

4~ iii on = sw % max(apy aQ>) 1 3( % aPI E m, h aQ) E da- 

s E Tmerge( u, a)}, 

&up;Qn=CL,(SUP({(s,a)l(s,~)EEuPnAJ~~(s)> 

u{(~.(w+t),~~+t)~~.((f,j/))~Traces(~[P~) 

A&-%) A (W, + E[Ion>)), 

&[P\X] = SuP{(S\X, a) 1 (S, a) E E[IPn A S iS X-a&T} 

where s is X-active provided it contains no element of the form (t, a) for a E X 

(i.e., all communications in X are of the form a^). 

Eufpv)n = 16,4 I u-w, 4 E mnt, 

Eumn = m-w+), a) k a) E um 

e[@.F(P)] = the unique fixed point of the contraction mapping C(Q) 

= C( WAIT 6 ; Q), where C is the mapping on TMs 

represented by F. 

(1) Hiding and recursion. Again, consider P, Q, and P,, as defined in Section 3 

(with the appropriate change in P, to reflect the delay induced by each recursive 
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call in P). 

Q=b+Q PO= Q 
P=a+P VnZl, P, = a + (WAIT 6 ; P,-,) 

In the Timed Stability Model, lim,,,P, = P and lim,,,( P,\a) = P\a = I # STOP. 

In fact, as desired, all operators are now continuous, and all, except recursion, 

distribute over n. 

Also note that all syntactic recursions are now represented by contraction map- 

pings, and hence are valid. For example, 

pP.P=fi~(e), where E(Q)=wAIT~;Q 

= _L. 

(2) Compatibility with untimed models. All but 3 of the 31 algebraic laws for 

semantics of the Failures-Divergence Model from [4, Table l] hold in the Timed 

Stability Model (with the identification of n with 0). These three are: 

if P#I 

if P=i; 

(a + P)\b = 
(a-+P\b) if a# b, 

P\b if a = b. 

The failure of the first and third laws simply reflects the passage of time (for 

example, WAIT n 11 STOP = WAIT n ; STOP). The failure of the second law reflects 

our use of the delay constant 6 to implement our view of realism: two processes in 

parallel can run faster than a sequential process. As indicated, in the complete 

version of this paper, we shall present a range of options whereby such parameters 

can be varied to suit the desired “view of the world”. 

Note that the Timed Stability Model does differ from the Failures-Divergence 

Model [4] in that 0 is not strict with respect to 1. In fact, it differs from all previously 

mentioned CSP models relevant to divergence in that (s, ~0) E P does not imply that 

(s. w, ~0) E P for all traces w. That is, just because a process may diverge after engaging 

in a given trace, it does not mean that some time later after extending the trace, 

the process might not again become stable. For example, let P = a + P and consider 

the process R=(b+(P\a))O(b+(b+STOP)). Both (((0, b)), 00) and 

(((0, b)( 6, b)), 26) E R. If our only observation is ((0, b)), we must assume the worst; 

however, once we observe ((0, b)(6, b)), we know that we are safe. Although it is 

possible to modify our model to conform to the untimed models in this regard, we 

choose to allow the finer distinction of CSP processes made possible by the topologi- 

cal structure of our evaluation domain. 

The Timed Stability Model is very much a partial correctness model. It gives an 

upper bound on the traces that might occur in a given process; it cannot guarantee 

that traces will occur, because of the potential nondeterminism of concurrent systems, 

and for reasons discussed below. The advantage of the model is in the simplicity 
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by which it describes timing behaviour. Although we show in [17] how the present 

model can be extended to reflect total correctness, the resulting Timed Failures- 

Stability Model is necessarily much more complex. We are currently exploring the 

feasibility of establishing partial correctness in the Timed Stability Model and 

establishing total correctness in the corresponding untimed Failures-Stability Model, 

then bridging the two models through the concept of stability. If “total correctness” 

occurs in the timed model, it must have happened by the time of stability. 

However, just as was the case with the untimed traces model, the present model 

is sufficient to describe the total correctness properties of deterministic processes 

(ones which cannot make internal decisions which materially alter their future 

behaviours). (The question of which untimed CSP programs are deterministic is 

discussed in the earlier literature, for example [9]. However, it is an interesting 

question exactly what is meant by a timed deterministic process, and which syntactic 

constructions preserve determinism.) It should be possible to refine the hiding 

operator P\X when P is deterministic, for if, after any trace s, a hidden event can 

become stably available in P, then it will. In these circumstances it is impossible 

for P to execute any nonhidden event after the time of stability, for the hidden one 

would have pre-empted it. 

6. Specification and verification of timed processes 

As an example of proof techniques in the Timed Stability Model, we consider a 

timed theory of recursion induction. This theory is essentially a generalisation of a 

similar theory for the topological Trace Model developed in [ 15,2]. The meanings 

of any undefined terms in the presentation below can be inferred from similar 

untimed concepts in [9]. 

Basic Question. If we can prove some specification S true for all recursive calls, 

when can we infer the property true of the process? 

In particular, if, given a specification S, we can show that, for each Q E TMs, if 

Q satisfies S, then C?(Q) satisfies S for the contraction mapping &, when can we 

conclude that P=fix(e) satisfies S? 

A speci$cation S on TMs is a mapping from the complete metric space TMs to 

{T, F}. We say it is continuous if the set {P 1 S(P) = T} is closed. A specification S 

is satisfiable provided there exists Q E TMs such that S(Q) = T or (Q sat S). 

Theorem. If C? : TMs + TMs is a contraction mapping and S is a continuous, satisjiable 

speci$cation, then if (VQ E TMs, Q sat S 3 6(Q) sat S), then fix( 2) sat S. 

Now suppose we wish to specify a timed vending machine which is capable of 

an unbounded number of transactions and which 

(1) does not give out more chocolates than it receives payment for; 



Timed model for CSP 259 

(2) on becoming stable, is able to offer a chocolate if it has received more payments 

than the number of chocolates it has given out; 

(3) if it has given out exactly as many chocolates as it has received payment for 

it can accept a further coin when it becomes stable; and 

(4) is initially stable, and never waits more than 4 seconds after any action before 

becoming stable again. 

Because ours is a partial correctness model, we cannot completely specify (2) 

and (3). However, we can at least specify that the machine has the potential to do 

these things. (This is enough if, as is the case with the process below, the machine 

can be shown to be deterministic.) 

The specification. VQ E TMs, Q sat S provided 

(S,) (s,(Y)EQ + ~(s)c{5p,Choc}and#(s~{Choc})~#(s~{5p}); 

(SJ ((s, a) E Q and (Y <cc and #(sr{Choc}) < #(sr{5p})) 

3 s.(( (Y, Choc)) E Traces(Q); 

(S,) ((s, LX) E Q and a <co and #(sr{Choc}) = #(sr{5p)) 

3 s.(( cy, 5~)) E Traces(Q); 

(S,) (( ), 0) E Q and (s.((t, a)), (Y) E Q + (Y G t+4. 

Consider the timed vending machine TVM*, where 

To show that TVM* satisfies the above specification S, we need to show that 

fix( 6) sat S, where 

Each of (S,), (S,), and (S,) is continuous and satisfiable by STOP, and (S,) is 

continuous and satisfiable by (5p + STOP). Hence, we need only to show for i = 1,4 

andtlQ,(QsatS,)j(~(Q)sat(S,)).((S,)willrequirethat6~1.)Wecanconclude 

by the above Theorem that TVM* = fix(e) sat S. Thus, we have reduced the 

verification of a recursive process to simple verification of each specification com- 

ponent for each recursive call. 

7. Comparisons and conclusions 

Pioneering work on the development of semantic models for timed versions of 

CSP was carried out in [Ill. This work demonstrated the basic compatibility of 

timed CSP with the algebraic properties of the untimed language, though the hiding 

operator failed to distribute over n. Also, the distinction between deadlock and 

divergence relied on “unrealistic” processes; the existence of these unrealistic 

processes appears to have led to several problems. 
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Recently, in [ 121, the authors have presented a timed semantic model for a subset 

of the CSP of [7]. This model demonstrates the ability to describe many interesting 

aspects of real-time systems. However their work, though complementary, is largely 

independent of the aims of this paper since it is based on integer time and does not 

distinguish deadlock and divergence. 

It is interesting to note that the authors of [3] have made essentially the same 

“realism” postulates as are made in the present paper. There they found that the 

use of the reals as the time domain allowed them to give a fully-abstract model 

using temporal logic. 

We conclude by making three observations about our concept of timing. 

(1) It might be argued that time in our model is too “discrete” in that limits only 

appear at infinity. For example, one might well wish lim,,, WAIT (l-2-“) = 

WAIT 1, which is not true in our present model (the limit does not exist). We hope 

to investigate different metrics (probably not ultrametrics) which preserve limits 

already present in our model and add ones like the above. 

(2) We regard our present model and semantics as a basis for developing more 

“realistic” semantics. 

(3) The fact that a CSP process can sometimes communicate more that one copy 

of a single event at the same time complicates our model in several ways. (The 111 

and f(P) operators, f not injective, can introduce this phenomenon.) For example, 

if these were not possible we could achieve a considerable simplification by replacing 

timed traces by sets of timed events. (The order of communications would be 

recoverable from the times in the timed events.) In practice it may well prove 

desirable to remove 111 from the language and to restrict the use off(P), which would 

allow this and other simplifications. 
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