
Theoretical Computer Science 58 (1988) 249-261

North-Holland

249

A TIMED MODEL FOR COMMUNICATING
SEQUENTIAL PROCESSES

G.M. REED and A.W. ROSCOE”

Programming Research Group, Oxford University, Oxford OX1 250, United Kingdom

1. Introduction

The parallel language CSP [9], an earlier version of which was described in [7],

has become a major tool for the analysis of structuring methods and proof systems

involving parallelism. The significance of CSP is in the elegance by which a few

simply stated constructs (e.g., sequential and parallel composition, nondeterministic

choice, concealment, and recursion) lead to a language capable of expressing the

full complexity of distributed computing. The difficulty in achieving satisfactory

semantic models containing these constructs has been in providing an adequate

treatment of nondeterminism, deadlock, and divergence. Fortunately, as a result of

an evolutionay development in [S], [lo], [15], [l], [14], [2], and [4] we now have

several such models.

The purpose of this paper is to report the development of the first real-time models

of CSP to be compatible with the properties and proof systems of the above-

mentioned untimed models. Our objective in this development is the construction

of a timed CSP model which satisfies the following:

(1) Continuous with respect to time. The time domain should consist of all non-

negative real numbers, and there should be no lower bound on the time difference

between consecutive observable events from two processes operating asynchronously

in parallel.

(2) Realistic. A given process should engage in only finitely many events in a

bounded period of time.

(3) Continuous and distributive with respect to semantic operators. All semantic

operators should be continuous, and all the basic operators as defined in [2], except

recursion, should distribute over nondeterministic choice.

(4) Verijiable design. The model should provide a basis for the definition,

specification, and verification of time critical processes with an adequate treatment

of nondeterminism, which assists in avoidance of deadlock and divergence.

*The authors gratefully acknowledge that this research was funded under Grant N0014-85-C-0134

from the U.S. Office of Naval Research.

0304-3975/M/$3.50 @ 1988, Elsevier Science Publishers R.V. (North-Holland)

250 G.M. Reed, A. W. Roscoe

(5) Compatible. The model and its associated proof systems should be a “natural”

extension of untimed models and proof systems, and the model should contain the

timed equivalents of those CSP constructs modelled in [2,4].

A crucial element in achieving a CSP model satisfying the above requirements

proved to be in making the subtle distinction between deadlock and divergence in

timed processes. As indicated in Section 7, previous constructions of timed CSP

models have either relied on unrealistic (in the sense defined above) processes to

make this distinction [ll], or else by design have not distinguished between these

two concepts [121. In this paper, we present the resolution of this issue via concentra-

tion on a formal description of the Timed Stability Model. This model (with appropri-

ate restrictions such as those utilised for the Deterministic Trace Model in [8] allows

a complete treatment of deadlock and divergence for deterministic timed processes.

In [17], we describe our Timed Failures-Stability Model, which meets all the above

requirements over the full range of CSP processes. At a later date, we shall present

a hierarchy of timed models analogous to the existing range of untimed models.

The paper is organised as follows: The second section contains a brief review of

CSP. The third section discusses the rationale for basing our semantic domains on

a complete metric structure. The fourth section discusses our timing assumptions.

The fifth section describes the Timed Stability Model. The sixth section illustrates

the applicability of the Timed Stability Model to the definition, specification, and

verification of time-critical processes. Finally, the seventh section contains our

conclusions and a comparison with other work.

2. A review of CSP

Throughout this paper, we will assume the background material of [2,4,9]. A

breif reminder is given below.

Nondeterministic processes are those which make internal progress leading to

arbitrary choices which cannot be observed from the outside; such choices serve to

reduce the range of possible future behaviours of the processes. Deadlock occurs

in a distributed system when each component process is prepared to engage in some

further action; but since the processes involved cannot agree on what the next action

will be, nothing further can happen. Divergence occurs when a process is engaged

in an infinite unbroken sequence of internal actions invisible to the environment,

and as a result leaves its environment waiting eternally for a response.

A CSP process communicates with its environment in some alphabet 2 of atomic

communications or “events”. Communications require the co-operation of all par-

ticipants and are considered to be instantaneous. At each point in the history of a

process, there is a finite sequence of elements of the alphabet which the process

may have been “observed” to communicate with its environment. Such sequences

are called traces of the process, and all our knowledge about a given process is

limited to statements about such traces and about possibilities of future behaviour

Timed model,for CSP 251

of the process after a particular trace has been observed. As indicated, there are

now a variety of CSP models and associated proof systems.

We shall use essentially the same abstract syntax for CSP given in [2,4] with the

addition of a process WAIT f for each t 2 0: the process that terminates successfully

after t units of time, and I, the diverging process which engages in no event visible

to the environment. We use P, Q, R to range over syntactic processes; a, b over the

alphabet E, X, Y over subsets of E;f over the set of finite-to-one functions from

2 to 1; and F over “appropriate” compositions of our syntactic operators.

P::=lI STOP1 SKIP1 WAITtI (a+P) 1 POQl ITlQIliQI

Px II y 0 I Pill0 I RQ I P\X If-‘(p) If(P) I PQ.F(Q)

We will generally write P\a rather than P\{a} when hiding the single event a.

We assume (from [2], for example) that the reader is familiar with recursive

processes ~.LP.F(P), which are defined as the least fixed point of continuous mappings

on a semantic domain structured as a complete partial order. We also assume

familiarity with the concept of such recursive processes defined as the unique fixed

point of contraction mappings on a semantic domain structured as a complete metric

space (see [13, 15,5,6, 161).

3. Time and topology

In this paper, we propose a theory of communicating sequential processes based

on an underlying topological structure. Most of the above-mentioned untimed CSP

models have been based on domains of complete partial orders, and different models

often have incompatible orderings. Our reasons for choosing a topological approach

based on domains of complete metric spaces are primarily that

(1) topological embeddings seem a natural method by which to induce a hierarchy

on the various models, and

(2) topological domains appear more appropriaate for modelling continuous

concepts such as real time.

To illustrate the intuitive appeal of topological limits in the analysis of CSP

processes, consider the following example in the Trace Model [8]:

Q=b+Q PO= Q

P=u+P Vn>l, P, = a + PI,__,

Recall that, by P = a + P, we mean P = pP.F(P) where F(R) = a + R is an appropri-

ate mapping on our semantic domain. In the Trace Model semantics, we have

PO = {(), (b), (bb), (bbb), . . .>,

PI = {(),(a), Cab), (abb), (abbb), . . .I,

252 G.M. Reed, A. W. Roscoe

Pz = it), (a), (au), (aab), (aabb), (aabbb), . . .>,

P3 = {(), (a), (au), (uuu), (uuub), (uuubb), (uuubbb), . . .},

P={(),(a), (au), (uuu), (uuau), (uuuuu), (uuuuuu), . . .}.

Clearly, an observer looking at a record of all traces of length s n cannot distinguish

between P and P,,. Hence, it seems intuitive that lim,,,P, = P. Indeed this is the

case under a complete metric structure based on d(R,, R,) = l/2”, where n is the

greatest integer such that R, and R2 agree on all traces of length sn. However,

based on the standard complete partial order structure under set inclusion for the

Trace Model, lim,,, P,, does not exist. When we move to the timed CSP models,

this situation becomes critical. If an observer looking at a record of all traces

completed in n units of time cannot distinguish between P, and P, we would certainly

expect lim,,, P, = P.

Of course, the price paid for intuition in the topological Trace Model is the loss

of continuity of the hiding operator and the restriction to guarded recursions to

ensure contraction mappings. For example, note that

lim (P,\u)=Q#(P\u)={()}=STOP,
n+‘ZV

p P. P is undefined.

Surprisingly, we shall see that, as we move to topological timed models, we are able

to retain intuition and to avoid such problems.

In constructing the topological timed models, we regard the treatment of diver-

gence as the crucial issue. It would seem useful to distinguish between deadlock, a

property which we can recognize in a finite period of time and divergence, a property

which we cannot. In particular we wish lim,,,(WAIT n) = I, where _I_ # STOP.

In untimed CSP, it is only necessary to know that a given process can or cannot

diverge after engaging in a trace s; in the timed models, it is necessary to know (if

the process cannot diverge after s) when it will again be ready to respond to the

environment. This analysis leads us to consider the untimed Divergence Models

[15, 1, 14, 41 as providing discrete information for a given trace s (“0” cannot

diverge, “a” can diverge), and our corresponding timed model as providing con-

tinuous information (a E [0, CO] such that the process is guaranteed to be stable

within LY time after engaging in s). Our topological models will be based on this

notion of stability, which is the dual of divergence.

In a forthcoming paper giving our hierarchy of timed CSP models, we shall use

the above analysis to present the Timed Stability Model as a natural extension of

an untimed, topological Stability Model. Due to space limitations here, we present

only the former.

Timed model for CSP 253

4. Timing postulates

Before giving a formal description of the Timed Stability Model, let us first present

our basic assumptions about timing in a distributed system.

(1) A global clock. We assume that all events recorded by processes within the

system relate to a conceptual global clock.

(2) A system delay constant. As previously indicated, we realistically postulate

that a process can engage in only finitely many events in a bounded period of time.

The structure of our timed models allows several parameters by which to ensure

adherence with this postulate. In the current presentation, for simplicity we assume

the existence of a single delay constant 6 such that

(a) For each a E E and each process P, the process (a -+ P) is ready to engage

in P only after a delay of time 6 from participation in the event a.

(b) A given recursive process is only ready to engage in an observable event after

a delay of 6 time from making a recursive call.

(3) Hiding. We wish (a + P) to denote the process that is willing at any time to

engage in the event a and then to behave like the process P. Clearly, if P = a + P,

we then wish P\a = 1. However, consider P = a + STOP (the process that is willing

to engage in a at any time ~0 and then to deadlock). What do we wish P\a to

denote? By hiding, we remove external control. Hence, any time a process is willing

to engage in an internal action, it is permitted to do so. Thus, we assume that each

hidden event has taken place as soon as such event was possible. In the above

example, we would wish

(a + STOP)\a = WAIT 6 ; STOP

Our hiding assumption can be illustrated in terms of “Hoare’s vending machines”

from [9]. Suppose we have a timed vending machine TVM which is willing to make

one transaction by first accepting a 5p coin, then after a wait of 2 seconds, becoming

ready for a button to be pushed, which after an additional two seconds will result

in a chocolate being offered to the customer.

Suppose now, we wish to automate the vending machine by hiding Push. Clearly,

we would wish the button to be pushed internally as soon as possible.

ATVM = TVM\Push

= (5p + (WAIT 2 ; WAIT S ; WAIT 2 ; (Choc + STOP)))

In order to model this idea of an event occurring as soon as it becomes available,

we shall record not only those times at which events are available, but also those

at which they can become available.

254 G.M. Reed, A. W. Roscoe

(4) Timed stability. We shall model a timed CSP process as a specified set of

ordered pairs (s, (Y), where s is a timed trace of the process and (Y is the time at

which the process is guaranteed to be stable after engaging in s. If (s, LY) is in the

process P and (Y <a, then the next observable event in the life of the process

following s may occur at any time on or after time (Y at the discretion of the

environment, and the set of possible next events must be the same at all such times.

Clearly no event can become available after (Y. We think of timed stability as a red

light on the outside of a process which goes off when the process can make no more

internal progress.

5. The Timed Stability Model

As indicated above, we need to distinguish between the times when a process can

communicate an event, and the times at which it can become ready to communicate

it. Therefore we need two ways to record each event that might occur: for CY E E, a

will denote the communication of a at any time, but we shall use the special notation

a^ to denote communication of a the moment it becomes available We shall denote

the set 2 u {a^/ a E 2} by 2’; e will be a typical element of 2. A timed event is an

ordered pair (t, e), where e is the communication and t E [0, 00) is the time at which

it occurs. The set [0, ~0) x 3 of all timed events is denoted TC. The set of all timed

traces is

(TX)% = {s E TX* /if (t, e) precedes (t’, e’) in s, then t s t’}.

If s E (TI;):, we define #s to be the length (i.e., the number of events) of s and

Z(s) to be the set of communications appearing in s (i.e., the second components

of all its timed communications, with any *‘s removed). T is the sequence where

any *‘s have been removed from the communications in s: thus, if s =

((t, a), (t’, g)), T=((t, a), (t’, b)).
begin(s) and end(s) are respectively the earliest and latest times of any of the

timed events in s. (For completeness we define begin (()) = co and end(()) = 0.)

If X E 2, s YX is the maximal subsequence w of s such that -E(G) C_ X. s\X =

sl(E -X). If t E [0, co), s r t is the subsequence of s consisting of all those events

which occur no later than t. If tE[-begin(s),oo) and s=((T,, e,),

(t,, e,), . . , (t,, en)),

s+ t =((h+ 4 ed, (4 + 4 4,. . . , (t, + 4 en)>.

If s, w E (TI;) $, Tmerge(s, w) is defined to be the set of all traces in (TX) Z! obtained

by interleaving s and w.

If, s, w E (TZZ)z, we define s = w if and only if s is a permutation of W.

Let STAB = [0, CD]= [0, co) u {co}. This is the set of all “stability values”. Whenever

S c (TX): x STAB, we define

Traces(S) = {s E (TX): / 3~ E STAB.(s, a) E S},

Timed mode/for CSP 255

CL,(S) = {(s, a) I3(w,(~)~Ssuchthats=w},

SUP(S) ={(s, a) Is l Traces(S) A (Y = sup{/3 I3(w, p) E S such that s”= G}>.

We are now in a position to define our evaluation domain. We formally define

TMs to be the set of all those subsets S of (TX): x STAB satisfying

(1) (s, (Y), (s, a’) E s * cy = cy’,

(2) () E Traces(S),

(3) s.wETraces(S) * sETraces(

(4) (S,(Y)ESJ($Q)ES,

(5) (S,(Y)ESAS=wW(w,CY)ES,

(6) s.((t, a))~Traces(S) 3 3t’d t. (srt’).((f’, a^))ETraces(S)

A (t’s t”< t 2 (~lt”).((t”, a))ETraces(S)),

(7) (~,c~)~S+end(s)sa,

(8) (s,(~)~S~~.((t,&))~Traces(S)+t~cw,

(9) (s,cu)ES*iftBa, a E E and w E (TX)?! is such that w = ((t, a)). w’, then

(%W,(Y’)ES@ (S.(Wf((Y-r)),cx’+(CY-f))ES,

(10) Vt~[O,co). 3n(t)~N.V(s,a)~S.end(s)st + #ssn(t).

Condition (1) states that each trace has a unique stability value (the time after

which stability is guaranteed). Conditions (2) and (3) are inherited from the traces

model of CSP. Condition (4) states that when an event becomes available (a^), it

can also be communicated “normally” (a). Condition (5) states that the order of

events which happen at the same time is irrelevant. Condition (6) states that when

an event is available, it must have been continuously available since becoming

available at some earlier time. Condition (7) states that the stability value for a trace

cannot be less than the time of the last event in the trace. Conditions (8) and (9)

assert that, after a process has become stable, the range of future behaviours that

are available does not change (until some further communication). Condition (10)

reflects our realism requirement that infinitely many events cannot occur in a finite

period.

If SE TMs and I E [0, cc), we define

S(t)=Us,+SI a<t}u{(s,oo)lend(s)<tr\3a~r.(s,a)ES}.

This set, which is not necessarily in TMs, records everything which can be observed

about S before time t. Note that S(0) = P, for every S. The metric on TMs is defined

as

d(S,,S,,.)=inf{2-‘IS,(t)=S,(t)}.

We now show how to define a semantic function F : CSP+ TMs. Notice how, in

SKIP, WAIT and a + P, the event becomes available once, but remains available

forever after.

4-LII = {CC), co)>, 4STOPil = {Cl), O)),

4SKIPl= {(Cd, 0)) u {(((‘A h, 0)) u ((((4 J)), t) 10 s f),

256 G.M. Reed, A. W. Roscoe

&WAIT dl = i((), f)i u ((((4 ?,A t)l u {(((t’, d)), 0 (f 6 t’),

da + a = i((), 0)) u {(((O, a^)>.(s + 61, a + 6) I (s, @I E EUPII>,

u{(((t,a>>.(s+(t+s)),a+t+s)~(s,CY)EE[[P~hf~0},

00 on = supwn u mn),

&u~n Qj = suryEpq u &uQj).

When two processes are running synchronously in parallel, they co-operate on all

events. An event can become available just when it becomes available in one of the

partners and is already available in the other. When U, w E (TZ)$ have v” = 6, they

can run in parallel yielding the trace s = u v w with s”= 6, such that its nth element

is “hatted” if and only if the nth element of Y or w is.

&up11 OIi = sup{(sp v sQy max(ap~ aQ)) / by %) E dpn v (SO, LyQ)

E E[IQ] A cp = ;Q}.

Similar considerations apply to the alphabetised parallel operator.

&I& 11 y on = ~up{6% max{aPp aQ>) 1 3(spy %) E Eum bQ, aQ) E mn.

s E (+X 11 YsQ)),

where

v~~~~w={sE(T~)~~~~(XU Y)=s~irX=fi~;rY=G

Asrx-y=tlrx-YASrY-X=wrY-X

AsrXn Y=(vrXn YvwfYnX)}.

4~ iii on = sw % max(apy aQ>) 1 3(% aPI E m, h aQ) E da-

s E Tmerge(u, a)},

&up;Qn=CL,(SUP({(s,a)l(s,~)EEuPnAJ~~(s)>

u{(~.(w+t),~~+t)~~.((f,j/))~Traces(~[P~)

A&-%) A (W, + E[Ion>)),

&[P\X] = SuP{(S\X, a) 1 (S, a) E E[IPn A S iS X-a&T}

where s is X-active provided it contains no element of the form (t, a) for a E X

(i.e., all communications in X are of the form a^).

Eufpv)n = 16,4 I u-w, 4 E mnt,

Eumn = m-w+), a) k a) E um

e[@.F(P)] = the unique fixed point of the contraction mapping C(Q)

= C(WAIT 6 ; Q), where C is the mapping on TMs

represented by F.

(1) Hiding and recursion. Again, consider P, Q, and P,, as defined in Section 3

(with the appropriate change in P, to reflect the delay induced by each recursive

Timed model for CSP 257

call in P).

Q=b+Q PO= Q
P=a+P VnZl, P, = a + (WAIT 6 ; P,-,)

In the Timed Stability Model, lim,,,P, = P and lim,,,(P,\a) = P\a = I # STOP.

In fact, as desired, all operators are now continuous, and all, except recursion,

distribute over n.

Also note that all syntactic recursions are now represented by contraction map-

pings, and hence are valid. For example,

pP.P=fi~(e), where E(Q)=wAIT~;Q

= _L.

(2) Compatibility with untimed models. All but 3 of the 31 algebraic laws for

semantics of the Failures-Divergence Model from [4, Table l] hold in the Timed

Stability Model (with the identification of n with 0). These three are:

if P#I

if P=i;

(a + P)\b =
(a-+P\b) if a# b,

P\b if a = b.

The failure of the first and third laws simply reflects the passage of time (for

example, WAIT n 11 STOP = WAIT n ; STOP). The failure of the second law reflects

our use of the delay constant 6 to implement our view of realism: two processes in

parallel can run faster than a sequential process. As indicated, in the complete

version of this paper, we shall present a range of options whereby such parameters

can be varied to suit the desired “view of the world”.

Note that the Timed Stability Model does differ from the Failures-Divergence

Model [4] in that 0 is not strict with respect to 1. In fact, it differs from all previously

mentioned CSP models relevant to divergence in that (s, ~0) E P does not imply that

(s. w, ~0) E P for all traces w. That is, just because a process may diverge after engaging

in a given trace, it does not mean that some time later after extending the trace,

the process might not again become stable. For example, let P = a + P and consider

the process R=(b+(P\a))O(b+(b+STOP)). Both (((0, b)), 00) and

(((0, b)(6, b)), 26) E R. If our only observation is ((0, b)), we must assume the worst;

however, once we observe ((0, b)(6, b)), we know that we are safe. Although it is

possible to modify our model to conform to the untimed models in this regard, we

choose to allow the finer distinction of CSP processes made possible by the topologi-

cal structure of our evaluation domain.

The Timed Stability Model is very much a partial correctness model. It gives an

upper bound on the traces that might occur in a given process; it cannot guarantee

that traces will occur, because of the potential nondeterminism of concurrent systems,

and for reasons discussed below. The advantage of the model is in the simplicity

258 G.M. Reed. A. W. Roscoe

by which it describes timing behaviour. Although we show in [17] how the present

model can be extended to reflect total correctness, the resulting Timed Failures-

Stability Model is necessarily much more complex. We are currently exploring the

feasibility of establishing partial correctness in the Timed Stability Model and

establishing total correctness in the corresponding untimed Failures-Stability Model,

then bridging the two models through the concept of stability. If “total correctness”

occurs in the timed model, it must have happened by the time of stability.

However, just as was the case with the untimed traces model, the present model

is sufficient to describe the total correctness properties of deterministic processes

(ones which cannot make internal decisions which materially alter their future

behaviours). (The question of which untimed CSP programs are deterministic is

discussed in the earlier literature, for example [9]. However, it is an interesting

question exactly what is meant by a timed deterministic process, and which syntactic

constructions preserve determinism.) It should be possible to refine the hiding

operator P\X when P is deterministic, for if, after any trace s, a hidden event can

become stably available in P, then it will. In these circumstances it is impossible

for P to execute any nonhidden event after the time of stability, for the hidden one

would have pre-empted it.

6. Specification and verification of timed processes

As an example of proof techniques in the Timed Stability Model, we consider a

timed theory of recursion induction. This theory is essentially a generalisation of a

similar theory for the topological Trace Model developed in [15,2]. The meanings

of any undefined terms in the presentation below can be inferred from similar

untimed concepts in [9].

Basic Question. If we can prove some specification S true for all recursive calls,

when can we infer the property true of the process?

In particular, if, given a specification S, we can show that, for each Q E TMs, if

Q satisfies S, then C?(Q) satisfies S for the contraction mapping &, when can we

conclude that P=fix(e) satisfies S?

A speci$cation S on TMs is a mapping from the complete metric space TMs to

{T, F}. We say it is continuous if the set {P 1 S(P) = T} is closed. A specification S

is satisfiable provided there exists Q E TMs such that S(Q) = T or (Q sat S).

Theorem. If C? : TMs + TMs is a contraction mapping and S is a continuous, satisjiable

speci$cation, then if (VQ E TMs, Q sat S 3 6(Q) sat S), then fix(2) sat S.

Now suppose we wish to specify a timed vending machine which is capable of

an unbounded number of transactions and which

(1) does not give out more chocolates than it receives payment for;

Timed model for CSP 259

(2) on becoming stable, is able to offer a chocolate if it has received more payments

than the number of chocolates it has given out;

(3) if it has given out exactly as many chocolates as it has received payment for

it can accept a further coin when it becomes stable; and

(4) is initially stable, and never waits more than 4 seconds after any action before

becoming stable again.

Because ours is a partial correctness model, we cannot completely specify (2)

and (3). However, we can at least specify that the machine has the potential to do

these things. (This is enough if, as is the case with the process below, the machine

can be shown to be deterministic.)

The specification. VQ E TMs, Q sat S provided

(S,) (s,(Y)EQ + ~(s)c{5p,Choc}and#(s~{Choc})~#(s~{5p});

(SJ ((s, a) E Q and (Y <cc and #(sr{Choc}) < #(sr{5p}))

3 s.(((Y, Choc)) E Traces(Q);

(S,) ((s, LX) E Q and a <co and #(sr{Choc}) = #(sr{5p))

3 s.((cy, 5~)) E Traces(Q);

(S,) ((), 0) E Q and (s.((t, a)), (Y) E Q + (Y G t+4.

Consider the timed vending machine TVM*, where

To show that TVM* satisfies the above specification S, we need to show that

fix(6) sat S, where

Each of (S,), (S,), and (S,) is continuous and satisfiable by STOP, and (S,) is

continuous and satisfiable by (5p + STOP). Hence, we need only to show for i = 1,4

andtlQ,(QsatS,)j(~(Q)sat(S,)).((S,)willrequirethat6~1.)Wecanconclude

by the above Theorem that TVM* = fix(e) sat S. Thus, we have reduced the

verification of a recursive process to simple verification of each specification com-

ponent for each recursive call.

7. Comparisons and conclusions

Pioneering work on the development of semantic models for timed versions of

CSP was carried out in [Ill. This work demonstrated the basic compatibility of

timed CSP with the algebraic properties of the untimed language, though the hiding

operator failed to distribute over n. Also, the distinction between deadlock and

divergence relied on “unrealistic” processes; the existence of these unrealistic

processes appears to have led to several problems.

260 G.M. Reed, A. W. Roscoe

Recently, in [121, the authors have presented a timed semantic model for a subset

of the CSP of [7]. This model demonstrates the ability to describe many interesting

aspects of real-time systems. However their work, though complementary, is largely

independent of the aims of this paper since it is based on integer time and does not

distinguish deadlock and divergence.

It is interesting to note that the authors of [3] have made essentially the same

“realism” postulates as are made in the present paper. There they found that the

use of the reals as the time domain allowed them to give a fully-abstract model

using temporal logic.

We conclude by making three observations about our concept of timing.

(1) It might be argued that time in our model is too “discrete” in that limits only

appear at infinity. For example, one might well wish lim,,, WAIT (l-2-“) =

WAIT 1, which is not true in our present model (the limit does not exist). We hope

to investigate different metrics (probably not ultrametrics) which preserve limits

already present in our model and add ones like the above.

(2) We regard our present model and semantics as a basis for developing more

“realistic” semantics.

(3) The fact that a CSP process can sometimes communicate more that one copy

of a single event at the same time complicates our model in several ways. (The 111

and f(P) operators, f not injective, can introduce this phenomenon.) For example,

if these were not possible we could achieve a considerable simplification by replacing

timed traces by sets of timed events. (The order of communications would be

recoverable from the times in the timed events.) In practice it may well prove

desirable to remove 111 from the language and to restrict the use off(P), which would

allow this and other simplifications.

Acknowledgment

We gratefully acknowledge many helpful discussions with C.A.R. Hoare. This

research was undertaken at Professor Hoare’s suggestion and with his encourage-

ment. We also thank Michael Goldsmith and Geraint Jones for helpful suggestions.

References

[l] S.D. Brookes, A model for communicating sequential processes, Ph.D. Thesis, Oxford University,

1983.

[2] SD. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating sequential processes,

J. ACM 31 (1984) 560-599.

[3] H. Barringer, R. Kuiper and A. Pnueli, A fully abstract concurrent model and its temporal logic,
in: Proc. 18th POPL (1986) 173-183.

[4] SD. Brookes and A.W. Roscoe, An improved failures model for communicating processes, in Proc.
Pittsburgh Seminar on Concurrency, Lecture Notes in Computer Science 197 (Springer, Berlin, 1985)

281-305.

Timed model for CSP 261

[5] J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, Inform.

and Control 54 (1982) 70-120.

[6] W.G. Golson and W.C. Rounds, Connections between two theories of concurrency: metric spaces
and synchronisation trees, Infirm. and Control 57 (1983) 102-124.

[7] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.

[8] C.A.R. Hoare, A model for communicating sequential processes, in: On rhe Construction ofprograms

(Cambridge University Press, London, 1980) 229-248.

[9] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).

[IO] C.A.R. Hoare, SD. Brookes and A.W. Roscoe, A theory of communicating sequential processes,
Tech. Monograph PRG-16, Oxford University Computing Laboratory (1981).

[ll] G. Jones, A timed model for communicating processes, Ph.D. Thesis, Oxford University, 1982.

[12] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth and S. Arun-Kumar, Compositional

semantics for real-time distributed computing, Tech. Rept. 68, Faculteit der Wiskunde en Natuur-

wetenschappen, Katholieke Universiteit, Nijmegen, 1985.

[13] M. Nivat, Infinite words, infinite trees, infinite computations, in: Foundations qfcomputer Science

III, (Mathematical Centre Tracts 109 (Mathematical Centre, Amsterdam, 1979) 3-52.

[141 E.R. Olderog and C.A.R. Hoare, Specification-oriented semantics for communicating processes,

Lecture Notes in Computer Science 154 (Springer, Berlin, 1983) 561-572.

[15] A.W. Roscoe, A mathematical theory of communicating processes, Ph.D. Thesis, Oxford University,

1982.

[16] W.C. Rounds, Applications of topology to the semantics of communicating processes, in: Proc.

Pittsburgh Seminar on Concurrency, Lecture Notes in Computer Science 197 (Springer, Berlin, 1985)

360-372.

[17] G.M. Reed and A.W. Roscoe, Metric spaces as models for real-time concurrency, in: Proc. Third

Workshop on the Mathematical Foundations qf Programming Language Semantics (1987), Lecture

Notes in Computer Science 298 (Springer, Berlin, 1988) 331-343.

