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One of the attractive features of occam is the large number of memorable algebraic 
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uctio 

Occam [7] is a language for concurrent systems, especially those implemented 
on networks of communicating processors (transputers). 
simplicity and elegance as major goals. One 
itself is in the large number of algebraic laws 
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The aim ofthis paper is to investigate the set of laws and to show how they completely 
character&e the semantics of the language. 

For simplicity we concentrate on a subset of occam: timing, priority, vectors, 
constants, replicators and named processes (procedures) are omitted. Our version 
of occam thus contains only the essential core needed to write simple programs. 
We expect that our work can readily be extended to versions of occam containing 
these features. The laws given in this paper will carry over (with occasional 
modification) to larger versions of the language. For theoretical reasons we will also 
add a few features to the ianguage: multiple assignment, output guards in alternatives 
and a divergent (racing) process. In other respects we will follow the syntax and 
conventions introduced in [9], in particular those regarding the parallel operator. 
(When writing a parallel construct the programmer must declare which global 
variables and channels are to be assigned to each component process.) 

A finite occam program is one which is WHILE-free. It may, however, contain 
the racing or diverging process 1 (equivalent to WHILE true SKIP). Much of this 
paper is concerned with the analysis of finite programs. This is because the absence 
of WHILE-loops allows proof by induction. This restriction does not lose us any 
power, however, because every occam program can be identified with the set of its 
finite syntuctic approximations (a term which is defined precisely in the second 
section). 

The first section lists the majority of the laws we require. We see how each of 
the laws arises out of our informal understanding of how occam constructors work. 
We see how algebraic laws allow us to give a precise and succinct description of 
each operator. The laws given are all congruences in the denotational semantics for 
occam reported in [9]. 

The second section shows how the laws introduced in the first section can transform 
every finite program to a form whose only constructs are IF, ALT, multiple assign- 
ment and I (the diverging process). Particular attention is paid to reguiarising the 
use of free and bound variables. We see how this work, together with continuity 
assumptions, allows us to prove nontrivial laws additional to those of the first 
section. 

Even in this restricted form it is possible to write essentially different programs 
which are nevertheless semantically equivalent. The third section identifies a number 
of situations where such equivalences can arise, and develops a normal form for 
finite programs. Two normal form programs are semantically equivalent if and only 
if they are syntactically equivalent in a simple way. By showing how every finite 
xogram can be transformed to normal form we have thus produced a decision 
procedure for the equivalence of arbitrary finite programs. An infinitary rule based 
S&-4 Q-1” proximation extends this to general programs. This proves that our 
set of algebraic laws (together with the infinitary rule and substitution) is complete 
with respect to the given denotational semantics. The algebraic laws thus yield an 
algebraic semantics for occam that is isomorphic to our chosen denotational 
semantics. 
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Finally we review the relative merits of algebraic, denotational and other forms 
of semantics, and in particular discuss possible applications of the algebraic laws 
as transformation rules. 

All the laws presented in this paper are summarised in an appendix. 
Even though the work in this paper is cast in terms Ok a specific denotational 

semantics, most of the laws quoted must be true in any reasonable abstract semantics 
for occam. We indicate several places where modifications may be required for 
alternative underlying semantics. 

The work reported in this paper owes much to the similar work for an abstract 
version of CSP (i.e., with no internal state) reported in [2]. 

Notation 
Throughout this paper we will observe the following conventions within program 

terms: 

P, Q program fragments (processes), 
C conditional, 
G guarded process, 

89 h, k guards, 

e,f general expressions, 
b boolean expression, 
u parallel declaration, 

x9 Y, 2 identifiers representing variables, 

G d identifiers representing channels. 

Lists of identifiers and expressions are denoted 4 e respectively. x + y denotes 
the concatenation of the lists x and y. Occam syntax is usually linearised as in 191, 
and we frequently use such abbreviations as 

IF bi& (=IF(b P 6 P b P b P)) 1 1, 2 2, 3 39 4 4 l 

i=l 

Possibly empty lists of processes, cocditionals and 
pectively written P, C and G. The most general form 
ALT( G). 

Free and bound variables 

guarded processes are res- 
of an ALT construct is thus 

If P is some occam term and x is a variable, we say that an occurrence of x in 
P is free if it is not in the scope of any declaration (other than a parallel declaration) 
of x in P, and bound otherwise. (These notions can easily be defined formally.) 
Note 1 ‘! at x may occur both free and bound in 

free(P) denotes the set of all variables appearing free in P; 
bound(P) denotes the set of all variables appearing bound in R 

(Similar notions of free and bound occurrences can be defined for channels.) 
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If :- and y are variables, then P[x/y] denotes the result of substituting x for 
free occurrence of y in R If x is bound at any point in P where there is a 

free y, systematic renaming of P’s bound variables is carried out. 
We similarly use the notations 

f le/Jd, f Wxl, f Wxl and f Wxl 

to denote the substitution of (lists of) expressions for (equal-length lists of) variables 
in (lists of) expressions. Note that in general 

is distinct from 

1. The laws of occam 

In this section we visit each occam construct in turn, and uncover the laws 
governing it. The set of laws given is not exhaustive; we restrict ourselves to the 
laws needed to translate finite programs to normal form. Other laws can be deduced 
from these laws, either by elementary manipulation, or by structural induction on 
normal forms. The laws we present here provide a clear description of the semantics 
of each construct. 

Before detailing the laws, we must decide exactly what we mean by the term 
“law”. All our laws have the form P = Q (P, Q both being expressions representing 
processes). Informally this must mean that P “is essentially the same as” Q, in that, 
to an observer who cannot detect their internal structure, the behaviours of P and 
Q are indistinguishable. Further, since we will want to use our laws to transform 
subcomponents of compound programs, P = Q must imply that C[ P] is essentially 
the same as C[Q] for all contexts C[ l ] (programs with a slot in which to place a 
program segment). Since we may wish to use our laws to transform an inefficient 
program to an observationally equivalent efficient one, our notion of equivalence 
will be independent of the times at which events occur. Thus P = Q does not imply 
that P and Q run at the same speed. Neither, for similar reasons, does it mean that 
P and Q require the same amount of store. 

Having established the broad principles above, we hope that most of the laws 
will seem “clearly true”. Nevertheless, it is helpful to have some underlying semantics 

ich to judge the laws. In our case this is provided by the denotational semantics 
for occam reported in [9]. All the laws we quote are congruences of that semantics 
in the context (described there) of environments with unbounded sets of free 
ocations and channels. However, all laws must be interpreted as conditional upon 

both sides being correct occam, in the sense that neither side contains a syntax error. 
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We will assume that the evaluation of every occam expressim yields a value (even 
though it may contain division by zero or an uninitialisczd identifier). Thus no 
syntactically correct program in our restricted version of occam can contain an 
execution error, If the language \-k:re extended to include vectors the situation would 
be more difficult, and some of our laws would have to inclu &fe exception conditions. 

There are two limitations on the completely free use of our laws in transforming 
occam. The first ir; that, with a few of our laws, it is possiblt: to transform a correct 
program C[P] (C[ b ] being a context) to an incorrect one C[ Q]. This is usually 
brought about b! violating the separation rules for PAR. The laws that can have 
this effect are m ed (*), and have been set out so that only right to left use can 
bring about this difliculty. These laws may thus only be used right to left in contexts 
where syntactic correctness is preserved. The second limitation is that it is only 
occam processes that may be transformed: the ldws do not apply to guarded processes 
or conditionals, even when they have the same syntax as processes. For example, 
the transformation of 

ALT(c?x SKIP, ALT(SKIP ALT(d?x SKIP))) 

to ALT(c?x SKIP, ALT(d?x SKIP)) 

is invalid, even though, as a process, ALT SKIP P may be transformed to P. 
Each law is given a name suggestive of its use, and a number. 

1.1. Laws of IF 

The IF constructor is used to select the behaviour of a program, depending on 
the values of its variables. For this reason it will play a vital role in our later 
construction of a normal form. 

IF takes as its arguments a number of conditionals. A conditional is either a 
(boolean) expression and a process (b P) or an IF construct. The first law permits 
us to unnest IFS, so that all arguments are of the first type. 

0.0 IFG, IW’z), G) = IF(G, C2, G) 
(IF assoc). 

This is not an associative law in the usual binary sense of a * (b * c) = (a * b) * c, 
but is analogous in the context of occam’s constructors, which can take .an arbitrary 
finite number of arguments. 

The second law expresses the fact that in the process IF:=, 6i Pi, it is the jlnst (i.e., 
lowest index) boolean guard to be true that activates the corresponding Pi. Thus Pi 
only runs if bi is true and each of b, , . . m , bi-1 is false. 

(1.2) IF biP,=Ik bT 4, where br = 161 I\ l l * A lbi-, A bi (IF priority). 
i=l i=l 

If the boolean guards in IFye are pairwise disjoint, then the order of composi- 
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tion is immaterial. (This is a symmitry law.) 

(1.3) Ik bi 4 = Ik b,cijP”(i) 
i=l 

for an&&mutation a of { 1, . . . , n} provided 
bi A bj = fide whenever i #j (IF sym). 

If two booleans guard the same process, they can be amalgamated. 

(1.4) IF(b, P, b2 P, C) = IF(b, v b2 p, C) (IF-v distrib). 

A fake guard is never activated, and so can be discarded. 

(l.S)* IF( false P, C) = IF(C) (IF-false unit). 

If none of the booleans in IF is true, the process behaves like STOP (i.e., it comes 
to a complete halt without terminating; a process sequentially composed with it is 
not allowed to start). Thus final clauies of conditionals which are STOP may freely 
be added or deleted. 

(1.6)” IF(c, b STOP)=IF(C) (IF-STOP unit). 

If one branch of an IF construct is always executed, then the construct may be 
replaced by that branch. 

(1.7) IF(true P) = P (IF-true unit). 

The final IF law lets us deal with IF constructs which are nested as processes rather 
than as conditionals. 

(A-IF distrib). 

This law will, of course, be used in combination with (IF assoc), which completes 
the unnesting. 

1.2. Laws of ALT 

The ALT constructor allows a process to offer a choice of possible communication 
options to its environment. The ALT constructor takes as arguments a number of 
guarded processes. A guarded process is either a guard and a process (g P) or an 
ALT construct. As with IF, there is a_ law which allows us to “unnest” ALTg 

(2.1) ALT(ALT( (ALT assoc). 

ave quite such a general form as that for IF (1. 
law can be deduced from (2.1) and the fact t 

ver, the 
is fully 
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The order of arguments in an ALT is immaterial. 

(2.2) ALT Gi = ALT GWo tr any permutation of { 1, . . . , n} (ALT-sym). 
j= 1 i=l 

The alternative composition arguments is STOP (the nonterminating process 
which does nothing). 

(2.3) ALT( ) = STOP (ALT-STOP unit). 

This law is termed a “unit” law because, together with (2.1) and (2.2), it says that 
STOP is essentially the unit of ALT. 

Guards may be simple (SKIP, c?x, c!e) or have a boolean component. ALTs with 
guards with boolean components may be reduced to IF combinations of ALTs with 
simple guards by the law 

(2.4) ALT( b & g 4 G) 

= IF( b ALT(g P, G), lb ALT( 6)) (boolean guard elim). 

In other words, a guard with a boolean component may be executed if and only if 
the boolean is true. 

A SKIP guard is always ready, and its execution has no effect other than to start 
the process which it guards. This explains the law 

(2.5) ALT(SKIP P) = P (ALT-SKIP identity). 

A communication guard, on the other hand, is executed only when the process at 
the other end of the given channel is also willing. The effect is exactly like the 
corresponding single communication atomic processes 

(2.6) ALT(c?x SKIP) = c?x (rnput), 

(2.7) ALT( t !e SKIP) = c!e (output). 

If an alternative is already present in an ALT, adding it again has no effect since 
the set of alternatives available does not change. 

(2.8) ALT(g p, G) = ALT(g p, g p, 6) (ALT idempotence). 

In any execution of an ALT construct, it is the first guard to become ready which 
is executed. If more than one guard becomes ready at the same time, the choice of 
which one to execute is nondeterministic (there is no left-to-right precedence rule 
as with IF). “We can deduce from this that if a guard g is used to guard two different 
processes, then whenever that guard becomes ready either copy may be activated, 
the choice being invisible to the environment. The two guarded processes can thus 
be replaced with a single one, where the process is one which nondeterministically 
chooses between the original pair. 
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The laws above do not quite catch the full range of equivalences related to ALT 
with SKIP guards. Three more laws reflecting fairly subtle equivalences will be 
introduced in Section 3, when they are required, and can be better motivated. 

We need a law for relating IF and AL%. It is a very simple law, which merely 
observes that the value of a boolean is unchanged by the execution of a guard that 
does not input to a variable appearing in the boolean. 

(2.10) IF b ALT gi fi = IF b ALT gi(IF b p1:) 
i=l i=l 

provided no variable appearing in 6 is input in any gi 
(IF-ALT distrib). 

is the only one we will need relating IF and ALT. 
to derive an apparently more powerful law can 

be found at the end of Section 2. 

1.3. Laws of assignment 

An occam process may assign values to its variables. The atomic assignment 
process in occam is x:= e, which evaluates the expression e, assigns the result to 
the location denoted by x, and then terminates. As described in the introduction, 
we allow multiple assignments, of the form x .- .- e where x is a list of distinct variables, 
and e is an equal-length list of expressions. The components of e are evaluated, 
the results are then all assigned to the locations represented by X, and the process 
then terminates. The empty multiple assignment terminates without changing the 
state. 

(3.1) ():=()=SKIP (SKIP). 

The order in which the expression/variable pairs appear is of no consequence. 

(3.2) &iJi=l,..., n):=(eiIi=l,..., n) 

=(&(i,li=l,..., n):=(Qj(i=l,..., n) 
for II any permutation of {l, . . *, ~2) (assignment sym). 

The assignment of a variable’s own value to itself has no effect. 

(3.3)” x+y:= e+y=x:= e (identity assignment). 

There will be several laws later on 
various constructs of the language. 

which show how assignment interacts with the 

1.4. Laws of SEQ 

The SEQ constructor runs a number of processes in sequence. If it has no 
arguments it simply te&nates. 

P unit). 
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Otherwise it runs its first argument until t at terminates and then runs the rest in 
sequence. 

(4.2) SEQ(P, )==Q(P,SEQ( (SEQ assoc). 

It is possible to use (4.1) and (4.2) to transform all occurrences of SEQ within a 
program to binary applications, and in our transformation to normal form we will 
always do this. Thus the remainder of our laws for 

When P does not terminate immediately, SEQ(P, 0)‘s initial behaviour is just 
that of l? Thus SEQ distributes over both IF and ALT in its left argument. 

(4.3)” SEQ($biP;,Q)=~biSEq(p,,Q) (SEQ-IF distrib), 

(4.4)* SEQ( AiT' gi pi, Q) = ALT gi SEQ( pi, Q) 
i-l i-l 

(SEQ-ALT distrib). 

On the other hand, when P does terminate immediately, SEQ( P, Q) behaves like 
Q modified to take account of any assignment by P 

Thus the compound operator SEQ(x := e, l ) can be distributed over both IF and 
ALT in a limited way. 

(4.5)* SEQ x := e, IF bi Pi 
> 

= & bi[e/x] SEQ(x := e, 
i=l i=l 

nment-IF distrib), 

(4.6)” SEQ x := e, AtT gi Pi 
> 

= ALT gJe/x] SEQ(X := e, 4) 
i=l i=l 

provided no variable which occurs in x or e is input in any gi. 
(assignment-ALT distrib). 

The sequential composition of two assignments to the same list of variables is easily 
combined to a single assignment. 

(4.7) SEQ(x := e,x:=f)=x:=f[efx] (combine assignments). 

The sequential composition of a pair of assignments to different lists of variables 
may be reduced to a single assignment using this law with (3.2) and (3.3). 

1.5. hws of PAR 

The occam parallel operator takes a number of processes as arguments, and runs 
them concurrently, with the possibility of communication between them. Communi- 
cation is the only way two parallel processes can affect one another, so one parallel 
process cannot access a variable that another one can modify. No channel may be 
input from nor output to by more than one of the processes. In this paper (as in 
191) we insist that each parallel process declams which global variables it wishes to 
be able to modify, and which global channels it wishes to be allowed to input from, 
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output to, or use privately. In the earlier paper this permitted the syntactic determina- 
tion of the environment in which each component process should run. In this paper 
there is an additional reason: it would be unfortunate from the point of view of 
algebraic laws if the channel and variable alphabets of parallel processes were 
determined purely from the syntax of the component processes. y of the most 

useful transformations (e.g., the expansion rules below) would 

because on changing the syntax of the components of PAR, aip 

significantly altered. (For example, by commuting a communication through a PAR 
using (5.6) or (5.7), one might apparently remove it from the alphabet of the 
corresponding process.) 

The syntax of these “parallel declarations” is unimportant; a suitable one may 
be found in [9]. 

A PAR command terminates as soon as all its components have. Thus the empty 
PAR terminates immediately. 

(5.1) PAR( ) = SKIP (PAR-SKIP unit). 

PAR is an associative operator, provided suitable provisions are made for alphabets. 

(5.2) I’+ U$e=PAR(U,:P,. U*:(P& U:&)) (00) 

where U* is the union of V,, . . . , U,; (PAR assoc). 

(U* claims all variables and private channels claimed by the U, claims as input 
(output) channels all channek occurring only as inputs (outputs) among the U’, 
and claims as private channels all channels occurring both as an input and as an 
output among the L$.) 

As with SEQ, we will always use (5.1) and (5.2) to reduce PAR to a binary 
operator when transforming to normal form. Thus the rest of the laws deal only 
with that case. Firstly, PAR is symmetric because the order in which processes are 
combined in parallel is immaterial. 

(5.3) PAR( U,: PI, &: Pt) = PAR( U2: P2, er,: P,) (PAR sym). 

If one of a pair of parallel processes is a conditional, then the choice represented 
by that conditional may be performed before the parallel construct is entered, 
provided the choices are exhaustive (so that the contiitional cannot stop the PAR 
being entered). 

(5.4)” PAR Ul: k biP,, Uz:Q = Ik bi PAR(Ul:&, Uz:Q) 
i=l i=l 

provided 6, v l l l v 6, = true (PAR-IF distrib). 

If two multiple assignments are combined in parallel, then the effect is that of a 
singic multiple assignment. !l’%te that the conditions on use of variables within 

mean that the variables of x below do not occur in y :=f; nor those of y in x := e.) 

(U,:x:= e, l&y:= ) = x+y:=e+ (PAR assignments). 
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If a nonterminated process is put in parallel with a terminated one, then only the 
nonterminated one can proceed. It can perform any action other than a communica- 
tion with the terminated process (which clearly cannot agree to any communication). 
In this context an assignment may be considered “terminated” because it cannot 
affect 01 

(5.6)’ 
be affected by the other process, an is free to terminate at any time. 
If each gi has one of the forms c?x, c!e or SKIP, then 

PAR Ul: AiTgi Pi, U&x:= e gi PAR( Ul:&, U&X :r e) 
i=l iozX 

where X is the set of indices i E {1,2, . . . , n} such that 

gi = SKIP 
or gi = c!e and c E outs( U,) - ins( U,) 
or gi = C?X and c E ins( U,) -outs( U*) (expansion 1). 

(ins( U) and outs( U) are respectively the sets of input and output channels declared 
in U) 

If two nonterminated processes are put in parallel with one another then they 
can proceed independently on all actions except those which represent communica- 
tion between them. If they agree on a communication, this can occur as an internal 
(automatic) action. This explains the following law for expanding two ALT con- 
structs in parallel. 

(5.7)’ If P = ALTi”,, gi &, and Q = ALT” j=l& Qj, where each gig hj has one of the 
forms c?x, c!e or SKIP, then PAR( Ul: P, &:Q) = ALTE* k, R,, where the pairs 
(!& R,) are precisely all possibilities from the following: 

(i) R,=PAR(U,:&, L&Q) and 

kr = gi = SKIP 
or k,.=g,=c!e and cEouts(U,)-ins(&) 
or k, = gi = C?X and c E ins( U$ - outs( &); 

(ii) R, = PAR( &:P, Sr,:Qj) and 

kr = hj = SKIP 
or k, = hj = c!e and c E outs( UJ - ins( U,) 
or k, = hj = C?X and c E ins( U2) - outs( U,); 

(iii) R, = SEQ(x := e, PAR( Ul: 4, U2: Qj)) 

k, = SKIP 
and gi =c!e and hj = c?x and c E ins( U,) n outs( U,) 
or gi = C?X and hj = c!e and c E ins( Ul) n outs( U2) (expansion 2). 

(i) and (ii) above represent P and Q (respectively) making independent progress. 
(iii) represents the effects of communication between 
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1.6. Laws of declaration 

The construct VAR x1.. . x,,:P declares the variables x1, . . . , x, for use within 

These variables are distinct from any other variables with the same names that may 
be present in the external scope. It does not matter whether variables are declared 
in one list or singly: 

) VARx,:(VARx,: . ..VARx.:P)...)=VARx, . ..x.:P (WAR assoc). 

Nor does it matter in which order they are declared. 

(6.2) VAR x,:(VAR x2: P) = VAR ac,:(VAR x1: P) (VAR gym). 

If a declared variable is never used, its declaration has no effect. 

(6.3) VAR x: P = P if x ti free(P) (VAR dim). 

One can change the name of a bound variable, provided the new name is not already 
used for a free variable. 

(6.4) VAR x: P = VAR y: P[y/x] if y B free(P) (VAR rename). 

(Note that any clashes of y with bound variables of P are dealt with by the renaming 
implicit in the substitution operator.) 

Generally speaking, the scope of a bound variable may be increased without 
effect, provided it does not interfere with another variable with the same name. 
Thus each of the occam constructors has a distribution law with declaration. The 
first two say that if each component process of an IF or ALT declares the variable 
x, and that variable does not clash with the booleans or guards, then the declaration 
may be moved outside the constructor. 

(6.5) &Fgi (VARX:P)zVARX:(&giP) 

provided x is free in no gi 

(6.6) IF bi (VAR X:P,) = VAR xz 
i=l 

provided x is free in no bi 

(VAR-ALT distrib), 

(VAR-IF distrib). 

Note that it is possible to deal with cases where x is only declared in a few of the 
P, but is not free in any other, by using (6.3). 

Two laws are required for SEQ, one for each of its arguments. 

(6.7) SEQ(VA x:P, Q)=VARx:SEQ(P, Q) ifxefree(Q) 

(VAR-SEQ l), 

(6.8) S ) = x:S 
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The law for PAR takes into account the fact that, when a declaration is moved 
outside the constructor, the process that uses it mu t now declare the fact that it 
might want to use the variable declared. 

.9) PAR(&:(VARx:P), &:Q)=VARx:PAR(?Jr:P,, U2:P2), 
provided x is not free in &: Pz, where Ur is & modified to include a 
declaration of the variable x (in the notation of [9], it is the union 
of ZJ1 and USING(VARx)) (VAR-PAR). 

When a variable is used for inputting, the effect is the same as that of inputting 
to a completely new variable, and then assigning to the origin31 one. 

(6.10) ALT(c?x p, C) = VAR y:ALT(c?y SEQ(x := y, P), 6) 
provided x # y and y is not free in P or G (input renaming). 

There is no point in assigning to a variable at the very end of its scope since the 
value given to it can have no effect. 

(6.11) *VARx:((x)+y):= ((e)+f) = VARx:(y:=f) (assignment elim). 

The final law of VAR is required to deal with uses of uninitialised variables in 
expressions. Upon declaration a variable may take any value, the choice being 
nondeterministic. Its value remains constant until it is assigned or input to. Thus 
the value of one uninitialised variable may be replaced by that of another, provided 
it has not yet been read and the value of the second variable is used nowhere else. 

(6.12) VAR x: P = VAR x:SEQ(VAR X(X := z), P) (initialisation). 

It turns out that we only need one law to deal with channel declarations: an 
elimination rule analogous to (6.3). 

(6.13) CHAN cl.. . cn:P= P 
ifnoneofc,,..., c, appears free in P (CHAN elim). 

The reason for this simplicity is that our normal form will eliminate all PAR 
constructs, and hence all internal use of channels. 

1.7. Laws of I 

Recall that l. is the divergent process ‘WI4ILE true S IP. In practice this process 
may be considered broken, for not ct with the outside world, 
but what is worse, the environm never detect this fact. (Seeing that t 
process is still performing inte can never discount th 
possibility that it might still do s cess can also be regarded 

as having the most undefined behaviour possible since it forever erforms internal 
ac 

possible. Now, in general, if P’s be 
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must regard P as better (since whenever Q will guarantee the success of some 
experiment, so will P). We are thus forced to identify I with all processes that 
might diverge (before doing anything else). It is quite reasonable to make this 
identification: in practice, a process which can either behave correctly or diverge 
will probably do-the former while it is being tested, but will do the latter when it 
is being used in earnest. Putting it more simply, a racing program is always a 
programming error and may be considered broken. We therefore choose the simplest 
and most convenient laws, which state that almost any program made from a broken 
component is itself broken. 

Our philosophy gives rise to a number of laws. First, a process that can automati- 
cally choose to diverge must be identified with 1. 

(7.1)” ALT(SKIP I, G) = I (ALT-SKIP zero). 

It is clear that if the first operand of a SEQ construct can diverge, so can the whole 
construct. 

(7.2)” SEQ(& P) = I (SEQ left zero). 

If the first operand of a SEQ terminates before interacting with its environment, 
divergence in the second argument yields divergence in the whole construct. 

(7.3)* SEQ(x := e, I) = I (SEQ right zero). 

Divergence in one operand of a PAR may give rise to divergence in the complete 
construct since an implementation may choose to run one argument until it can 
proceed no further before running another. 

(7.4)* PAR( U,:& U2: P) = I (PAR zero). 

2. A prenormal form 

The first section introduced almost all the laws one requires to characterise the 
semantics of occam. Unfortunately, it is not satisfactory merely to state this; we 
must find some way of demonstrating it. This is especially true because we already 
have a denotational semantics; we would like the laws to yield the same equivalences. 
Even if we had no standard semantics to characterise, it would still be necessary 
to investigate the structure of the classes of intertransformable programs because it 
is only this that reveals the true power of a set of laws. 

As explained in the introduction, our method of demonstrating the power of our 
laws will be the discovery of a normal form for finite programs. Every such program 
will have a normal form equivalent (through transformation), but two normal form 
programs will have the same value in the denotational semantics only if there are 
(at most) trivial syntactic differences between them. 

A normal form must therefore exactly capture our ideas about denotational 
equivalence. This gives rise to a number of interrelated problems, all of which need 
to be solved befo we have a normal form. 
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(a) We need to characterise a process’ behaviour as a communicating agent. In 
other words, we must identify a unique way of representing each possible pattern 
of communication a process might exhibit. For example, if U, and U2 are suitable 
parallel declarations, the processes 

ALT(c?xd?y, d?yc?x) and PAR(U,:c?x, &:d?y) 

are equivalent, and therefore have the same normal form. 
(b) We need to characterise, relative to its communicating behaviour, the ways 

in which a process assigns to its variables. For example, the following pair of 
programs have the same effect on the final state and so have the same normal form: 

x := 3 and VAR y:SEQ(y := 3, z := z, x := y, y := 6). 

There are important distinctions that need to be made between processes at the 
boundary between (a) and (b). Consider the two processes 

PAR( U,:c!l, &:ALT(d?x STOP, c?xd?x)) and d?x 

(U, and U, are suitably chosen). Both processes have exactly the same communicat- 
ing behaviour (they input along channel d), and when they terminate they have the 
same effect on their free variable x. However, the first process is strictly less 
deterministic than the second: it is not obliged to terminate successfully; when 
composed in sequence with another process the second process need not be started. 

(c) The use of bound variables needs to be regularised. In writing a program, 
one often has a lot of freedom in the use of bound variables: not only in where 
they are declared, but also in whether to declare a new variable or reuse an old 
one. For example, the following pair of equivalent programs must have the same 
normal form. 

SEQ( c?x, c?x, d !x) and VAR y, z:SEQ( c?y, C?Z, x := Z, d !z). 

An essential aid to the solution of (a) and (b) above is a calculus for deciding 
the equivalence of expressions. For example, 2 + 2 = 4s true, and (x mod 3) + 
(x + 1 mod 3) + (x + 2 mod 3) = 3. Often we need to decide such equivalences in the 
context of the booleans representing the facts already known about the variables 
involved. For example, the programs 

IF 
xmod2=0 

c!(x/2) * 2 
xmod2=1 

c!((x+1)/2)*2-1 

and c!x are equivalent because of the equivalences of “x” with “(x/2) * 2” and 
“((x + 1)/2 * 2 - 1” in the respective (boolean) contexts. 

Because this issue, though important, is not really relevant to the algebraic 
properties of occam, we will abstract away from it. Specifically, we will assu 
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knowledge of all true facts of the form 

b1 I= bz for boolean expressions b, and bz 

meaning “in all states where b, is satisfied, so is bz”. Thus our later completeness 
results are relative to this knowledge. 

Our approach has the advantage of not tying us to a particular syntax and 
semantics for the space of expressions. We do, however, make frequent demands 
on the syntax and semantics of expressions representing booleans, the good 
behaviour of expressions under substitution for their variables, and the fact that all 
expressions in occam are evaluated without side-effects and without fear of nontermi- 
nation (even 27/O!). 

The discovery of a full normal form is rather difficult. We therefore introduce an 
intermediate farm to act as a conceptual and technical bridge. This will essentially 
solve the problems described in (b) and (c) above, as well as simplifying the most 
difficult problem, which is the one described in (a). The intermediate form is called 
IF/ALT form because it eliminates all uses of SEQ and PAR. It has a single 
parameter: a list of free variables. 

We will say that a program is in x-IF/ALT form if it has one of the following forms: 
0 I the wholly undefined, divergent process. 
0 x:= e a multiple (simultaneous) assignment to each free variable of x (the para- 

meter of the form). 
IFyzl bi Pi where each Pi is X-Ir’/ALT and the 6i partition true (i.e., b, v l l l v b, s 

true, and bi A bi = false whenever i Zj). No variable free in the whole program is 
in any bound( Pi). 
VARsr,,... , x,,,:ALTr=, gi Pi where each Pi is X-IF/ALT, each gi has one of the 
fORllS SKIP,c!eor C?Xj.(XI,..., x,} are the (all distinct) variables used in guards 
of the third type. They are disjoint from each bound( Pi) and from the components 
of X. xi can appear free in gi Pi only if gi has the form c?+. NO variable in XT or 
free in the whole program may be in any bound(&). 
VAR X: P where x” E free(P) but x is not a component of x: P is r-IF/ALT. 

Note that all assignments in IF/ALT programs are final (i.e., occur at the end of 
a program’s run, just before it terminates) and made only to free variables. Also, 
because of the way a fresh bound variable is create6 for every input, no variable 
that contains a value relevant to the program is overwritten until this final assignment. 
It is the introduction of multiple assignments that allows us to reduce the assignments 
in every program to this form. Not only do they bring symmetry by removing the 
order of assignments, but by allowing such assignments as 

(4 Y) := (Y, x) 

they will allow us to eliminate all assignments to bound variables. 
ound variables are of two types. The ones that are declared as inputting variables 

are used only for input and s nt use in expressions. Vanables declared in 
rograms of the final type (VA ) can never be given a “ roper” value (since 
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they are neither input to nor assigned to). They are thus, purely a simply, 
uninitialised variables, which contain a nondeterministically chosen constant value 
throughout the life of J? Thus, in practice, all programs of this form would be 
regarded as erroneous. 

The following is the main theorem of this section. 

2.6. Theorem. If It contains all the free variables that the$nite program P ever inputs 
or assigns to, then there is an x-IF/ALT program P’ such that free( P’) c free(P) v x 
and P = P’ is provable from the laws presented in $ection 1. 

The proof of this theorem is that every such program can be transformed to 
x-IF/ALT using the said laws. A strategy for performing this trsrrsformation is set 
out below. 

The first step is to transform all SEQ and PAR constructs to binary applications 
((SEQ-SKIP unit)(4.1), (PAR-SKIP unit)(%l), (SEQ assoc)(4.2), (PAR assoc) 
(5.2)). ALT constructs are then unnested ((ALTassoc)(2.1), ( QLTsym)(2.2)) and 
the boolean components of guards removed ((ALTsym)(2.2), (boolean guard 
elim)(2.4)). IF constructs are then unnested ((IF assoc)( 1.1)). 

The rest of the strategy is recursive. We deal in turn with each form a program 
might take. 

The atomic processes are all straightforward: 

STOP = ALT( j (ALT-STOP unit)(2.3), 

SKIP = x:=x (SKIP)(3.1), (identity assignment)(3.3), 

X :=e = x := x[ e/x] (assignment sym)(3.2), (identity assignment)(3.3), 

c!e = ALT(c!ex:= x) (output)(2.7), (SKIP)(3.1), (identity assignment)(3.3), 

c?x = VAR y:ALT(c?yx:= x[y/x]), where y is not a component of x 
(input)(2.6 j, (input renaming)(6.10), 
(identity assignment)(3.3), (SKIP)(3.1), 
(assignment sym)(3.2), (combine 

assignments)(4.7). 

(Recall that, in IF/ALT, no free variables may be used for inputting.) 
If the program Q has the form IF:=, bi Pi, we recursively transform each Pi io 

x-IF/ALT, making sure (via (VAR rename)(6.4)) that the bound variables of the 
resulting programs do not collide with free(P). It only remains to make sure that 
the bi partition true ((IF-STOP unit)( 1.6), (IF priority)( 1.2)) and transform any 
STOP thus introduced to ALT( j ((ALT-STOP unit)(3.3)). 

If the program P has the form ALTyCI gi Pi, we recursively transform each Pi to 
x-IF/ ALT Pi (making sure that bound( Pi) n free(P) = 0). One then ap 

renaming)(d.IO) to each of the input in turn (choosing a suitable va 

assoc)(6.I) to collapse the V 
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resulting program looks like 

VARq,..., x,:AiT gf P; 
i=l 

where, if gi = SKIP or c!e, g: = gi and Pr = P’, and if gi = C?X, then g: = c?% and 
Pr = SEQ( x := xi, Pi) for some j. The only thing left to do is to transform all the Pr 
of the second type to x-IF/ALT. This is done by first transforming x := xj to 
x := x[xj/x] and then applying the procedure set out under SEQ below. 

If the program has the form SEQ( P, Q) we recursively transform P and Q to 
x-IF/ALT programs P’ and Q’. We then apply the following recursive proLedure 
which, given P’ and Q’ in x-IF/ALT, transforms SEQ(P’, Q’) to x-IF/ALT. The 
first step is to ensure (using (VARrename)(6.4) if necessary) that free(P’) n 
bound( Q’) = fl and vice versa. 

If P’ = 1, then SEQ( P’, Q’) = I ((SEQ left zeroH7.2)). 
If P’= IF:=1 bi Pi, then 

SEQ( P’s Q’) = I’k bi SEQ(P, Q’) 
i=l 

((SEQ-IF distrib)(4.3)); 

each SEQ( Pi, Q’) is dealt with recursively. 
If P’=VARx,... x~:ALT~= 1 gi Pi, then because free( Q’) n bound( P’) = 0, the 

declaration can be moved outside the SEQ ((VAR assoc)(6.1), (VAR-SEQ1)(6.7)) 
so that the program looks like 

We then 

VAR x 1 l l l x~:SEQ ALTgi Pi, Q’ 
i = 1 

apply (SEQ-ALT distrib)(4.4) to obtain 

VARx,... xm:AiT gi SEQ(P, Q’) 
i= 1 

and finally deal with the SEQ( Pi, Q’) recursively. 
If P’ = VAR x: P’, then because x e free( Q’)$ the declaration can be moved outside 

the SEQ ((VAR-SEQ 1)(6.7)); we then appe2J to recursion. The program will then 
have the form VAR y:R. If y is not free in R k;a declaration can be removed with 
(VAR elim)(6.3). 

If P’= x:= e we need to deal with each case of Q’ separately. 
If Q’= I, then SEQ(x:= e, Q’) = 1 ((SEQ right zero)(7.3)). 
If Q’ = x :=A then SEQ(x := e, Q’) = x := f[ e/x] ((combine assignments)(4.7)). 
If Q’= VAR y:Q’, then, because of y ti free(x:= e), we have SEQ(x:= e, Q’) = 

VAR y:SEQ(x:= e, Q’) and can then appeal to recursion. The program will then 
have the form VAR y:R If y is not free in R, then apply (VAR-elim)(6.3). 

If Q’= IF:=* bi Qi, then, by (assignment-IF distrib)(4.5), we have 

SEQ(x := e, ‘) = I’F bi[e/x] SEQ(x:= e, Qi). 
j= 1 
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We then deal with the SEQ(x := e, QJ recursively, noting that the &[e/x] partition 
tnre because the 6i do. 

If Q’=VARx,... x,:AL’I’gi Qi, the first step (noting that {x,, . . . , xm}n 

free(x := e) = 0) is to move the declaration outside the SEQ to obtain 

VAR x x:ze,AiTg,Q, . 
. i=l 

Because the input variables of the gi are the xi, none of which appear in x:= e, we 
can use (assignment-ALT distrib)(4.6) to get 

VARx,... XmZAiT gi SEQ(X := e, Qi) 
i=l 

and then appeal to recur&m. 
Note that this procedure for I;cducing SEQ( P, Q), with P, Q already in x-IF/ALT, 

is guaranteed to terminate because every recursive call strictly simplifies one of the 
two arguments, leaving the other one unchanged. 

If we wish to transform VAR y: P to x-IF/ALT, the first step is to use (VAR 
rename)(6.4) if necessary to ensure that y is not a component of x. We then recursively 
transform P to an (x+(y))-IF/ALT program P’. Choosing a variable z that is 
distinct from y and does not appear in P, we use (initialisation)(6.12), (VAR- 
SEQ 1)(6.7), (VAR sym)(6.2) and (identity assignment)(3.3) to obtain 

VAR z:(VAR y:SEQ(x+(y):= x+(z)), P’). 

We then apply the procedure for reducing sequential compositions of IF!ALT 
programs to reduce this to 

VARz:(VAR y:P”) where P”is (x+(y))-IF/ALT. 

Observe that the only places y can appear in P” are on the left-hand sides of the 
final multiple assignments because the transformation from SEQ( (x + (y) := x + 
(z)), P’) to P” replaces all others by z. (This is easy to prove by structural induction 
on P’.) We can therefore make repeated use of (VAR-ALT distrib)(6.5), (VAR-IF 
distrib)(6.6), (VAR sym)(6.2), (VAR assoc)(6.1) to shift the declaration VAR y down 
to the leaves of P”. It can be eliminated from those of the form VAR y:l by 
(VAR elim)(6.3), and leaves of the form VAR y:x + (y) := e +(f) are transformed to 
x:= e by (assignment elim)(6.11) and (VAR elim)(6.3). The resulting program is 
then just VAR z: P*, where P* is the program obtained from P” by deleting all 
assignments to y. If z is not free in P* we make use of (VAR elim)(6.3). In any 
case we are left with our desired x-IF/ALT program, in which we note that y is 
not free. 

If a program has the form CHAN cl . . . c,: P, we first recursively transform P to 
an x-IF/ALT program P’. Now any occurrences of cl,. . . , c, within 
CHAN cl . . . c,: P’ (other than their declaration) are syntactically incorrect-for P’ 
contains no PAR constructs and so there is no place for internal communications 
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on these channels. Since we have postulated that all programs are syntactically 
correct, we can infer that none of cl, . . . . ears free in P’. Thus 

(CHAN elim)(6.13) is applicable. 
The only case that remains is that of PAR. It is important to note that none of 

the clauses we have so far dealt with have introduced a PAR construct (SEQ, on 
the other hand, was introduced by ALT and VAR). Thus the procedure we have 
already set up will work when given a program not containing any PAR constructs. 

If we are given a program of the form PAR( &:P, &: Q), the first step is to 
recursively transform P into x,-IF/ALT P’ and Q into x2-IF/ALT Q’ where x1 and 
x2 are respectively the components of x declared in U, and U2. (That this transforma- 
tion is possible follows from the correctness of PAR( h/l:P, U&Q).) 
PAR( U1: P’, U2: Q’) is then transformed to x-IF/ALT using the recursive procedure 
set out below. The first step is to make sure the bound variable sets of P’ and Q’ 
are disjoint from free(PAR( &:P’, U2: Q’)) and the components of I If either P’ or 
Q’ is L, we can apply (PARzero)(7.4) (and perhaps (PARsym)(5.3)) to obtain 1. 

If P’ is IFyca bi&, then since the bi partition tnre, we can apply (PAR-IF 
distrib)(5.4) to obtain 

I’F bi PAR( Ul:e, Uz:Q’). 
i=l 

We then recursively reduce each PAR( Cl,:&, U2:Q’). 
If Q’ is IF!=, bi Qi, then we apply (PAR sym)(5.3) and then the above. 
If P’ is VAR y:P’, then, since by construction y is not free in U2: Q’, we can use 

(VAR-PAR)(6.9) to obtain 

VAR y:PAR( Uf : P’, U,: Q’) 

where Uf is Ut with y “added”; we then appeal to recursion. If Q’ is VAR y:Q’, 
we apply (PAR sym)(5.3) and the above. As before, if y is not free in the resulting 
body, its declaration can be removed by (VAR elim)(6.3). 

If P’ is rl := e, and Q’ is x2:= e2, then, noting that the elements of xl and x2 are 
disjoint subsets of those of X, we can apply (PAR assignments)(S.S), (identity 
assignment)(3.3) and (assignment sym)(3.2) to obtain something of the form x := e. 

If P’is VARY,... y,:ALTy==, gi Pi and Q’ is x2 = e2, then by construction none 

ofy, . . . ym appear free in U2:Q’, so the VAR may be moved outside the PAR, using 
(VAR assoc)(d.l) and (VAR-PAR)(6.9) (thereby changing Ul to Ut, say). We can 
then use (expansion 1)(5.6) to transform it to something of the form 

VARY,... Y”‘:ALTgi PAR( UT:fi, Uz:Q’)m 
ieX 

The yi that no longer appear as input variables among the gi still appear in the 
eclaration and in Uf t moving them inside the ALT 

((VAR assoc)(6.1), (VA istrib)(6.5)) and then inside the 
)(6.9)), removing them from UT (obtaining U’, , say). 
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these variables are free in no remaining Pi, we can finally delete their declarations 
elim)(6.3). When we have recursively transformed the resulting 

PAR( U’,:&, &:Q’), the whole program is x-IF/ALT. 
The symmetric case (P’ = XI:= e, , Q’ = VAR J+ . . . y,,,:ALTyel gi Qi) is dealt with 

by the above, after applying (PAR sym)(5.3). 
e only remaining case is when 

P’=VARy,... ym:ALTgiPi and Q’=VARz,,..*~:AtTh,Q,. 
i-l I=1 

The same type of strategy as above, using (expansion 2)(W), will transform 
PAR( U1: P’, U2: Q’) to something of the form 

VARx:... Xb:ANLT ki Ri 
i=l 

where there is some M (0s M G N) such that 16 i s M implies k is SKIP and Ri 
is VAR yi:SEQ(yi := ei, R:) where RS is X-l(F/ALT; Ad c is N implies Ri is X- 
IF/ALT. It c-11 further be guaranteed that the x: are precisely the (distinct) variables 
used for input among the k (i > M), and that no xi or yi occurs in any Ri except 
the one obviously corresponding to it. (The first M guarded processes result from 
communications between P’ and Q’, the rest from independent action by either P’ 
or Q’.) 

Observing that no Ri (1 - I , -E ‘G M) *has any occurrence of PAR, we can safely 
transform them to x-IF/ALT. This having been dsse, the whole program is in 
x-IF/ALT, as required, after perhaps some renaming of bound variables. (Care is 
required over this last point because we have no reason for supposing that the 
programs Ri are in any sense “simpler” than the complete program. It is therefore 
vital that this transformation does not introduce a PAR and so makes use of the 
recursive procedure we are currently defining) 

This completes the description of the procedure for transforming 
PAR( U1: P, U&Q) to X-IF/ALT. Since that was the last clause ofthe main procedure, 
we have also completed the description of how to transform a general program to 
IF/ACT. 

2.1. Syntactic approximation 

Finite programs are relatively easy to reason about algebraically, but do not tend 
to be very useful in practice. Fortunately, there are techniques which allow us to 
apply our results on finite programs to general programs: syntactic approximation 
allows us to identify every program with a set of finite ones. 

The concept of syntactic approximation is uite well known (see, for example, 

[5]) and has been applied to CSP in similar circumst It gives a 

pre-order (in our ase a partial order) on the syntax order is a 

very simple one, ased on the ideas that replacing part of a program by the least 
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defined program (in our case L) produces an approximation, and that unfolding a 
recursion (in our case a WHILE 100~) reduces an approximation. 

mrougb most of this paper we make no formal distinction between the text of a 
program and its value (semantics), However, when considering syntactic approxima- 
tion, it is necessary to make a clear distinction: we will therefore place quotes (‘Pl) 
round any program that is to be considered as 3 syntactic object, and continue to 
use unadorned programs (P) for the corresponding semantic values. It is important 
to note that P = Q does not imply rP1 =rQ7, so the clauses below may not be 
combined with our existing laws (which are all semantic). 

We will write P r 1 S r Ql if rP1 is a syntactic approximation to r Ql. The following 
clauses define S for our version of occam. 

(I) r17 s rpi 3 

(2) rpisrpi 3 

(3) f-p~4ypgcf-Q-s~R~ _rr rpxrw, 

(4) i rg,-=r Qil + ‘Sl!Q &‘srSiQ Qil, 
i=l i=l i=l 

(5) i rz$wr Qil + ‘PAR Ui:PilsrPAR Ui:Qi’, 
i=l i=l i=l 

(6)” i rci7 SC rc;i =j r I”i ci-s rInr $y;i, 
i= 1 i = 1 i= 1 

(7)” i rGi7 sgrS;i + ‘ALT Gil< ‘ALT Gil, 
i = 1 i=l i=l 

(8) rP-rQl + rVARxl . . . x~:P~~~VARX,. . .x,:91, 

(9) rI’-rQl 3 ~CHANc,...c,:P~~~CHANc,...c,:Q~, 

(10) ‘IF( b SEQ( P, WHILE b P), ~6 SKIP)1 s rWHILE 6 P’. 

Clauses (6)* and (7)” require the definition of auxiliary relations S’ and sg on 
(respectively) conditionals and guarded processes. These satisfy 

(12) i rcil SC rcil =j rInF Gil SC rI”F Gil, 
i = 1 i = 1 i= 1 

(13) ‘P’G rg- * ‘g p- S-g Ql, 

) ;i rC,xgW 
i=l i=l i=l 

for other languages if 
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they have more general forms of recursion: one can have distinct pieces of syntax 
rPl and ‘01 such that P r lsrQ_ and rQlsrP_, e.g., pp.pq.p and pq.pp.pq.p.) 
It is important to remember that s is a purely syntactic relation, and that it is not 
pefirmissible to use the above clauses in conjunction with our laws (which preserve 
semantics rather than syntax). 

FIN(rPl), the set of P’s finite syntactic approximations, is defined to be 
(rQllrQ1~ rPl and rQ7 is finite}. It is easy to write down an equivalent definition 
of FIN(rPl) that is straightforward recursion on syntax. Typical clauses are given 
below (the cnly moderately difficult one being WHILE). 

FIN(rx := el) = {rl_l, rx := el}, 

FIN(‘c?xl) = {‘I-, ‘clx’}, 

FIN ‘-S;Q 41 
i=l 

= irJ-‘} u { ‘SiQ OilI i rQ,‘E FIN(‘P,l)}, 
i=l i=l 

FIN(‘WHILE b Pl) 

= {‘I’, ‘IF@ I, lb 1)1, ‘IF@ I, lb SKIP)l} 

u {‘IF@ SEQW,, ot), 16 W, rIF(b SEQWI, CM, lb SWP)‘Ii 

‘Q1% FIN(‘P-‘), rQ2% FIN(‘WHILE b P’)}. 

(The last clause, which is circular, is easily seen to have a unique solution.) 
Any finite, nondivergent, behaviour of a program has required only finitely many 

iterations of any loop. It is therefore possible to unwind the program that many 
times, obtaining a finite syntactic approximation which exhibits the same behaviour. 
Of course, any nondivergent behaviour possible for a syntactic approximation will 
also be possible for the original process. Intuitively, there is thus a close relationship 
between the behaviour of a process and those of its finite syntactic approximations. 
To understand this relationship properly we need to go back to our underlying 
semantic model. 

The denotational semantics of [9] map each process into a domain with a partial 
order according to which one process is greater thaii CLliY_;r --%s_r if it is better defined, 

or more predictable. IT P and Q are processes, we will write cQ (Q is more 

deterministic than P) if the semantic value of P is less than that of Q for all 

environments with unbunded sets of free locations and channels, and states where 
unused locations are mapped to error. PC 0 is equivalent to 

P = ALT(SKIP P, SKIP Q). 

This law simply says that every behaviour of is also possible for ; thus in 

we cannot be sure that we G induces a natural 
nce i e 
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The following three lemmas express the formal properties we will require of 
syntactic approximations. The first one is easy to prove (in the denotational seman- 
tics) by structural induction. 

2.2. Lemma. i?frP~rQl, then PE Q. 

Of course, the converse to Lemma 2.2 does not hold. 
The second lemma is easy to prove using a combination of structural induction 

and mathematical induction (the latter for WHILE loops). 

2.3. Lemma. FIN(rPl) is (under S) a dirxted set (i.e., if rQ1l, rQ,% FIN(rPl), 
there is some rQ% FIN(rPl) with rQ,l~rQ- and rQ+rQ~). 

Lemmas 2.2 and 2.3 tell us that the semantic values of the elements of FIN(rPl) 
are themselves a directed set under C. The last, and most important, of our lemmas, 
shows just how this set characterises the semantics of P It is also proved using a 
combination of structural and mathematical induction. 

mma. {QlrQ% FIN(rP1)) is a directed set (under E) with least upper bound 
P (i.e., u (QlrQ% FIN(rPl)}= P). 

Later we 
a process is 

will take advantage of this strong way in which 
determined by its syntactic approximations. 

the semantic of 

2.2. Prouing additional laws 

One very useful consequence of Lemma 2.4 above is that, if we want to prove a 
new algebraic law, it will usually be sufficient to prove it for finite programs. For 
example, consider the law 

SEQ(P, =Q(Q, R)) =SEQ(SEQ(P, Q)3 R). 

This (the conventional binary associative law of SEQ) is not trivially deducible from 
our existing laws, even though it is semantically true. However, suppose we have 
proved it for all finite P, Q, R. (We will shortly do this.) Then, using Lemma 2.4, 
we have for general P, Q, R: 

SEQ(P,SEQ(Q, R)) =u {FIrF1~ FIN(rSEQ(P, SEQ(Q,R)))l}. 

Now because the few elements F of this set which are not of the form 
S I) SE e laws) equivalent to ones that 
are, using the laws, e.g., SEQ( P, I) = SE 

LID 
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By our assumption that the result holds for finite processes this in turn is equal to 

u {SEQ(SEQ(P’, Q’), R’)(rP’% FIN(‘P’), rQ”c FIN(rQ’), 

rR’1 E FIN(‘R’)} 

= u {FlrF% FIN(rSEQ(SEQ(P, Q), R)‘)} 

= SEQ(SEQ(E 01, JO. 

Since we are in the process of setting up powerful machinery for dealing with 
finite programs (for example Theorem 2.1), there are advantages in only having to 
prove new laws for them. In particular, it is enough to prove them for IF/‘ALT 
programs (since, by Theorem 2.1, every finite program is equivalent to one in 
IF/ALT). As an illustration of the techniques one can employ to prove laws for 
IF/ALT programs, we will complete the proof of the SEQ associativity law given 
above. By virtue of what we have already established, 
will suffice. 

2.5. Proposition. If P, Q, R are all x-IF/ ALT, then 

SEQ(P, SEQ(Q, RJl= SEQWQV, Q), R). 

the following proposition 

Proof. We use structural induction on the triple (P, Q, R). Suppose the result holds 
for all simpler triples (P’, Q’, R’). ((P’, Q’, R’) is simpler than (P, Q, R) if each of 
its components is a (not necessarily proper) syntactic subcomponent of the corre- 
sponding component of (P, Q, R), except possibly for changes of variables not in 
X. At least one must be a proper subcomponent.) 

If P = I, the result is trivial by applications of (SEQ left zero)(7.2). 
If P = IFreI bi 5, we have 

SEQ(P, SEQ(Q, RI) = b bi SEQ(SI SEQ(Q, RI) (SEQ-IF distrib)( 4.3) 
i=l 

= I”F bi SEQ(SEQ(&, Q), R) (by induction) 
i=l 

=SEQ r”F bi SEQ(q, Q), R 
> 

(SEQ-IF distrib)(4.3) 
n’=l 

=SEQ(SEQ(ib&Q),R (SEQ-IF distribK4.3) 

= SEQ(SEQ(P, o), R) as required. 

If P = VAR x: P’, we first ensure (via (V 
free(R), and then 

SE )) 

= VAR x:SEQ( P’, SEQ(Q, R)) (VAR-SEQ 1)(6.7) 
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= VAR x:SEQ(SEQ( P’, Q), R) (induction) 

= SEQ(SEQ(P, Q), RI (VAR-SEQ 1)(6.7) twi 

If P=VARxl... x,,,:ALTy& gi Pi, one combines the techniques of the previous 
two cases (using (SEQ-ALT distrib)(rlA) rather than (SEQ-IF distrib)(4.3)). 

If P = x := e, we need to deal with the individual cases of Q separately: 
If Q = _L, the result is trivial by (SEQ left zero)(7.2) and (SEQ right zero)(7.3). 
If Q = IF:=, bi Qi, then 

- SEQ(P, SEQ(Q, R)) 

= SEQ 
( 

x := e, I”F bi SEQ(Qi, R) (SEQ-IF distrib)(4.3) 
i=l 

b&f r] SEQ(r := e, SEQ( Qi, R)) (assignment-IF distrib)(4.5) 
I==!! 

= Ik bile/x] SEQ(SEQ(2 := e, Qi), R) 
i=l 

(induction) 

I’b bJe/x) SEQ(X := e, Qi), R 
i = 1 > 

(SEQ-IF distrib)(4.3) 

=SEQ (assignment-IF distrib)(4.5) 

= SEQ(SEQ(P, QL RI. 

If Q = VAR x: Q’, the result may be established (after possible renaming of bound 
variables) by (VAR-SEQ 1,2)(6.7,6.8) and induction. 

IfQ=VARx,... x,:ALTy=, gi Q:, the result follows using the techniques of the 
previous two clauses, using (SEQ-ALTdistrib)(4.4) in place of (SEQ-IFdic 
trib)(4.3) and (assignment-ALT distrib)(4.6) in place of (assignment-IF dis- 
trib)(4.5). 

we need to consider each case of R separately. If R = I, the result 
follows simply from (SEQ right zero)(7.3) and (combine assignments)(4.7). If R = 
x:=f’, we have 

SEQ(P, SEQ(Q, (combine assignments)(4.7) 

by properties of substitution 

= SEQWQ(P, Q), (combine assignments)(4.7). 

then, after possibly renaming x1 . . . x, to avoid 
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=VARx,...x,: 
i=l 

properties of substitutions 

=VARx,...x,: 

(combine assignments)(4.7) 

= VAR x1 . . . x,,,:SEQ(x:= 
i=l 

(assignment-ALT distrib)(4.6) 

=VARx,... x,:SEQ(SEQ( := e, x:=f), R) 
(combine assignments)(4.7) 

= SEQWQ(P, 01, R) (VAR expansion)(6.1), (VAR-SEQ 2)(6.8). 

If R = IF:=, bi Ri the same argument as above applies, only (assignment-IF dis- 
trib)(4.5) is used in place of (assignment-ALT distrib)(4.6). The case of R = 
VAR x:R’ is easy. Cl 

Other laws can be proved in much the same way (often rather more easily). Some 
examples are given below. 

(a) SEQ(SKIP, P) = SEQ( P, SKI?) = P. 
(b) SEQ(P, IF:=, bi Qi) = IFy=l bi SEQ(P, Qi) if bl v l 9 l v b,, E true and no vari- 

able in any bi is altered by I? 
(c) PAR( U*:pI U&SKIP) = PAR( U,: P) = P provided U1 declares all global vari- 

ables and channels used by P, and Uz declares none of them. 
Not all proofs of new laws go along these lines. Some may require the full power 

of a normal form, while some can be derived directly. As an example of direct 
ion we here prove a law relating LT that is apparently more powerful 

than the law (IF-ALTdistrib)(2.10) we already have. 

A;IT gi I”F bj pli bj AiT gi & 
i=l j=l i=l 

= true and no variable input in a gi appears in a bi ((ALT-1 

t, if the execution of the guards gi a f 

ue of which is not affec I 

lowing law as a le 

biP,=I”FbT(IFbT&) 
i=l i=l 
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where bT=Ib,h-*= A lbi_, A bi. The right-hand side may be transformed to 

IFyzl bT Pi by repeated use of (I\- IF distrib)( 1.8), (IF assoc)( 1.1) and (IF sym)( 1.3). 

It is then equivalent to the left-hand side by (IF priority)( 1.2). 
The proof of (ALT-IF distrib) is as follows. 

Jt m 

ALT gi IF bi I$ 
i = 1 j=l 

=IFb,v.*mvbm AiTgiZFbjPG 
i=l j=l 

(by (IF-true unit)(l.7), as b, v 9 9 l v b, = true) 

ImFbjPG 
j=l > 

(by (IF-v distrib)( 1.4)) 

.eJ 

= IF bz 
&=I 

ALT gi lk b? fij 
i=l j=l 

where b”=lb+e.. A lbi-1 A bi (by lemma) 

=; b: IFb;FAiTg IFb* 
k=l ( i-1 

i( k(ib?h))) 

F-ALT distrib)(2.10) since no variable input in a gi appears in a bj) 

=I”F bt IFbEALTgi ImFbfr\b~g 
k=l ( i=l j-l 

(by (A-IF distrib)(l.@ and (IF assoc)(l.l)) 

= c’ b;F IF bt AiTgi IF bE & 
k= 1 ( i= 1 ) 

(by (IF--false unit)( 1.5) and (IF-sym)( 1.3) since b$ A b; = false when j # k) 

(by (IF-ALT distrib)(2.10)) 
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We cannot claim that IF/ALT is a normal form since even though it has a far 
more restricted syntax than general occam, it is still possible to have equivalent 
programs with essentially different syntax. This is because its construction did not 
take account of many of the equivalences that can arise between IF constructs, 
between ALT constructs, or as a consequence of (IF-ALT distrib)(2.10), the law 
which relates the two. The following examples illustrate some nontrivial forms of 
equivalence that are not recogniser! by reduction to IF/ALT. After each example 
we indicate the way in which our normal form will solve the problem illustrated. 

(a) It is possible to have clauses in IF constructs that are never executed, because 
the associated booleans must always evaluate to false. Some such cases are obvious, 
as when faPse is itself one of the booleans, but some are more subtle, as in 

IF IF 
xmod2=1 xmod2=1 

IF = Q 
X=0 
P 

x#O 
0 

where, in the left-hand process, one of the booleans in the inner IF is always false 
because of its context. 

In the normal form all such clauses will be eliminated from conditionals by using 
(IF-&lse unit)(lS). Difficulties such as those posed by the above example will be 
avoided by making sure that any boolean appearing within the “scope” of another 
is stronger than it. 

The above example also illustrates the point that if, in IFycX bi Pi, any of Pi is a 
conditional, then it may be unfolded using (A-IF distrib)( 1.8 j, etc. The normal 
form never has one IF directly as the argument of another. 

(b) It is sometimes possible to make a conditional choice before it is strictly 
required, and always possible to introduce a meaningless choice (between two 
identical processes). Consider the process 

IF 
X=0 

ALT(c!l P) 

X>O 

ALT( c !Q Q) 
XC0 

is has essentially different behaviours dependin 

communicate or not): this conditional choice is therefore unavoidable. On the other 
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hand, the choice between x = 0 and x > 0 can be postponed to (at least) the next 
step: it is only the value communicated down c that is at stake, and it is possible 
to construct a single expression that takes the correct value in all states with x > 0. 
If b, e, $ are expressions, we will use the notation e{ bv for the expression that takes 
value e if ti is “true” and f if b is “false”. (We do not specify its value for other 
values of b.) The program above may be transformed to 

IF 

ALT(c!l(x = O}O) IF@ = 0 p, x > 0 0)) 
XC0 

STOP 

by a combination of substitution of expressions, (IF sym)( 1.3), ( A -IF distrib)( 1.8) 
and (ALT-IF distrib) (the derived law proved at the end of Section 2). 

In our” normal form only strictly necessary choices will be made, and these will 
be made as late as possible. 

(c) There are several ways in which apparently different ALT constructs can give 
the same effect. For example, 

ALT 
c?x 

6) and ALT(c?x P, C) 
SKIP 

ALT( c?x P, 6) 

are equivalent. 
If the communication option of the first process is taken up, the environment 

cannot tell it is not operating the second (for exactly the same option is present 
there). If that option is not offered or not taken up, the first process quickly transforms 
itself (by the operation of the SKIP guard) to the second. 

The above equality cannot be proved from our existing laws since (as we 
alrzzdy stated) the laws of ALT are not yet complete. We will shortly develop the 
further laws needed to counter this type of equivalence. 

(d) If, at some point, a program can output several different expressions on the 
same channel, or assign several different expressions to the same variable, some 
subtle difficulties appear. (Such behaviour can easily arise in occam because of 
nondeterminism.) A pair of expressions mGy, as the state varies, sometimes evaluate 
to the same value and sometimes to different values. For example 

ALT 
c!O 

c!(x mod 2) 

0 
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is clearly equivalent to 

IF 
(xmod2)=0 

ALT 
c!O 

ALT 
SKIP 

P 

SKIP 

0 
(xmod2)#0 

ALT 
c!O 

P 
c!q 

Q 

since, if (X mod 2) = 0, communicating 0 can lead down either branch of the first 
program. 

In our normal form we will insist that if two expressions are both available as 
outputs on the same channel, or for assignment to the same variable, then they are 
different. (In no state where they are evaluated do they talce the same value.) 

Even this restriction is not enough: consider the following pair of processes. 

ALT ALT 
SKIP SKIP 

x:=0 X :-xmod2 
SKIP SKIP 

x:= 1 x:=1-(xmod2) 

They are clearly equivalent, even though there is no one-to-one matching between 
the pairs of expressions that appear in them. Just because, in every state, the sets 
(0, 1) and {x mod 2,1 -(x mod 2)) are the same, does not mean that there is any 
uniform equivalence between the individual expressions. In the normal form we 
are forced to accept only one of these representations; we choose the left-hand one 
by insisting that pairs of expressions {e, , ez} output onto the same channel or 
assigned to the same variable be ordered. This means that in all states where they 
are evaluated, el (say) is always strictly larger than e2. (The linear order chosen is 
of little consequence, provided it is expressible in the language. We will assume the 
identification of all possible expression values with distinct integers.) 

For a convincing construction of a normal form it is not enough merely to list a 
few types of equivalence that can arise and show how to deal with them. This 
approach can never tell us that there are no more (even more subtle) equivalences 
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waiting to be discovered. Instead we must construct a normal form explicitly around 
the semantic properties of programs: it should be obvious that different normal 
form programs are different semantically. A good example is “full disjunctive normal 
form” for propositional formulae. There is an obvious and close correspondence 
between the syntax of full d.n.f. formulae and the underlying semantics (functions 
from truth assignments to {true, false}). 

b occam pmcess can be thought of as acting in steps: a step is either a single 
communication or the act of successful termination. The normal form will charac- 
terise the first step of a process’ behaviour using the highest levels of syntax, and 
rely on inner levels to deal with subsequent steps. There are three essentially different 
ways in which the first step can be influenced. 

(i) It can depend on the values of the program’s variables. This type of choice 
is typified by IF constructs. 

(ii) It can depend on internal decisions by the process that are nondeterministic 
and invisible to the environment. The purest form of this is in ALT constructs with 
SKIP guards: for example ALT(SKXP P, SKIP Q) is a process that is free to behave 
like P or like Q9 the choice depending neither on the environment nor on the 
program’s variables. 

(iii) An occam process can offer its environment a choice of communications: 
its first-step behaviour then depends on the choice made by the environment. This 
choice might be at the level of choosing what to output to the process along a 
particular channel, or of choosing (via an ALT with communication guards) which 
channel to communicate on. 

To describe a process’ first step behaviour we will thus use three levels of syntax: 
essentially one for each variety of choice. 

The normal form has two parameters. The first is a boolean expression representing 
all facts known about the process’ free variables. This is necessary because, as was 
shown in example (a) above, it is necessary to take account at inner levels of 
conditionals already passed through. The other parametsr, inherited from IF/ALT, 
is a list of free variables. 

To keep our individual definitions as simple as possible we will define two sorts 
of program mutually. A b, x-normal form program has conditional choice (type (i) 
above) at its outermost level, while a 6, n-ATT pattern has a mi,:ture of the other two. 

nition. A 6, x-normal form is a program of the form 

Ik biPi, 
i=l 

where the bi partition b, for no i is 6i = false, and the Pi are distinct bi, x-ALT 
patterns. (ALT patterns, perhaps with different boolean parameters, are distinct if 

to a single choice, as was done in example (b) above. A 
formal definition of this notion will be supplied later.) 
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An ALT pattern will be a way of characterising the behaviour of a process whose 
general shape of first-step behavir ur is the same for all permitted initial values of 
its free variables. This “shape” is determined by looking at the range of first step 
behaviours open to the process. 

There are four essentially different things a process can do on its first step: 
(i) it diverges; 

(ii) it communicates with its environment (and goes on to its second step); 
(iii) it stops because, even though it has not terminated, it cannot z&see vGth its 

environment on any communication; 
(iv) it terminates in some state. 

The “shape” of a process’ first step will be a mixture of possibilities from the above. 
hrondeterminism within the process, and the many choices open to the environment, 
mean that any mixture of these containing at least one of {(i), (iii), (iv)} is possible. 
(It is impossible to construct a process that communicates in every circumstance. 
This is because any process can be faced with an environment that will not agree 
to any communication.) Recall, however, that we have chosen to identify all processes 
that can diverge. Thus J_ will be a b, x-ALT pattern, and all others will be divergence- 
free on their first steps. 

The other b, x-ATT patterns are essentially just lists of the possible combinations 
from (ii), (iii) and (iv) above. 

3.2. Definition. The program P is a 6, x-ALT pattern iff it is either 1 or 

VARY,,... 3 yn:ANLTgi Pi 
i=l 

where there are integers K, L with 0 G K < LS N and K c N such that 
(1) 1 s S: s K implies that gi has one of the forms c?yj and c!e, and that Pi is a 

b, x-normal form. All input channels are distinct, and the (distinct) variables used 
in input guards are precisely y, , . . . , y, (none of which is a component of x). yi is 
not free in gi Pi unless gi = c?yj. If c!e and c!f are two different gig then b t= e <f 
or 6 I= f < e. For each i, bound( Pi) is disjoint from free(P), {yl, . . . , y,,} and the 
components of x. 

(2) K C i s L implies gi is SKIP and Pi is ALTj,, gj Pj where the Xi (K C i s L) 
are incomparable subsets of { 1, . . . , K} with the property that if g, = c !e and g, = c v* 
(both outputs on the same channel), then s E Xi e r E Xi. (The sets X and Y are 
said to be incomparable if X z Y and Y z X.) 

(3) L C i s N implies gi is SKIP and Pi is x := ei where, if eij denotes the jth 

expression in the vector 9, we always have b I= eii = ek- or 6 k eii > ekj or 6i= eii < Q,,. 
Furthermore, if i # k, there exists some j with 6 I= eii # ek-. 

Clearly, the first K guards correspond to the process’ possible communications, 
the next L - K to the minimal combinations of co unications it can choose to 

accept from (but not terminate), and the final N - L to its possible final states (after 
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termination). The condition K < N asserts that the process must be able either QO 
terminate or to stop. 

The reasons for demanding that expressions output onto one channel, or assigned 
to the same variable, be uniformly ordered have already been explained. Most of 
the other constructions should be reasonably clear except possibly the construction 
of the section K < i G 5. 

This section is present to identify those environments with which the process 
might deadlock (i.e., stop because it cannot agree any communication with the 
environment). Observe that the process is free to execute any of the corresponding 
SKIP guards ( gi for i E {K + 1, . . . , L}) and can only deadlock if it does execute 
one of these guards. Thus deadlock can occur if and only if the environment offers 
to communicate on a set of channels disjoint from one of the sets represented by 
the fi: (K<isL). 

It is clear that the set of such e::-rironments would not be changed by introducing 
an additional option with a larger set of P’s communications than one of the Pi 
(K < is L), because whenever it can deadlock, so can Pi. This is why we only 
record minimal acceptances, or in other words, why we insist that the Xi (K c i s L) 
are incomparable. 

On the other hand, processes with different sets of minimal acceptances are 
observably different. This is clear when we note that, given two different collections 
of incomparable subsets of { 1, . . . , K}, one must contain an element X that is not 
a superset af any element of the other. Thus there is a set of channels (the complement 
of those represented by X) that the environment can offer which one process can 
deadlock on but not the other. 

Note that the whole set {g, , . . . , gk} or the empty set can appear as minimal 
acceptances, but that if one of them does P- ,,ear, then it is the only minimal 
acceptance (i.e., L = K + 1). The first of these happens when the process can fail to 
terminate but there is no communication it can either accept or refuse. The second 
occurs when the process has the option of deadlocking completely: getting into a 
nonterminated state where no communication is possible. 

All outputs along the same channel always appear together in the minimal 
acceptances because we assume that the environment, like occam processes, does 
not have the power of selective input on a channel. Thus we do not discriminate 
between a process that offers to output one of two values on a channel nondeter- 
ministically and one that offers the choice to the environment, even if this last idea 
were operationally reasonable. No environment we allow is equipped to observe 
such distinctions. The minimal acceptances are thus essentially sets of channels, 
and SO in constructing them we must identify all guards corresponding to the same 

is problem does not arise with input channeis because these are all, by 
assumption, distinct in ALT patterns.) 

e list of communications (16 i c ) needs ta be represented independently of 
the minimal acceptances because not all communications need appear in a minimal 
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acceptance set. Indeed, it is possible to have communications but no minimal 
acceptances at all, as in ALT(c?x SKIP, SKIP SKIP). 

Notice that each communication guard gj is always followed by the same process 
Pi, whether it appears in the communication section or the minimal acceptances 
section. This is because our semantic model (chosen because it expresses the weakest 
equivalence required for most practical correctness issues) does not distinguish 
between processes on the grounds of what communications can be observed after 
the refusal of specific sets. For example, we regard the two processes (a) and (b) 

(a) ALT (b) ALT 
SKIP SKIP 

ALT ALT 
C?X C?X 

C?X b .x -3 

d :tx 
L’ ?x 

SKIP 
ALT 

c?x 
STOP 

d?x 
c?x 

SKIP 
ALT 

c?x 
STOP 

c?x 
c?x 

as equivalent, even though they have different possible behaviours once the refusal 
of “d” has been observed and an input has been made on channel c. 

A finer model (i.e., one identifying less processes) might necessitate different 
processes after different instances of a guard. It might also be necessary to include 
more acceptances than just the minimal ones in order to accommodate this type of 
distinction. 

We can extract from each 6, x-ALT pattern an abstract shape for the behaviour 
it represents. It is either I or a triple, whose first component is a set of directed 
channels, the output channels having a multiplicity. Its second component is a set 
of incomparable subsets of the channels. The final component is a set of k-tuples 
of positive integers, where k is the length of X. For each i E (1, . . . , k} the set of ith 
components of these tuples has the form { 1,2, . . . , ni} fo: some ni 2 0. For example, 
if x=(x1,..., x,J, the tuple (1,3, . . . 9 2) means “assign the smallest of x1’s 
expressions to it, the third smallest of x,‘s expressions to it,. . . , and the second 
smallest of xk’s expressions (0 it”. Note thar. the second and third components of 
the triple cannot both be empty. 

Recall that the 6i, x-ALT patterns iq: making up the normal form program 

IF:=, bi f$ must be distinct, in t for no i and j can IF(b, 8, bj ) be transformed 
into a bi v bj, x-ALT pattern. patterns to be distinct if they have 
different abstract shapes. Note that this corresponds well to our objective of having 

the outer conditional in the normal form determine the shape of first-step behaviour. 
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It is easy to SC that two non-l ALT patterns fail to be distinct if and only if there 
are straightforward permutations of the communications, minimal acceptances and 
terminations of the first that match the second (except for names of input variables 
and the various expressions, but preserving order of expressions). If such a set of 
permutations exists, we will call them a matching of the two ALT patterns. 

33. Definition. Let P = VAR ~1,. . . , x,:ALTiN,, gi Pi with 

KcisL*gj=SKIPalrd &=ALTg$$ 
jEXi 

and 

and let Q = VAR J+, . . . , y,,,+:ALTiN,*, hi Qi with 

K*CisL*+hi=SKIP and Qi=ALThjQj 
je Yi 

and 

t*<i~N*ahi=SK1P and Q~=x:=J 

be respectively b and b*, x-ALT patterns. If N = N*, m = m*, K = K* and L = L*, 
a matching of P and Q is a quadruple (u, y, p, 7) of bijections v : (1,. . . , m} + 

(1 ,..., m), y:(l)..., K]+{l,..., K}, a:{K+l,..., L}+{K+l,..., L}, and 
?:{L+l,..., N}+{L+l,..., N} such that 

(a) - if gi = C?Xj, then h,,(i) = c?yvcj,, 
- if gi = c!e, then h,(i) = c!e* for some e* 9 

- if gi = c!e, gj =c!_& hy(i)=c!e* and hy,j,=c!f ‘, then 6 k e <f iff b* I= 
e*<f*; 

tbI yp(i) = {Y(j) lj E xi); 
(c) if the jth components of ei and A are respectively denoted eij and Jj, then 

This completes our definition of the normal form. Our objective when constructing 
the no;;mal form was that two such programs would only be semantically equivalent 
if they were syntactically equivalent in some obvious way. There are three ways in 
,’ ; -;_R . wx b, x-normal form programs can be semantically equivalent. 

(i) ‘Chc operators LT and IF (with disjoint booleans) are syn.metric. Thus 
their arguments can be permuted without changing the semantics of 2 normal form 
program. 
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(ii) The names of bou d variables may be changed. 
(iii) Any expression can be replaced by another one which is equivalent. In the 

case of expressions output onto channels or assigned to variables, this expression 
only needs to hold in the context of the strongest enclosing boolean. 
Programs that at’3 equivalent for reasons (i) and (ii) above are readily proved 
equivalent using the laws. programs that are equivalent for the third reason are 
proved equivalent by the following rule. 

3.1. Rule of substitution for expressions 

(a) If e is any expression appearing in the program P and k= e = e’, then provided 
‘, a program in which some occurrence of e has been replaced by e’, is correct, 

P= P’. 
(b) If b I= e = e’, then IF b ALT(c!e P, 6) = IF 6 ALT(c!e’ P G). 
(c) If bt= e=e’, then IFbx:=e = IFbx:=e’. 

In fact (i), (ii) and (iii) (and combinations thereof) are the onl,, ways in which a 
pair of b, x-normal form programs can be semantically equivalent. We thus formally 
define equivalence of normal forms as follows. 

3.4. Definition. (a) The b, x-normal form programs IFyzI bj Pi and IFylI bi Pi are 
equivalent if and only if n =n’ and there is a&bijection a:{l,.. ., n}+{I ,..., n} 
such that, for eac.h i, I= bi = b& Pi is equivalent (as an ALT pattern) to Pu(i). 

(b) The b, x-ALT patterns P and Q are equivulent if and only if either they are 
both I, or 

P=VARX,, l l e 9 Xm:ALTgiq 
i=l 

with 

and 

K<i~L+gi=SKIPand Pi=ALTgjP 
jEXi 

L< is N+gi=SKIP and Pi=x=ei, 

Q=VARy,,...,y,:A~T~*iQi 
i=l 

with 
K<isL+hi=SKIPand Qi=ALThjQj 

je Yi 

and 
L<is N+h,=SKIP and Qi=x:=fl: 

and there is a matching (u, ‘y, p, rj between them such that 6 I= e =f whenever e 
(from P) and f (from Q) appear “at the same point” (i.e., gi = c!e and h,(i) = c!=f, 
or e = eii and f =fT(i)j) and such that 1 s is implies that Pi is equivalent to 

Q?(i) Rx,, . . . 9 JMY~~~~,.. l 9 Y~(~))I as a b-normal form. 
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3.5. Theorem. The b, x-normal form programs P and (2 have IF b P and IF b Q 
semantically equivalent in the sense of [9] if and only if they are equivalent. 

We cannot give a detailed proof of this important result here since it depends PO 
cr&-dIy on the details of the denotational semantics, which have not been described 
in this paper. The following is an outline of the proof of the “only-if” part. (The 
“if” part being much easier.) 

So suppose P = IF:=, b P Q=IFyl, bi QiandIFbPandIF i iv 
equivalent. It is possible to recover the abstract shape of a process’ first-step 
behaviour from its semantics. Hence, for every state satisfying b, P and Q must 
have identical shapes of first-step behaviour. Now the distipctness of the ALT 
patterns making up P and Q means that the sets of booleans (b,, . . . , b,) and 

UJ 
I 
l,. . . , bL*} both partition the states satisfying b according to these shapes. From 

thiswecandeducethatn=n’andthatthereisabijectiono:{l,...,n}-*{l,...,n} 
such that, for each 1 s i s n, b I= bi = b&i, and either Pi = QWti) = I or there is a 
matching between Pi and Q-(i). In the latter case it is easily shown that the matching 
in fact yields an equivalence once induction has been used to deal with lower levels. 

3.2. 7%ree more laws 

There is an important gap that needs to be filled: the last three laws of ALT. They 
all concern SKIP guards in ALT constructs: the situation where the process is given 
an option that it can choose invisibly and automatically. In particular, they show 
what sort of equivalences arise between the type of nondeterministic processes these 
give rise to. In studying these laws the reader should bear in mind our philosophy 
that nondivergent processes are equivalent if they have the same communications, 
minimal acceptances and terminations, and if their possible behaviours after each 
communication are equivalent. These laws more than any others depend on the way 
our semantic model treats nondeterminism, and would probably need to be revised 
in other systems. 

The first law says that if the process communicates, the environment is not 
interested in whether this occurred before or after a SKIP guard. 

(2.11) ALT(SKIPALT(g,e 6:‘ g2 Q, G2) 

= AL’WKIP AL% P, g2 Q, W, G2) 

provided either g, = c?x and g2 = c?y 

or g1 =c!e and g,=c!f (ALT-SKIP sym) 

The fact that the process on the left-hand side has a communication on the same 
channel as g2 within the inner ALT ensures that both processes have the same 
minimal acceptances. The fact that, in the case g, = c!e and g2 = c!f, e need not 
equal f expresses the fact that the environment is not capable of inputting selectively 
on channel c. 
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The second law allows us to eliminate nested ALTs with SKIP guards. It says 
that if an _ALT can SKIP to a second ALT, which in turn can SKIP to P, then all 
other options in these ALTs are in exactly the same position: they might be offered, 
or might be ignored in favour of P. 

(2.12) ALT(SKIP ALT(SKIP e G,), 

= ALT(SKIP P, G1, G2) (ALT-SKIP reduction) 

The final law depends on the fact that we are only interested in minimal acceptance 
sets. Thus the following two processes with the same communication options (and 
subsequent behaviours) are equivalent: 

(2.13) ALT(SKIP ALT( G,), SKIP ALT( G1, G2), G3) 

= ALT(SKIP ALT( G,), Gz, G3) {tiavcxity) 

The left-hand process can SKIP to two options, one of which is a subset of the 
other. If one of the lists G1 and Gs contains a SKIP guard, the equivalence is quite 
easy to see. If neither does, it is clear that both processes have exactly the same 
possible communications, and furthermore any environment which can deadlock 
with either can deadlock with SKIP ALT( 6,) or scme SKIP option within G3. 

We now have enough laws to completely capture the semantics of our version of 
occam. There is one exception: the case of uninitialised variables. The nondetermin- 
ism introduced by these is of a particularly difficult kind. Given’ that any instance 
of one of these is erroneous, it is not worth putting a great deal of effort into their 
study. Any use of such a variable by a program will show l its IF-ALT form. 
We will thus not attempt to transform any further an IF- rogram with the 
“uninitialised variable” construct within it. (Notice that w not included the 
possibility of uninitialised variables within normal form programs since no bound 
variable is ever read until it has been input to.) 

Given Theorem 3.5 above, the following theorem shows that we have achieved 
our objective of completely characterising the semantics of finite programs. 

3.6. Theorem. If the list x contains every free variable that the finite program P ever 
inputs or assigns to, 2nd if P never evaluates an uninitialised variable, then there is a 
true, x-normal form program P’ such that free( P’) E free(P) v x and P = P’ is provable 
from our laws and the rule of substitution for expressions. 

By virtue of Theorem 2.1 it is sufficient to prove this for the case when P is an 
x-IF/ALT program. 

The proof of Theorem 3.6 takes very much the same form as that of Theorem 
2.1: it is a recursive procedure for transforming IF b P to b, x-normal form, where 
P is an x-IF/ALT program without uninitialised variables. Indeed, in some ways 
the proof is rather simpler than Theorem 2.1 since it does not need such a complex 
structure of nested recursions. (The reason for this is that I and normal fo 
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share the property that syntactic structure corresponds closely to execution order: 
things at high syntactic levels are executed first.) 

Theorems 3.5 and 3.6 together give us a relative completeness result: relative to 
the knowledge we are assuming about expressions, our algebraic laws are complete 
with respect to deciding the equivalence of finite programs. Recall the relation PG Q 
introduced in the second section, meaning “Q is more deterministic than P”. This 
was formally defined 

Pr,Q = P = ALT(SISIP P, SKIP Q). 

It is therefore (relatively) decidable for finite programs using our laws. 
It is a fact that, provided the set of “basic values” that expressions can take is 

finite, the finite programs are finite in the lattice-theoretic sense of the word. In 
other words, if D is a directed set of processes (under a), P is finite and u 03 P, 
then there is some Q E D such that 0 z P Thus the following theorem is an easy 
corollary to Lemma 2.4. 

3.7. Theorem. If P and Q are two occam programs with khe property 

VP’% FlN(‘P1). 3’Q’X. FIN(‘Q1). P’c, Qf9 0 * 

then PC, Q. If the underlying set of basic values is jinite, (*) holds if and only if P c Q. 

Since P = Q is equivalent to Pe Q and PS Q, Theorem 3.7 proves the soundness 
and, in the fir& set of values case, completeness of the following infinitary rule 
for deciding equivalence. 

Infinitary rule 1. §uppose P and Q are such that 

WP’% FlN(‘Pqj. 3rQ’-% FIN(‘Q1). P’E Q’ 
and 

WrQ’% FIN(rQ’). 3rP’% FIN(‘P1). Q’c P’, 

then we may infer P = Q. 

This rule, together with our laws and the rule of substitution for expressions is 
enough to completely characterise the semantics of occam if the set of values is finite. 

Our use of an infinitary rule, which requires an apparently infinite amount of 
work to verify its preconditions, appears undesirable. Indeed, for any particular 
finite value set it will be possible to give a complete finitary rule based on the fact 
that, since any program only contains finitely many variables, it can be regarded as 
a finite-state machine (with a huge number of states). Mowever, any such rule would 
be inelegant and be impossible to apply in practice because of the prohibitive 
amount of case checking required. Indeed, our infinitary rule may well be more 
practical since it will be possible to verify its preconditions by induction in many 
applications. 
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It should be noted that there is no chance: of a complete finitary rule v&er2 the 
value space is infinite. For example, we could take our value space to be the integers 
(with the truth values embedded somehow). We restrict the language of expressions 
to the comparison and boolean operations (including { )-see Example (b) of this 
section), + and - . This means that the facts b, /= b2 we are assuming are in principle 
decidable,’ and so add nothing to the real power of our system. A complete finitary 
rule for this language would allow us to decide the halting of arbitrary register 
machine programs: this is well-known to be impossible. (We have taken care here 
to ensure that an unscrupulous user could not make use of the calculus of expressions 
to reason about the large-scale structure of programs. It would of course be com- 
pletely outside the spirit of our style of proof system for him ever to do this.) 

Unfortunately, Infinitary rule 1 as it stands is not stroilg enough to give us a 
Qomplete system when the set of basic values is infinite. Suppose the value space 
is the integers, and consider the following pair of programs: 

IF WHILE y # 0 
y”O SEQ 

SEQ and y:=y-1 

x :=x+y x :=x+1 

y:=o 

Y<O 
I 

These are equivalent, but the rule does not prove this because the left-hand program 
is finite but is not weaker than any irnite syntactic approximation to the zight-hand 
program. This is because, as the initial state varies, the number of iterations of the 
WIIILE loop varies unboundedly. 

There are several methods of extending our rule to cope with this problem, all 
of which are essentially Nays of considering programs restricted so that we only 
need worry about a finite set of values at a time. 

It is quite easy to restrict normal form programs to finite sets of values. Given 
any list of variables y and a finite aet of constant expressions* F, it is easy to construct 
a boolean by” which is true if and only if every element of y is in F. All we have to 
do is to introduce extra conditions of the form b: into the conditionals of the normal 
form, with an “escape” clause of _L. 

nitisn. (a) If P = IF:= 1 bj Pi is a b, x-normal form program and F is a finite 
set of constant expressions, we define P&F to be 

IF(lb,F& (b,F I\ bl) PI&F,. . . 3 (b,F I\ b,) P,@) 

where y is the list of all variables appearing free in P. 

’ The theory of these expressions reduces to that of Presburger arithmetic (see, for example, id]). 
2 A constant expression is one which contains no variables. 
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(b) If P = ALTy=, gi Pi is a b, SALT pattern and F is a finite set of constant 
expressions, we define P&F to be the program in which JF is applied to each normal 
form appearing after a communication or within a minimal acceptance. (Note that 
P&F need not be a normal form program if P is since the clauses in the IFS might 
be false or not all distinct.) 

The following lemma expresses the lgnportant properties of the P&F. 
9 

3,9. mma. Suppose P is a normal form program and that every value is expressed 
by some constant expression; then we have 

(a) { PJ. F 1 F is a finite set of constant expressions) 

is directed (under E) with limit P. 
(b) For each F, if D is a directed set of processes with u Da PJ F, then there is 

some QED with QaP3.F. 

We can associate a set of these “ultra-finite” programs with each occam program 
P as follows* 

S(P) = { P’J F 1 F is a finite set of constant expressions and P’ is a 
normal-form equivalent of some P”E FIN(P)}. 

Lemmas 2.4 and 3.7 now combine to prove the soundness and completeness of the 
following rule. 

Idinitary rule 2. Suppose the programs P and Q are such that 

W’E @(I’). 3Qk 9(Q). P’cQ’ 
and 

VQ’E P(Q). 3Pk 9(P). Q’cP’; 

then P = Q. 

We have now completed our characterisation of the semantics of occam. The 
algebraic laws, Infinitary rule 2 and the rule of substitution in expressions provide 
a sound and complete system for deciding the equivalence of programs. Unfortu- 
nately, Infinitary rule 2 is likely to be much harder to use in practice than Infinitary 
rule 1. The facts that it relies on transformation to normal form and uses two separate 
types of approximation mean that its hypotheses will be much harder to prove by 
induction than those of the earlier rule. There may be alternative rules that are not 
so problematic; in particular, it should be possible to eliminate the need to transform 
every program to normal form. This is a topic for future research. 

In the first section of this paper we saw that algebraic laws provide a novel but 
precise framework for describing and defining occam. The completeness of this 
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description was shown by the rest of the paper. This approach can also be used to 
good effect with other well constructed languages: this is illustrated in [8], where 
a simple sequential language (Dijkstra’s language of guarded commands 133) is 
considered. 

The algebraic approach to programming language semantics has several features 
to recommend it. Laws do not require the construction of complex mathematical 
models. Each group of laws is fairly self-contained and usually easy to ur.derstand. 
They are very modular: a change which, with denotational semantics, would require 
alterations to the mathematical model and coblsequent revision of every semantic 
clause, may well require the alteration of only one or two laws. 

Nevertheless, the algebraic laws car, give rise to complex and unexpected inter- 
actions, leading to a danger that too many programs will be equated. It is therefore 
desirable to describe the language by an independent semantic technique (for 
example, denotational) and prove that this is congruent to the algebraic semantics. 
Such a proof will probably follow similar lines to ours: a demonstration that all 
laws preserve the semantics, the construction of a normal form, and a proof that 
two different normal form programs have different denotations. Note that in our 
case it would have been very difficult to construct the normal form without knowing 
the structure of the denotational model. 

Algebraic laws alone only allow us to prove one occam program equal to another. 
They do not help in proving a program correct with respect to some specification 
expressed in terms of a more abstract description of its intended behaviour. Correct- 
ness proofs might be based on concepts such as satisfaction (sat) 161, the weakest 
precondition [3] or Hoare logic [l]. We expect that these methods will be based 
more usually on the denotational than the algebraic description of occam. However, 
the laws may well be useful for transforming a program after it has been developed, 
or for making a program more amenable to some proof technique. 

We conclude that even though the algebraic and denotational semanttcs charac- 
terise exactly the same equivalence over occam, they are in some sense camplemen- 
tar-y. Each has a lot to offer to the other. 

Nevertheless, there are a number of practical applications for the laws described 
in this paper: proving programs equivalent to one another, transforming programs 
to make them more efficient, and transforming programs to a restricted syntax for 
special applications. In the three following subsections we examine their potential 
for these applications. 

4.1. Deciding the equivalence of programs 

The most obvious application of the laws is in tiding whether or not a given 

pair of finite programs are equivalent. Sections 2 a 3 have developed a procedure 

for doing this. This is a clear candidate for automation. The only parts of this 
procedure that are not immediately susceptible to practical implementation are those 
that rely on the assumption of facts about expressions. For some languages of 
expressions it will be possible in general to decide t ese facts (though perhaps not 
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very efficiently), and in any reasonable language there should be wide classes of 
pain of expressions whose equivalence is decidable. Even in the absence of a 
complete procedure for deciding expressions, it will be possible to automatically 
transform each finite program to normal form (except perhaps for the inclusion of 
some false branches in IF statements). In such circumstances the procedure might 
be able to decide the equivalence of a given pair of programs, and would in all 
other cases reduce the question of their equivalence to a boolean expression. It 
might be appropriate to make such a program interactive, allowing it to interrogate 
its user on difficult facts concerning expressions. 

Much of the complexity of the normal form n be attributed to the potential 
nondeterminism of occam programs. We have seen various ways in which programs 
can behave unpredictably: the normal form needs enough structure to characterise 
all of these. In fact, transformation to normal form will be an excellent way of 
analysing the nondeterminism of programs. 

In many practical cases the program will be deterministic, in that it cannot diverge 
and never has any choice over what to communicate or what to assign to its free 
variables. For these programs, and deterministic sections of others, much of the 
structure of our normal form will be redundant. If we wish to store and manipulate 
normal form programs in computers, it will be worthwhile investigating this and 
other topics to discover how they can be made more compact. 

A useful system for handling practical program equivalence questions must be 
able to deal with programs containing loops. Unfortunately, in deciding the 
equivalence of any pair of programs involving WHILE loops, it is necessary to 
compare infinitely many pairs of their finite syntactic approximations. As explained 
in the previous section, any reasonable complete system is bound to be sometimes 
infinitary. However, it is certain that by extending our set of laws and rules, and 
by the use of ‘inductive methods, we can develop systems that will require the use 
of infinitary rules a good deal less often. It is thus likely that we can develop practical 
linitary proof techniques which are applicable to many pairs of programs involving 
WHILE. 

A typical method would involve attempting to transform programs to some 
standard form, for example, the normal form with the introduction of loops in surne 
tightly defined ways. The incompleteness of such a method would appear either 
from the impossibility of transforming every program to standard form, or because 
the standard form was not a true normal form. 

For such techniques we will probably need to discover a number of algebraic 
laws involving WHILE. We have not needed any of these so far because finite 
programs contain no loops. Five examples are given below, each of which is easily 
derived from our existing systems. (Each requires an application of Infinitary rule 
1 and induction.) 

ILE expansion), 



W-2) 

(W.3) 

(W.4) 

(W.5) 
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WHILE bl (WHILE b2 P) = WHILE b, v b2 IF(b, P, true I) 
(WHILE combination), 

WHILE b P = IF( b WHILE true P, lb SKIP) 
if no variable appearing in b is input or assigned to by P 

(infinite loop), 

WHILE true x := e = I (divergent loop}, 

WHILE b SEQ( p, Q) = IF( b SEQ( p, WHILE b SEQ( Q, P), Q), lb SKIP) 
if no variable appearing in b is input or assigned to in Q 

(WHILE reordering). 

In addition to laws in this familiar style, it may also be necessary to use more 
explicitly directed transformations towards particular standard forms. For example 
the following may be useful if the target is a state-maching-like program. Note that 
an extra variable is introduced as a flag. 

(W.6) WHILE b VAR x: 

SEQ = SEQ 
P x := false 

Q WHILE x v b 
IF 

x 

SEQ 
Q 
x := false 

1x 

SEQ 
P 
X := true 

if x is not free in the left-hand side (loop factorisation). 

However, there is little hope that the above six laws, or any reasonable extension 
of them, will be adequate for every problem likely to be encountered in practice. 

4.2. Improving eficiency 

The second possible practical application of algebraic laws is for transforming 
programs to improve their efficiency in some way. That this is possible reflects the 
fact that the laws, while preserving all essential abstract correctness properties, do 
not imply equal efficiency on either side. Occam gives extra scope for this because 
it is a parallel language: one can improve a program not only by reducing the overall 
amount of calculation, but also by configuring it for the (possibly parallel) machine 
on which it is to be run. The second of these objectives may be easier than the first. 

In some circumstances one might seek a maximally parallel version of a program, 
but it is more likely that one will be attempting to optimise it for a particular 
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configuration. This might be a fixed-length pipeline, or even a single sequential 
processor. A typical technique here might be to seek maximally parallel versions of 
a program, use the symmetry and associative laws of PAR to divide the task into 
groups of processes suitable for running on single processors in a given network, 
and then eliminate some of the parallelism within these groups. 

A helpful tool for this type of transformation will be a repertoire of laws directly 
relating sequential and parallel composition. Because these constructions were both 
eliminated at an early stage of the transformation to normal form, we have so far 
not needed any such laws. It should also be possible to discover a number of laws 
which can be used to assist parallelism introduction, for example, by making a 
sequential program more amenable to it, or speeding up the behaviour of a parallel 
network. A good example of a sequential-to-parallel transformation is provided by 
the following. 

Suppose no two of the processes PI,. . . , Pm (m 2 1) can communicate on the 
same global channel (even internally), that the list x1, . . o , xp, (n 3 I) contains each 
free variable that can be input or assigned to by one Pi and used (in any way) in 
another, and that no Pi has a free occurrence of any of the channels co, . . . , cm. Then 

swm , l l l 9 P,)=CHANc, ,..., c,,,:PAR(Uo:Q, U,:P; ,..., &:Pk) 

where 

Q=SEQ and P:=VARx, . . .x,: 
c,!x, SEQ . . C . ?x* r-l = 

. 
c,!x, . 

. 

c,?x, Cr_r?Xn 
. 
. 
. Pr 

c, ?x, c, !x, 

c, !X” 

U, claims co for output, c, for input and xl, . . . , x, as variables. For r E { 1, . . . , m}, 
U, claims c~__~ for input, c, for output and all variables and chlmnels used by P, 
except x1,. . . ,x,. 

This transformation sets up a ring in which the values of the variables shared 
between the P are passed around in sequence. It would be ea,y to devise a version 
of this transformation in which the network created was a straightforward pipeline. 
(This would be in sequence with another simple process for managing the final 
values of x1, . . . , x, .) Note that no Pi can start up until Pi-1 has terminated: it is 
this that makes the transformation so genera!, but it also makes the resulting parallel 
program useless as it stands. After performing this transformation one would seek 
to introduce more useful parallelism by transforming the Pi in ways that remove 
the temporal dependence between actions in different P”J! . Useful laws for this include 
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(assignment-ALT distrib)(4.6) and simple derived laws such as 

SEQ(x+e, ~,!f)=SEQ(c!f[e/+],x:=e) (assignment--output sym), 

SEQ(x := e, c?y) = SEQ( c?y, n := e) 
provided y is not free in x := e. (assignment-input sym). . 

Unfortunately, the corresponding law of input/output symmetry 

SEQ(c?x, d !e) = SEQ(d !e, c?x) 
provided x does not appear in e 

is never true as it stands. Nevertheless it is a substitution that can be made in a 
number of contexts where at least one of c and d is used for internal communication. 

4.3. Transformation to a restricted syntax 

The final easily identified practical application for the laws is the transformation 
of general occaz programs into restricted subsets of the language. This paper has 
shown just how successfully this can be done: we have transformed every finite 
program to a normal form to which it usually bears no syntactic or structural 
resemblance. It seems unlikely that the normal form is one into which we would 
choose to transform programs for execution, but our work gives hope that transfor- 
mation into other, more useful forms might be tractable. 

An important application of this idea is likely to be in VLSI design. Occam is a 
natural language for specifying and describing systems such as VLSI circuits. The 
way in which these circuits are built up in a structured way out of interacting 

* modules and submodules corresponds well to the use of nested parallel constructs 
in occam. In specifying such systems we are likely to use fairly straightforward types 
of occam, which will make transformation easier. In particular, the set of expression 
values is likely to be much restricted (perhaps allowing only the boolean values 0 
and 1). 

Let us suppose that we know that particular types of occam program are directly 
implementable in silicon by some automated system. Then to implement a circuit 
specified in occam it will be sufficient to transform it to one of these implementable 
subsets of occam. Because all our transformations are provably correct, the resulting 
chip design is guaranteed to be a correct implementation of the original specification. 

An essential prerequisite for this work will be the definition of the directly 
implementable subsets of occam. An obvious candidate is some stylised representa- 
tion of a finite-state machine. Others will clearly involve parallelism and communica- 
tion. The handshaken communication of occam can be implemented directly on 
silicon by asynchronous design rules; and for larger circuits this is an effective 
method for avoiding problems of clock skew. For s!maller circuits with highly regular 
cem~~~~ications, the occam handshake can sometimes be replaced by a clocked 
synchronous transfer. 
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Appendix. A summary of the laws of occa 

A. 1. T%e complete set of laws 

Laws of IF 

WCI, WG), Cd = IW’,, G, Cd (IF assoc) (1.1) 

Ik biPi=I”F be PIi, wherebT=lb,A...h7bi-IAbi (IFpriority) (1.2) 
i=l i=l 

Ik bi Pi = Ik b,(i) P=(i) 
i=l i=l 

for any permutation m of (1, . . . , n} provided bi A bj = false 
whenever i #j (IF sym) 

IF( bl P, b2 P, C) = IF(b* v b2 P, C) (IF-v distrib) 

IF(false P, C) = IF(C) (IF-fake unit) 

IF( C, b STOP) = IF(C) (IF-STOP unit) 

IF( true P) = P (IF-true unit) 

IF( C, b? 4p.) =IF( C’,& b* b.P,) (A-IFdistrib) 

Laws of ALT 

ALT(ALT( G,), @2) = ALT(GI, Gz) (ALT assoc) 

ALT Gi = ALT Gmci, 7r any permutation of (1,. . . , n} 
i= 1 i= I 

(ALT-sym) 

ALT( ) = STOP (ALT-STOP unit) 

) = IF(b ALT(g l?, ), lb AL’T( C)) 
(booIean guard elim) 

ALT(SKIP P) = P (ALT-SKIP identity) 

ALT(c?x SKIP) = c?x (input) 

(ALT idempotence) 

(guard distrib) 

(1.3) 

(1.4) 

(1.5)” 

(1.6)* 

(1.9) 

j1.8)” 

(2.1) 

(2.2) 

(2.3) 

(2.4 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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IFbA~Tg,q=IFbA~Tg,(IFb~i) 
i=l i=l 

provided no variable appearing in b is input in any g; 
(IF-ALT distrib) (2.10) 

ALT(SKIP AL‘% P, GA g2 0,621 

= AWSKIP AJag* P, 82 Q, 

provided either g, = c?x and g2 = c?y 
erg, = c!e and g2= c!f (ALT-SKIP sym) (2.11) 

ALT(SKIP ALT(SKIP l?, G,)? G2) 

= ALT(SKIP P, G1, G2> (ALT-SKIP reduction) (212) 

AL’T(SKIP ALT( G,), SKIP ALT( G1, G2), G3) 

= ALT( SKIP ALT( G,), G2, 63) (convexity) 

Laws of assignment 

(>:=( )=SKIP (SKIP) 

(&Ii=1 . ..n).=(eili=l...n) 
=(x,(i,li=l...n):=(e,(i,li=l...n) 

for m any permutation of (1, . . . , n} (assignment sym) 

x+y:=e+y = x:=e (identity assignment) 

Laws of SEQ 

SEQ( ) = SKIP (SEQ-SKIP unit) 

SEQ(P, P) = SEQ(P, SEQ(P)) (SEQ assoc) 

SEQ(k bie, Q) =k b SEQ(&, Q) (SEQ.-IFdistrib) 

SEQ ALT gi Pi, Q 
> 

= ALT gi SEQ( Pi, Q) (SEQ-ALT distrib) 
i=l i=l 

(2.13) 

(3.1) 

(3.2) 

(3.3)” 

(4.1) 

(4.2) 

(4.3)” 

(4 4) * . 

SEQ x :=- e, IF hi Pi = Ik bi[e/x] SEQ(X := e, 6) 
i=l i=l 

(assignment-IF distrib) 

(4 9 * . 

SEQ(x := e, ALT gi Pi) = ALT gi[e/x] SEQ(x := e, Pi) 
i=l i=l 

rovided no variable which occurs in x or e is . t in any gi* 

(assignment- distrib) 

SEQ(x := e, x := f) = x :y i [e/x] (combine assignments) (4 7) . * 
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Laws of PAR 

PAR( ) = SKIP (PAR-SKIP unit) 

JPAJ& U:+-PAR( UGP,, U*:(P&C &:I?)) (00) 

where U* is the union of U’, ; . . , U, (PAR assoc} 

PAR( U1: PI, U2: f2) = PAR( U2: P2, Ul: PI) (PAR sym) 

PAR 
( 

[/,:IF bi pi, Uz:Q 
i= I > 

= I”F bi PAR( Ul:&, &:Q) 
i=l 

provided b, v l l l v b, = true (PAR-IF distrib) 

PAR( U,:x:= e, &:y:=f) = x-i-y:= e+f (PAR assignments) 

(5.1) 

(5 2) 

(53) . 

(5.4)” 

(5.5)” 

If each gi has one of the forms c?x, c!e or SKIP, then 
PAR( U,:ALTF=, gi&, U~ZX:=~)=ALT,,~ gi PAR( UlZPi, U&x := e) where X is the 
set of indices i E (1,2,. . . , n} such that 

gi = SKIP 
or gi = c!e and c E outs( W,) - ins( U2) 
or gi = c?x and c E ins( V,) - outs( U,). (expansion 1) (5.6)” 

If P = ALTy=, gi pi, and Q = ALT” j=l hj Qj, where each gig hj has one of the forms 
c?x, cle or SKIP, then PAR( U,:P, U$Q) = ALTEI k, R,, where the pairs (k,, R,) 
are precisely all possibilities from the following: 

(i) R, = PAR( U& UgQ) and 

kr = gi = SKIP 
or k, = gi = c !e and c E outs( U,) - ins( V,) 
or kr=gi=c?x and cEins(&)-outs(&); 

(ii) R, = PAR( U1: P, hl,: Qj) and 

kr = hj = SKIP 
or k,=hj=c!e and cEouts(&)-ins(&) 
or k, = hj = C?X and c E ins( U,) -outs( &); 

SEQ( x := e, PAR( LJI: I)i, Uz: Qj)) 

k, = SKIP 
and gi = c!e and hj = Cx and c E ins( U2) n outs( V,) 
or gi = c ?X and hj = c ! e and c E ins( U1) n outs( U,). (expansion 2) 

(5.7)$ 

Laws of declaration 

).. .)=VAKx, . ..x.,: 

(6.1) 
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VAR x,:(VAR x,:P) = VAR x,:(VAR x1: P) (VAR sym) (6 2) 

VARjr:P= P ifxLfree(P) (VAR elim) (6:3) 

VARx:F=VARy:P[ylx] ifyefree(P) (VAR rename) (6 4) . 

@I’s (VARx:P.)=VARx:(~~~~gi~~ 

provided x is free in no gi (VAR-ALT distrib) (6.5) 

I”F bi (VARX:P)=VARX: Ik biPi 
i = I ( > i=l 

provided x is free in no bi (VAR-IF distrib) 

SEQ(VAR x:P, Q) =VAR x:SEQ(P, Q) if xg free(Q) 
(VAR-SEQ 1) 

SEQ(P,VARx:Q)=VARx:SEQ(P,Q) ifxefree(P) 
(VAR-SEQ 2) 

PAR(U,:(VARx:P), v,:Q)=VARx: PAR(Uf:P,, U2:P2), 
provided x is not free in V,:P,, where Uf is U, modified to 
include a declaration of the variable x (in the notation of [9], 
it is the union of V, and USING(VARx)) (VAR-PAR) 

ALT:c?xP, G)=VAR.y: ALT(c?y SEQ(x:= y, P), G) 
provided x f y and y is not free in P or G (input renaming) 

VAi% x:((x)+y) := ((e)+$) = VAR x:(y :=f) (assignment elim) 

VA& X: P = VAR x:SEQ(VAR X(X := z), P) (initialisation) 

CHANq...c,:P=P 
if irone of cl . . . c,, appears free in P (CHAN elim) 

Laws of I 

ALT(SKIP 1, 6) = I (ALT-SKIP zero) 

SEQ(I, P) = I (SEQ left zero) 

SEQ(x:= e, I) = I (SEQ right zero) 

PAR( U*:l, U,:P) = I (PARzero) 

A.2. Sgrne derived laws 

SEQ( P, SEQ( Q, R)) = SEQ(SEQ( P, Q), R) (SEQ binary as& 

= I”F bj 
( 

ALT gi Pj 
j=l i=l 

providing b, v l l * v b, = true and no variable input in a gi 

appears in a bj. (ALT-IF distrib) 

(6 6) . 

(6 7) . 

(6.8) 

(6.9) 

(6.10) 

(6.1 l)* 

(6.12) 

(6.13) 

(7.1)* 

(7 2) * . 

(7.3)” 

(7.4)” 

(U.1) 

(D.2) 
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SEQ(SKIP, P) = SEQ(P, SKIP) = P (SEQ-SKIP unit) D.3) 

SEQ(~~~biQi)=~biSEQ(P,Qi) 

if b, v l -•vbn s true and no variable in any bi is 
altered by P (SEQ-IF right distrib) (D.4) 

PAR( U1: P, &SKIP) = R(U,:P)= P 
provided U1 declares all global variables and channels 
used by P, and U2 declares none of them 

(PAR-SKIP unit) (D.5) 

SEQ(x := e, c lf ) = SEQ( c !f [ e/x], x := e) (assignment-output sym) (D.6) 

SEQ(x:= e, c?y) = SEQ( c?y, x := e) 
provided y is not free in x := e. (assignment-input sym) 

WHILE b P = IF(b SEQ(P, WHILE b P), lb SKIP) 
(WHILE expansion) 

WHILE bt (WHILE b2 P) = WHILE bl v b2 IF(b2 P, true I) 
(WHILE combin* 2 ion) 

WHILE b P = IF( b WHILE true P, lb SKIP) a 

if no variable appearing in b is input or assigned to by P 
(infinite loop) 

WHILE true x := e = 1 

WHILE b SEQ(P, Q) 

(divergent loop) 

= IF( b SEQ( 9. WHILE b SEQ( Q, P), lb SKIP) 
if no variable appearing in b is input or assigned to in Q. 

(WHILE reordering) 

(D-7) 

(W-1) 

(W-2) 

(W-3) 

(W.4) 

(W.5) 
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